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PROOF OF CANTOR’S CONTINUUM HYPOTHESIS

J. KURDICS∗

Abstract. We shall attempt to prove Cantor’s General Contin-
uum Hypothesis, a special case of which is known as the Continuum
Hypothesis, namely that the cardinality of the power set of an infi-
nite set is the consecutive cardinality. An ordered field of cardinality
ℵSρ with interval topology of weight ℵSρ is constructed, where ℵSρ
is an uncountable isolated cardinal.
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1. Introduction

Let ω and Ω be the first countably infinite and the first uncountable
ordinal of cardinalities ℵ0 and ℵ1, respectively.

Cardinality of the power set 2ω of the set ω, called the continuum car-
dinality, is uncountable, as the power set always has greater cardinality.
Therefore the cardinality of Ω is less than or equal to the continuum.
Below we prove that they do coincide, that is, prove the Continuum
Hypothesis by means of building an ordered field from the elements of Ω
and applying the triadic set construction. More precisely, we will prove:

Theorem 1.1. ℵ1 = 2ℵ0.

This special case is instructive and therefore included.
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The proof of Cantor’s General Hypothesis in its entirety will be given
in the last section in a completely analogous way. Let λ be an infinite
initial ordinal of cardinality ℵρ and Λ the consecutive initial ordinal of

cardinality ℵSρ. We shall prove that cardinalities of the power set 2λ

and the set Λ coincide, i.e. prove

Theorem 1.2. ℵSρ = 2ℵρ.

2. Proof of the Continuum Hypothesis

Denote by ⊕ and ∗ the usual addition and multiplication of ordinals,
respectively.

Definition 2.1. By transfinite recursion define the countable ordinals
τα for any countable ordinal α. Let τ0 = 1, and let

τα = sup{τβ ∗ j |β < α, j ∈ ω}.

These are uncountable in number, and we show that we can construct
a number system ”of base ω” for countable ordinals (the method can be
extended to any ordinal).

Lemma 2.2. Any nonzero countable ordinal γ can be written uniquely
as γ =

⊕n
j=1 ταj ∗ kj with α1 > α2 > · · · > αn, the kj ∈ ω are all

nonzero.

Proof. As the set of all the τα has supremum Ω, and for limit ordinals
α we have sup{τβ |β < α} = τα, we see that

⋃
α∈Ω[τα, τα+1) = Ω \ {0}

(with the usual interval notation). The statement is clear for any ordinal
from the interval [1, τ1], where τ1 = ω. Let γ ∈ [τα1 , τα1+1). Then
τα1+1 = τα1 ∗ ω and [τα1 , τα1+1) =

⋃
i∈ω+ [τα1 ∗ i, τα1 ∗ (i + 1)). Let

γ ∈ [τα1 ∗ k1, τα1 ∗ (k1 + 1)). If γ equals τα1 ∗ k1 then the assertion
is clear. By induction, ordinals of form

⊕n
j=2 ταj ∗ kj with τα2 < τα1

exhaust the whole interval (0, τα1), and every ordinal from the interval
can be written in this form uniquely. As the interval [τα1∗k1, τα1∗(k1+1))
is of order type τα1 , γ is of form τα1 ∗ k1⊕ θ, where θ is a unique ordinal
from (0, τα1), the assertion has been proved. �

Lemma 2.3. Let ZΩ be the free left module over the ring of integers Z
with well-ordered basis {τµ |µ ∈ Ω}. Then the pair (ZΩ,+) is an ordered
free abelian group of cardinality ℵ1.

Proof. A nonzero element a of the module is of the unique form a =∑n
i=1 kiτµi with n a positive integer, ki ∈ Z\{0} and µ1 > µ2 > · · · > µn
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(unless otherwise stated, we shall use this presentation of elements of
the module). k1 will be called the leading coefficient of the element a.
The set Ω of countable ordinals has a natural embedding f : Ω → ZΩ,
0 7→ 0,

⊕n
i=1 τµi ∗ ki 7→

∑n
i=1 kiτµi . The well-order of the basis induces

an order on the module ZΩ. Let the positivity domain ZΩ+ be the set
of all elements with positive leading coefficients (hence

