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NUMERICAL SOLUTION OF FREDHOLM FUZZY

INTEGRAL EQUATIONS OF THE SECOND KIND VIA

DIRECT METHOD USING TRIANGULAR FUNCTIONS

F. MIRZAEE∗, M. PARIPOUR AND M. KOMAK YARI

Abstract. In this paper, we present an efficient numerical method
to solve linear Fredholm fuzzy integral equations of the second kind
based on two m-sets of triangular functions. This approach needs
no integration, so all calculations can be easily implemented. More-
over, the error estimate of the proposed method is given. The pro-
posed method is discussed in details and illustrated by solving some
numerical examples.
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1. Introduction
Fuzzy integral equations are important for studying and solving a

large proportion of the problems in many topics in applied mathematics,
in particular in relation to fuzzy control. Usually, in many applications
some of the parameters in our problems are represented by fuzzy number
rather than crisp state, and hence it is important to develop mathemat-
ical models and numerical procedures that would appropriately treat
general fuzzy integral equations and solve them.
The concept of integration of fuzzy functions was first introduced by
Dubois and Prade [5]. Alternative approaches were later suggested by
Goetschel and Voxman [8], Kaleva [10], Nanda [12] and others. While
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Goetschel and Voxman [8] preferred a Rimann integral type approach,
Kalva [10] chose to define the integral of fuzzy function, by using the
Lebesgue type concept for integration. One of the first applications of
fuzzy integration was given by Wu and Ma [15] who investigated the
fuzzy Fredholm integral equation of second kind FFIE-2. This work
which established the existence of a unique solution to FFIE-2 was fol-
lowed by other work on Fredholm integral equation [14] where a fuzzy
integral equation replaced an original fuzzy differential equation.
Recently, Molabahrami et al. [11] have used the Homotopy analysis
method to solve fuzzy Fredholm integral equation of second kind.
In 2006, Deb et al. [4] introduced a new set of orthogonal function;
these functions have been applied for solving variational problem and
integral equation by Babolian et al. [2,3]. The aim of this paper is to
apply, for the first time, the triangular functions to obtain approximate
solutions for the linear Fredholm fuzzy integral equations of the second
kind. Also, we present the error estimate for approximating the solution
of FFIE-2.

2. Preliminaries

Definition 2.1. Two m-sets of triangular functions (TFs) are defined
over the interval [0, T ) as:

(2.1) T1i(t) =
{

1− t−ih
h , ih ≤ t < (1 + i)h

0, o.w
,

(2.2) T2i(t) =
{ t−ih

h , ih ≤ t < (1 + i)h
0, o.w

,

where i = 0, 1, · · · ,m− 1 and m has a positive integer value. Also, con-
sider h = T

m , and T1i as the ith left-handed triangular function and T2i
as the ith right-handed triangular function. In this paper, it is assumed
that T = 1, so TFs are defined over [0, 1) and h = 1

m . From the defini-
tion of TFs, it is clear that triangular functions are disjoint, orthogonal
and complete [4]. We can write

(2.3)

∫ 1

0
T1i(t)T1j(t)dt =

∫ 1

0
T2i(t)T2j(t)dt =

{h
3 , i = j
0, i 6= j

.

Consider the first m terms of the left-hand triangular functions and
the first m terms of the right-handed triangular functions and write
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them concisely as m-vectors:

(2.4) T1(t) = [T10(t), T11(t), · · · , T1m−1(t)]
T ,

(2.5) T2(t) = [T20(t), T21(t), · · · , T2m−1(t)]
T ,

where T1(t) and T2(t) are called left-handed triangular functions (LHTF)
vector and right-handed triangular functions (RHTF) vector, respec-
tively. The following properties of the product of two TFs vectors are
presented by [3]:

(2.6) T1(t)T1T (t) '


T10(t) 0 . . . 0

0 T11(t) . . . 0
...

...
. . .

...
0 0 . . . T1m−1(t)

 ,

(2.7) T2(t)T2T (t) '


T20(t) 0 . . . 0

0 T21(t) . . . 0
...

...
. . .