∑n
i=1 kiτµi <∑m

j=1 ljτνj if and only if µ1 = ν1, k1 = l1 µ2 = ν2, k2 = l2, . . . , µt−1 =

νt−1, kt−1 = lt−1, and µt < νt, or µt = νt and kt < lt for some t). It
is easy to check that the pair (ZΩ,+) is indeed an ordered free abelian
group of cardinality ℵ1. �

Lemma 2.4. Define multiplication of basis elements of the module ZΩ
by the rule τµτν = τf−1(f(µ)+f(ν)), where f is the natural embedding. Ex-

tend the multiplication by distributivity, that is, (
∑n

i=1 kiτµi)(
∑m

j=1 ljτνj ) =∑n
i=1

∑m
j=1 kiljτµiτνj . The triple (ZΩ,+, ·) becomes an ordered integral

domain.

Proof. Note that f is an order-preserving mapping, although f(µ ⊕ ν)
and f(µ) + f(ν) do not necessarily coincide. By a straightforward com-
putation multiplication of basis elements is associative and commutative.
Again by a routine check multiplication in the whole module is associa-
tive and commutative, 1 is unity, distributivity holds, and the product
of positive elements is positive. The triple (ZΩ,+, ·) is indeed an ordered
integral domain. �

Lemma 2.5. Let QΩ be the quotient field of the integral domain ZΩ,
consider the integral domain as a subring of the field, elements of which
are the fractions. Then QΩ is a linearly ordered field of cardinality ℵ1.

Proof. Let the positivity domain Q+
Ω be the set of all fractions with

numerator and denominator both either positive or negative. Hence if
a, c ∈ ZΩ and b, d ∈ ZΩ+ then a

b <
c
d if and only if ad < bc. We see that

QΩ is indeed a linearly ordered field of cardinality ℵ1. �

We shall consider the field QΩ endowed with the interval topology.

Lemma 2.6. A strictly increasing sequence {ui}i∈ω+ in the unit interval
[0, 1] of the field QΩ has an upper bound h so that h− ε is not an upper
bound for an arbitrarily small ε ∈ Q+

Ω.
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Proof. Clearly, for some ξ ∈ Ω, 1
τξ
< ε, and

[0, 1) =
⋃

γ∈Ω, γ<τξ

[
γ

τξ
,
γ + 1

τξ

)
is a division of the interval [0, 1). If a < b, a, b ∈ [0, 1), b− a > 1

τξ
then

a and b are in distinct intervals in the division, hence there exists some
division point γ

τξ
between a and b. Assume that the endpoint 1 is not an

ε-least upper bound. Then 1 − ε is an upper bound and some division
point is also an upper bound, hence the set

{β ∈ Ω |β < τξ,
β

τξ
is an upper bound of the sequence {ui}}

of ordinals is nonempty and has a minimal element β0. We see that
inside the interval (β0τξ − ε,

β0
τξ

) there exists a division point γ
τξ

, which is

not an upper bound by the construction of the ordinal β0. Thus β0
τξ
− ε

is not an upper bound, and h = β0
τξ

satisfies the requirements of the

lemma. �

Definition 2.7. We shall call h an ε-least upper bound of the strictly
increasing sequence {ui}i∈ω+ in the unit interval [0, 1] of the field QΩ.

Proof of Theorem 1.1. It is clear that a nondegenerate interval of
the field QΩ contains uncountably many elements, and, as supremum
of countably many countable ordinals is countable, it is obvious that a
countable set of positive elements of the field QΩ has positive upper and
lower bounds.

For i ∈ ω+ let [ui, vi] be a strictly decreasing sequence of closed in-
tervals with ui, vi ∈ [0, 1]. Let ε ∈ Q+

Ω be such that ε < vi − ui for all
i ∈ ω+. The sequence {ui} is strictly increasing, let h be an ε-least upper
bound. Then for some i0 we have ui0 > h−ε and ui0 < h < ui0 +ε < vi0 ,
consequently for all i > i0, ui0 < ui < h < ui0 + ε < ui + ε < vi. We
conclude

[h, ui0 + ε] ⊆
⋂
i∈ω+

[ui, vi]

and in the field QΩ the intersection of a strictly decreasing sequence of
closed intervals within the unit interval contains a nondegenerate closed
interval.

Apply the construction of Cantor’s triadic set in the field QΩ. It
follows that QΩ contains a subset of continuum cardinality, and itself
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is also of continuum cardinality. Consequently ℵ1 is the cardinality of
the power set of a set of cardinality ℵ0. The proof of the Continuum
Hypothesis is complete.

3. Proof of the General Continuum Hypothesis

Denote by ⊕ and ∗ the usual addition and multiplication of ordinals,
respectively.

Definition 3.1. By transfinite recursion define the ordinals τα ∈ Λ for
any ordinal α ∈ Λ. Let τ0 = 1, and let

τα = sup{τβ ∗ j |β < α, j ∈ ω}.

Construct a number system ”of base ω” for ordinals in Λ.

Lemma 3.2. Any nonzero ordinal γ ∈ Λ can be written uniquely as
γ =

⊕n
j=1 ταj ∗ kj with α1 > α2 > · · · > αn, the kj ∈ ω are all nonzero.

Proof. As the set of all the τα has supremum Λ, and for limit ordinals
α we have sup{τβ |β < α} = τα, we see that

⋃
α∈Λ[τα, τα+1) = Λ \ {0}.

The statement is clear for any ordinal from the interval [1, τ1], where
τ1 = ω. Let γ ∈ [τα1 , τα1+1). Then τα1+1 = τα1 ∗ ω and [τα1 , τα1+1) =⋃
i∈ω+ [τα1 ∗ i, τα1 ∗ (i + 1)). Let γ ∈ [τα1 ∗ k1, τα1 ∗ (k1 + 1)). If γ

equals τα1 ∗k1 then the assertion is clear. By induction, ordinals of form⊕n
j=2 ταj ∗ kj with τα2 < τα1 exhaust the whole interval (0, τα1), and

every ordinal from the interval can be written in this form uniquely. As
the interval [τα1 ∗ k1, τα1 ∗ (k1 + 1)) is of order type τα1 , γ is of form
τα1 ∗ k1 ⊕ θ, where θ is a unique ordinal from (0, τα1), the assertion has
been proved. �

Lemma 3.3. Let ZΛ be the free left Z-module with well-ordered basis
{τµ |µ ∈ Λ}. Then the pair (ZΛ,+) is an ordered free abelian group of
cardinality ℵSρ.

Proof. A nonzero element a of the module is of the unique form a =∑n
i=1 kiτµi with n a positive integer, ki ∈ Z\{0} and µ1 > µ2 > · · · > µn

(unless otherwise stated, we shall use this presentation of elements of the
module). k1 will be called the leading coefficient of the element a. The
set Λ has a natural embedding f : Λ → ZΛ, 0 7→ 0,

⊕n
i=1 τµi ∗ ki 7→∑n

i=1 kiτµi . The well-order of the basis induces an order on the module

ZΛ. Let the positivity domain ZΛ+ be the set of all elements with
positive leading coefficients (hence

∑n
i=1 kiτµi <

∑m
j=1 ljτνj if and only

if µ1 = ν1, k1 = l1 µ2 = ν2, k2 = l2, . . . , µt−1 = νt−1, kt−1 = lt−1, and
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µt < νt, or µt = νt and kt < lt for some t). It is easy to check that
the pair (ZΛ,+) is indeed an ordered free abelian group of cardinality
ℵSρ. �

Lemma 3.4. Define multiplication of basis elements of the module ZΛ by
the rule τµτν = τf−1(f(µ)+f(ν)), where f is the natural embedding. Extend

the multiplication by distributivity, that is, (
∑n

i=1 kiτµi)(
∑m

j=1 ljτνj ) =∑n
i=1

∑m
j=1 kiljτµiτνj . The triple (ZΛ,+, ·) is an ordered integral do-

main.