...
0 0 . . . T2m−1(t)

 ,

and

(2.8) T1(t)T2T (t) ' 0,

(2.9) T2(t)T1T (t) ' 0,

where 0 is the zero m×m matrix. Also,

(2.10)

∫ 1

0
T1(t)T1T (t)dt =

∫ 1

0
T2(t)T2T (t)dt ' h

3
I,

(2.11)

∫ 1

0
T1(t)T2T (t)dt =

∫ 1

0
T2(t)T1T (t)dt ' h

6
I.

in which I is an m×m identity matrix.
The expansion of a function f(t) over [0,1) with respect to TFs, may be
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compactly written as

(2.12) f(t) '
m−1∑
i=0

ciT1i(t) +

m−1∑
i=0

diT2i(t) = cTT1(t) + dTT2(t),

where we may put ci = f(ih) and di = f((i+1)h) for i = 0, 1, . . . ,m−1.

3. Expanding two variable function by TFs

We can expand each f(t, s) ∈ L2([0, 1) × [0, 1)) by two TFs vectors,
with m1 and m2 components, respectively. For convenience, consider
m1 = m2 = m. To obtain desired results, we first fix the independent
variable s. Then, we expand f(t, s) by TFs with respect to independent
variable t as follows:

(3.1) f(t, s) ' T1T (t)


f(0, s)
f(h, s)

...
f((m− 1)h, s)

+ T2T (t)


f(h, s)
f(2h, s)

...
f(mh, s)

 .

Now, each of f(ih, s)’s for i = 0, 1, · · · ,m− 1 can be expanded by TFs
with respect to independent variable s. Hence, the expansion of f(t, s)
can be written as

T1T (t)


F11T1 T1(s) + F12T1 T2(s)
F11T2 T1(s) + F12T2 T2(s)

...
F11TmT1(s) + F12TmT2(s)

+ T2T (t)


F21T1 T1(s) + F22T1 T2(s)
F21T2 T1(s) + F22T2 T2(s)

...
F21TmT1(s) + F22TmT2(s)



= T1
T
(t)




F11T1
F11T2

.

.

.

F11Tm

T1(s) +


F12T1
F12T2

.

.

.

F12Tm

T2(s)

+T2
T
(t)




F21T1
F21T2

.

.

.

F21Tm

 T1(s) +


F22T1
F22T2

.

.

.

F22Tm

T2(s)



= T1T (t)F11T1(s)+T1T (t)F12T2(s)+T2T (t)F21T1(s)+T2T (t)F22T2(s),

in which,
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(3.2)

F11 =


f(0, 0) f(0, h) . . . f(0, (m− 1)h)
f(h, 0) f(h, h) . . . f(h, (m− 1)h)

...
...

. . .
...

f((m− 1)h, 0) f((m− 1)h, h) . . . f((m− 1)h, (m− 1)h)

 ,

(3.3)

F12 =


f(0, h) f(0, 2h) . . . f(0,mh)
f(h, h) f(h, 2h) . . . f(h,mh)

...
...

. . .
...

f((m− 1)h, h) f((m− 1)h, 2h) . . . f((m− 1)h,mh)

 ,

(3.4) F21 =


f(h, 0) f(h, h) . . . f(h, (m− 1)h)
f(2h, o) f(2h, h) . . . f(2h, (m− 1)h)

...
...

. . .
...

f(mh, 0) f(mh, h) . . . f(mh, (m− 1)h)

 ,

(3.5) F22 =


f(h, h) f(h, 2h) . . . f(h,mh)
f(2h, h) f(2h, 2h) . . . f(2h,mh)

...
...

. . .
...

f(mh, h) f(mh, 2h) . . . f(mh,mh)

 .

Let T(t) be a 2m− vector defined as

(3.6) T (t) =

(
T1(t)
T2(t)

)
; 0 ≤ t < 1,

where T1(t) and T2(t) have been defined in Eqs. (2.4) and (2.5).
Now, assume that f(s, t) is a function of two variables. It can be ex-
panded with respect to TFs as follows:

(3.7) f(s, t) ' T T (s)FT (t),

where T (s) and T (t) are 2m1 and 2m2 dimensional TFs and F is a
2m1 × 2m2 TFs coefficient matrix.
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For convenience, we put m1 = m2 = m, so matrix F can be written as

(3.8) F =

(
(F11)m×m (F12)m×m
(F21)m×m (F22)m×m

)
,

where F11, F12, F21 and F22 in above-stated Eq., are previously de-
fined in Eqs.(3.2)-(3.5).

Definition 3.1. A fuzzy number is a fuzzy set u : R1 → [0, 1] which
satisfies following conditions
a: u is upper semicontinuous.
b: u(x) = 0 outside some interval [c, d].
c: There are real numbers a and b, c ≤ a ≤ b ≤ d, for which

i) u(x) is monotonicly increasing on [c, a],

ii) u(x) is monotonicly decreasing on [b, d],

iii) u(x) = 1 for a ≤ x ≤ b.

The set of all fuzzy numbers, as given by definition 3.1 is denoted
by E1. An alternative definition or parametric form of a fuzzy number
which yields the same E1 is given by Kaleva [10].

Definition 3.2. A fuzzy number u is a pair (u(r), u(r)) of functions
u(r) and u(r), 0 ≤ r ≤ 1, satisfying the following requirements:
a: u(r) is abounded monotonic increasing left continuous function,
b: u(r) is abounded monotonic decreasing left continuous function,
c: u(r) ≤ u(r) , 0 ≤ r ≤ 1.

For arbitrary u = (u(r), u(r)), v = (v(r), v(r)) and k > 0 we define
addition (u+ v) and multiplication by k as:

(3.9)
(u+ v)(r) = u(r) + v(r),
(u+ v)(r) = u(r) + v(r),

(3.10)
(ku)(r) = ku(r),

(ku)(r) = ku(r).

The collection of all the fuzzy numbers with addition and multiplication
as defined by Eqs. (3.9) and (3.10) is denoted by E1 and is u convex
cone. it can be shown that Eqs. (3.9) and (3.10) are equivalent to the
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addition and multiplication as defined by using the α− cut approach [8]
and the extension principles [13]. We will next define the fuzzy function
notation and a metric D in E1 [8].

Definition 3.3. For arbitrary numbers u = (u(r), u(r)) and v =
(v(r), v(r)),

D(u, v) = max{ sup
0≤r≤1

|u(r)− v(r)|, sup
0≤r≤1

|u(r)− v(r)|},

is the distance between u and v [8].

Definition 3.4. Suppose f : [a, b] → E1 for each partition p =
{x0, x1, · · · , xn} of [a, b] and for arbitrary εi;xi−1 ≤ εi ≤ xi, 1 ≤ i ≤ n,
take

λ = max
1≤i≤n

|xi − xi−1| ,

and Rp =
∑n

i=1 f(εi)(xi − xi−1). The definition integral of f(x) over
[a,b] is ∫ b

a
f(x)dx = lim

λ→0
Rp ,

provided that this limit exists in the metric D.

If the fuzzy function f(x) is continuous in the metric D, the definite
integral exists [8]. Furthermore,

(3.11) (
∫ b
a f(x, r)dx) =

∫ b
a f(x, r)dx, (

∫ b
a f(x, r)dx) =

∫ b
a f(x, r)dx,

where (f(x, r), f(x, r)) is the parametric form of f(x). It should be
noted that the fuzzy integral can be also defined using the Lebesgue-
type approach [10]. However, if f(x) is continuous, both approaches
yield the same value. Moreover, the representation of the fuzzy integral
using Eq. (3.10) is more convenient for numerical calculations. More
details about the properties of the fuzzy integral are given in [8,10].