Proof. Note that f is an order-preserving mapping, although f(mu⊕ ν)
and f(µ) + f(ν) do not necessarily coincide. By a straightforward com-
putation multiplication of basis elements is associative and commutative.
Again by a routine check multiplication in the whole module is associa-
tive and commutative, 1 is unity, distributivity holds, and the product
of positive elements is positive. The triple (ZΛ,+, ·) is indeed an ordered
integral domain. �

Lemma 3.5. Let QΛ be the quotient field of the integral domain ZΛ (we
consider the integral domain as a subring of the field, elements of which
are the fractions). Then QΛ is a linearly ordered field of cardinality ℵSρ.

Proof. Let the positivity domain Q+
Λ be the set of all fractions with

numerator and denominator both either positive or negative. Hence if
a, c ∈ ZΛ and b, d ∈ ZΛ+ then a

b <
c
d if and only if ad < bc. We see that

QΛ is indeed a linearly ordered field of cardinality ℵSρ. �

We shall consider the field QΛ endowed with the interval topology.

Lemma 3.6. Let κ be a nonzero limit ordinal not exceeding λ and
{ui}i∈κ+ be a strictly increasing net in the unit interval [0, 1] of the
field QΛ. The net {ui} has an upper bound h so that h − ε is not an
upper bound for an arbitrarily small ε ∈ Q+

Λ .

Proof. Clearly, for some ξ ∈ Λ, 1
τξ
< ε, and

[0, 1) =
⋃

γ∈Λ, γ<τξ

[
γ

τξ
,
γ + 1

τξ

)
is a division of the interval [0, 1). If a < b, a, b ∈ [0, 1), b− a > 1

τξ
then

a and b are in distinct intervals in the division, hence there exists some
division point γ

τξ
between a and b. Assume that the endpoint 1 is not an



22 J. Kurdics

ε-least upper bound. Then 1 − ε is an upper bound and some division
point is also an upper bound, hence the set

{β ∈ Λ |β < τξ,
β

τξ
is an upper bound of the net {ui}}

of ordinals is nonempty and has a minimal element β0. We see that
inside the interval (β0τξ − ε,

β0
τξ

) there exists a division point γ
τξ

, which is

not an upper bound by the construction of the ordinal β0. Thus β0
τξ
− ε

is not an upper bound, and h = β0
τξ

satisfies the requirements of the

lemma. �

Definition 3.7. We shall call h an ε-least upper bound of the strictly
increasing net {ui}i∈κ+ in the unit interval [0, 1] of the field QΛ.

Proof of Theorem 1.2. It is clear that a nondegenerate interval of the
field QΛ is of cardinality ℵSρ, and, as supremum of a set of cardinality
not exceeding ℵρ of ordinals from Λ is also in Λ, it is obvious that a set
of cardinality not exceeding ℵρ of positive elements of the field QΛ has
positive upper and lower bounds.

For i ∈ κ+, where κ is a nonzero limit ordinal not exceeding λ, let
[ui, vi] be a strictly decreasing chain of closed intervals with ui, vi ∈ [0, 1].
Let ε ∈ Q+

Λ be such that ε < vi − ui for all i ∈ κ+. The net {ui} is
strictly increasing, let h be an ε-least upper bound. Then for some i0
we have ui0 > h − ε and ui0 < h < ui0 + ε < vi0 , consequently for all
i > i0, ui0 < ui < h < ui0 + ε < ui + ε < vi. We conclude

[h, ui0 + ε] ⊆
⋂
i∈κ+

[ui, vi]

and in the field QΩ the intersection of a strictly decreasing (well-ordered)
chain of closed intervals of length not exceeding λ within the unit interval
contains a nondegenerate closed interval.

This fact yields that by transfinite induction the iterated construction
of Cantor’s triadic set can be applied in the field QΛ to obtain a set (a
tree) of strictly decreasing (well-ordered) chains of closed intervals of
length λ, and the cardinality of this set equals the cardinality of the
power set of λ. As the intersection of each chain is nonempty, the set
QΛ contains a subset of cardinality that of the power set of λ. It follows
that the power set of λ is of cardinality ℵSρ.

The proof of the General Hypothesis is complete.
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Nýıregyháza, Hungary
Email: kurdics@nyf.hu


	1. Introduction
	2. Proof of the Continuum Hypothesis
	Proof of Theorem 1.1

	3. Proof of the General Continuum Hypothesis
	Proof of Theorem 1.2

	References