Lemma 3.5. ([1]) If f and g : [a, b] ⊆ R → E1 are fuzzy continuous
function, then the function F : [a, b] → R+ by F (x) = D(f(x), g(x)) is
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continuous on [a, b], and

(3.12) D

(∫ b

a
f(x)dx,

∫ b

a
g(x)dx

)
≤
∫ b

a
D(f(x), g(x))dx.

4. Solving linear fuzzy Fredholm integral equation

In this section, we present a TFs method to solve linear FFIE-2. First
consider the following equation:

(4.1) u(x) = f(x) + λ

∫ 1

0
k(x, t)u(t)dt,

where k(x, t) is an arbitrary kernel function over the square 0 ≤ x, t ≤ 1,
and u(x) is a fuzzy real valued function. In [15], the authors presented
sufficient conditions for the existence and unique solution of (4.1) as the
following theorem:

Theorem 4.1. ([15]) Let k(x, t) be continuous for a ≤ x, t ≤ b, and
f(x) a fuzzy continuous of x, a ≤ x ≤ b. If λ < 1

M(b−a) , where

M = max
a≤x,t≤b

|k(x, t)|,

then the iterative procedure

u0(x) = f(x),

uk(x) = f(x) + λ

∫ b

a
k(x, t)uk−1(t)dt, k ≥ 1

converges to the unique solution of (4.1). Specially,

sup
a≤x≤b

D(u(x), uk(x)) ≤ Lk

1− L
sup
a≤x≤b

D(u0(x), u1(x)),

where L = λM(b− a).

Throughout this paper, we consider fuzzy Fredholm integral equation
(4.1) with a = 0, b = 1 and λ > 0, where u(x) and f(x) are in L2([0, 1))
and k(x, t) belongs to L2([0, 1) × [0, 1)). Our problem is to determine
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TFs pair coefficients of u(x) in the interval [0, 1) from the know func-
tions f(x) and kernel k(x, t).
So, we introduce the parametric form of a FFIE − 2 with respect to
definition 3.1. Let (f(x, r), f(x, r)) and (u(x, r), u(x, r)), 0 ≤ r ≤ 1 and
x ∈ [0, 1) be parametric forms of f(x) and u(x), respectively.
Therefore, we rewrite system (4.1) in the following form

(4.2) u(x, r) = f(x, r) + λ

∫ 1

0
k(x, t)u(t, r)dt,

(4.3) u(x, r) = f(x, r) + λ

∫ 1

0
k(x, t)u(t, r)dt.

Let us expand u(x, r), f(x, r) and k(x, t) by TFs (LHTF andRHTF )
as follows:
u(x, r) ' T1T (x)U11T1(r) + T1T (x)U12T2(r) + T2T (x)U21T1(r)

+T2T (t)U22T (r) = T T (x)UT (r),
f(x, r) ' T1T (x)F11T (r) + T1T (x)F12T2(r) + T2T (x)F21T1(r)

+T2T (x)F22T2(r) = T T (x)FT (r),
and
k(x, t) ' T1T (x)K11T (r) + T1T (x)K12T2(r) + T2T (x)K21T1(r)

+T2T (x)K22T2(r) = T T (x)KT (r).
with

U =

(
U11 U12
U21 U22

)
,F =

(
F11 F12
F21 F22

)
and K =

(
K11 K12
K21 K22

)
.

substituting in Eq.(4.2):

T T (x)UT (r) ' T T (x)FT (r) + λ
∫ 1
0 T

T (x)KT (t)T T (t)UT (r)dt,

T T (x)UT (r) ' T T (x)FT (r) + λT T (x)K
( ∫ 1

0 T (t)T T (t)dt
)
UT (r),

with the equation∫ 1

0
T (t)T T (t)dt =

∫ 1

0

(
T1(t)T2(t)

) (
T1T (t) T2T (t)

)
dt

=

∫ 1

0

(
T1(t)T1T (t) T1(t)T2T (t)
T2(t)T1T (t) T2(t)T2T (t)

)
dt

'
(
h
3 Im×m

h
6 Im×m

h
6 Im×m

h
3 Im×m

)
= D2m×2m

,
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we have

T T (x)UT (r) ' T T (x)FT (r) + λT T (x)KDUT (r),

then

U = F + λKDU ⇒ (I − λKD)U = F,

thus

U = (I − λKD)−1F.

By solving this matrix system we can find matrix U2m×2m so
u(x, r) ' T T (x)UT (r). The same trend holds for Eq. (4.3).

5. Error Estimation

Now, we obtain the error estimation for given FFIE-2 as (4.1). Sup-
pose that

un(x) '
n−1∑
i=0

∗ u(ih)T1i(x) +
n−1∑
i=0

∗ u((i+ 1)h)T2i(x),

is approximate solution of u(x), where Σ ∗ denotes the fuzzy summation
and h = 1

n . Therefore, we get:

D(u(x), un(x))

= D

(∫ 1

0

k(x, t)u(t)dt, (

∫ 1

0

k(x, t)(

n−1∑
i=0

∗ u(ih)T1i(t)+

n−1∑
i=0

∗ u((i+1)h)T2i(t))dt

)

≤M
∫ 1

0
D

(
u(t),

n−1∑
i=0

∗ u(ih)T1i(t) +
n−1∑
i=0

∗ u((i+ 1)h)T2i(t)

)
dt,

where

M = max
0≤x,t≤1

|k(x, t)|.

Therefore, we have:

D(u(x), un(x)) ≤M
∫ 1

0
D(u(t), un(t))dt,
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sup
x∈[0,1]

D(u(x), un(x)) ≤M sup
x∈[0,1]

D(u(x), un(x)).

Therefore, if M < 1, we will have:

lim
n→∞

sup
x∈[0,1]

D(u(x), un(x)) = 0.

6. Numerical examples

Here, we consider three examples to illustrate the presented method
for FFIE-2.

Example 6.1. ([7]) Consider the following FFIE-2 with

f(x, r) = −1

3
x2 + x2r +

1

3
x+

1

4
r − 1

12
,

f(x, r) =
1

3
x− x2r − 1

4
r +

5

3
x2 +

5

12
,

and

k(x, t) = (2t− 1)2(1− 2x), 0 ≤ x, t ≤ 1 and λ = 1.

The exact solution in this case is given by

u(x, r) = rx,

u(x, r) = (2− r)x.

The results are shown in Table 1.

Table 1
Numerical results of Example 1 with presented method and Block-Pulse

functions method
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r Exact solution Presented method for Method of [7] for
(u(x, r), u(x, r)) x = 0.5 and m = 2 x = 0.5 and m = 32

0 (0.0000,1.0000) (0.0000,1.0000) (0.007956,1.024160)
0.1 (0.0500,0.9500) (0.0500,0.9500) (0.056347,0.975770)
0.2 (0.1000,0.9000) (0.1000,0.9000) (0.104737,0.927379)
0.3 (0.1500,0.8500) (0.1500,0.8500) (0.153128,0.878988)
0.4 (0.2000,0.8000) (0.2000,0.8000) (0.201519,0.830598)
0.5 (0.2500,0.7500) (0.2500,0.7500) (0.266040,0.766077)
0.6 (0.3000,0.7000) (0.3000,0.7000) (0.314430,0.717986)
0.7 (0.3500,0.6500) (0.3500,0.6500) (0.362820,0.669290)
0.8 (0.4000,0.6000) (0.4000,0.6000) (0.411210,0.630905)
0.9 (0.4500,0.5500) (0.4500,0.5500) (0.359603,0.572514)

Example 6.2. ([6]) Consider the following FFIE-2 with

f(x, r) = rx− x2[2
3
rx3 − 4

3
x3 − 1

2
rx2 + x2 +

1

12
r − 1

12
],

f(x, r) = (2− r)x+ x2[
2

3
rx3 − 1

2
rx2 +

1

12
r − 1

12
],

and

k(x, t) = x2(1− 2t), 0 ≤ x, t ≤ 1 and λ = 1.

The exact solution in this case is given by

u(x, r) = rx,

u(x, r) = (2− r)x.

The results are shown in Tables 2 and 3.

Table 2
Numerical results of Example 2 with presented method



58 F. Mirzaee, M. Paripour and M. Komak Yari

r Exact solution Presented method for Absolute error
(u(x, r), u(x, r)) x = 0.1 and m = 10

0 (0.0000,0.2000) (0.0003,0.1964) (3.9582e-04,3.6000e-03)
0.1 (0.0100,0.1900) (0.0102,0.1866) (1.9745e-04,3.4000e-03)
0.2 (0.0200,0.1800) (0.0200,0.1768) (9.0743e-07,3.2000e-03)
0.3 (0.0300,0.1700) (0.0298,0.1670) (1.9927e-04,3.0000e-03)
0.4 (0.0400,0.1600) (0.0396,0.1572) (3.9763e-04,2.8000e-03)
0.5 (0.0500,0.1500) (0.0494,0.1474) (5.9599e-04,2.6000e-03)
0.6 (0.0600,0.1400) (0.0592,0.1376) (7.9436e-04,2.4000e-03)
0.7 (0.0700,0.1300) (0.0690,0.1278) (9.9272e-04,2.2000e-03)
0.8 (0.0800,0.1200) (0.0788,0.1180) (1.2000e-03,2.0000e-03)
0.9 (0.0900,0.1100) (0.0886,0.1082) (1.4000e-03,1.8000e-03)

Table 3
Numerical results of Example 2 with Homotopy analysis method [6].

x h=-1.2 h=-1.1 h=-1 h=-0.9 h=-0.8

0.1 1.4898e -03 1.7651e -04 1.7602e -07 2.2547e -04 1.6846e -03

Example 6.3. Consider the following FFIE-2 with

f(x, r) = (r2 + r)(sin(
x

2
)− 0.05sin(x)(1− sin(1))),

f(x, r) = (4− r3 − r)(sin(
x

2
)− 0.05sin(x)(1− sin(1))),

and

k(x, t) = 0.1sin(x)sin( t2), 0 ≤ x, t ≤ 1 and λ = 1..

The exact solution in this case is given by

u(x, r) = (r2 + r)sin(
x

2
),

u(x, r) = (4− r3 − r)sin(
x

2
).

The results are shown in Table 4.
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Table 4
Numerical results of Example 3 with presented method

r Exact solution Presented method for Absolute error
(u(x, r), u(x, r)) x = 0.5 and m = 14

0 (0.0000,0.9896) (0.0000,0.9902) (0.0000000 ,6.0577e-04)
0.1 (0.0272,0.9646) (0.0275,0.9651) (3.1979e-04,4.9521e-04)
0.2 (0.0594,0.9382) (0.0596,0.9386) (2.3843e-04,4.6168e-04)
0.3 (0.0965,0.9087) (0.0967,0.9091) (2.6115e-04,3.6571e-04)
0.4 (0.1385,0.8748) (0.1389,0.8750) (3.8794e-04,1.7608e-04)
0.5 (0.1856,0.8350) (0.1857,0.8355) (1.1358e-04,5.1112e-04)
0.6 (0.2375,0.7877) (0.2380,0.7877) (4.4852e-04,6.7766e-05)
0.7 (0.2944,0.7316) (0.2948,0.7316) (3.8230e-04,3.2099e-05)
0.8 (0.3563,0.6650) (0.3567,0.6649) (4.2017e-04,8.6587e-05)
0.9 (0.4231,0.5866) (0.4236,0.5861) (5.6210e-04,4.5504e-04)

7. Conclusion

In this paper, we considered linear FFIE-2. By the embedding method,
the original equation is converted to two crisp Fredholm integral equa-
tions of the second kind. Then, we apply the two m-sets of TFs for
approximation of the unique solution of FFIE-2. Also, we proved the
error estimation for approximated solution of FFIE-2. The main advan-
tage of this method is low cost of setting up the equations without using
any projection method and any integration.
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