Journal of Hyperstructures 1 (2) (2012), 16-23. ISSN: 2251-8436 print/2322-1666 online

PROOF OF CANTOR'S CONTINUUM HYPOTHESIS

J. KURDICS*

ABSTRACT. We shall attempt to prove *Cantor's General Continuum Hypothesis*, a special case of which is known as the *Continuum Hypothesis*, namely that the cardinality of the power set of an infinite set is the consecutive cardinality. An ordered field of cardinality $\aleph_{S\rho}$ with interval topology of weight $\aleph_{S\rho}$ is constructed, where $\aleph_{S\rho}$ is an uncountable isolated cardinal.

Key Words: Set, Cardinality, Continuum Hypothesis, Ordered Field.2010 Mathematics Subject Classification: Primary: 03E10; Secondary: 12J15.

1. INTRODUCTION

Let ω and Ω be the first countably infinite and the first uncountable ordinal of cardinalities \aleph_0 and \aleph_1 , respectively.

Cardinality of the power set 2^{ω} of the set ω , called the continuum cardinality, is uncountable, as the power set always has greater cardinality. Therefore the cardinality of Ω is less than or equal to the continuum. Below we prove that they do coincide, that is, prove the *Continuum Hypothesis* by means of building an ordered field from the elements of Ω and applying the triadic set construction. More precisely, we will prove:

Theorem 1.1. $\aleph_1 = 2^{\aleph_0}$.

This special case is instructive and therefore included.

Received: 31 July 2012, Accepted: 25 December 2012. Communicated by A. Yousefian Darani

^{*}Address correspondence to J. Kurdics; E-mail: kurdics@nyf.hu

^{© 2012} University of Mohaghegh Ardabili.

¹⁶

Proof of Cantor's Continuum Hypothesis

The proof of Cantor's General Hypothesis in its entirety will be given in the last section in a completely analogous way. Let λ be an infinite initial ordinal of cardinality \aleph_{ρ} and Λ the consecutive initial ordinal of cardinality $\aleph_{S\rho}$. We shall prove that cardinalities of the power set 2^{λ} and the set Λ coincide, i.e. prove

Theorem 1.2. $\aleph_{S\rho} = 2^{\aleph_{\rho}}$.

2. PROOF OF THE Continuum Hypothesis

Denote by \oplus and * the usual addition and multiplication of ordinals, respectively.

Definition 2.1. By transfinite recursion define the countable ordinals τ_{α} for any countable ordinal α . Let $\tau_0 = 1$, and let

$$\tau_{\alpha} = \sup\{\tau_{\beta} * j \mid \beta < \alpha, \ j \in \omega\}.$$

These are uncountable in number, and we show that we can construct a number system "of base ω " for countable ordinals (the method can be extended to any ordinal).

Lemma 2.2. Any nonzero countable ordinal γ can be written uniquely as $\gamma = \bigoplus_{j=1}^{n} \tau_{\alpha_j} * k_j$ with $\alpha_1 > \alpha_2 > \cdots > \alpha_n$, the $k_j \in \omega$ are all nonzero.

Proof. As the set of all the τ_{α} has supremum Ω , and for limit ordinals α we have $\sup\{\tau_{\beta} \mid \beta < \alpha\} = \tau_{\alpha}$, we see that $\bigcup_{\alpha \in \Omega}[\tau_{\alpha}, \tau_{\alpha+1}) = \Omega \setminus \{0\}$ (with the usual interval notation). The statement is clear for any ordinal from the interval $[1, \tau_1]$, where $\tau_1 = \omega$. Let $\gamma \in [\tau_{\alpha_1}, \tau_{\alpha_1+1})$. Then $\tau_{\alpha_1+1} = \tau_{\alpha_1} * \omega$ and $[\tau_{\alpha_1}, \tau_{\alpha_1+1}) = \bigcup_{i \in \omega^+} [\tau_{\alpha_1} * i, \tau_{\alpha_1} * (i+1))$. Let $\gamma \in [\tau_{\alpha_1} * k_1, \tau_{\alpha_1} * (k_1+1))$. If γ equals $\tau_{\alpha_1} * k_1$ then the assertion is clear. By induction, ordinals of form $\bigoplus_{j=2}^{n} \tau_{\alpha_j} * k_j$ with $\tau_{\alpha_2} < \tau_{\alpha_1}$ exhaust the whole interval $(0, \tau_{\alpha_1})$, and every ordinal from the interval can be written in this form uniquely. As the interval $[\tau_{\alpha_1} * k_1, \tau_{\alpha_1} * (k_1+1))$ is of order type τ_{α_1}, γ is of form $\tau_{\alpha_1} * k_1 \oplus \theta$, where θ is a unique ordinal from $(0, \tau_{\alpha_1})$, the assertion has been proved.

Lemma 2.3. Let $_{\mathbf{Z}}\Omega$ be the free left module over the ring of integers \mathbf{Z} with well-ordered basis $\{\tau_{\mu} \mid \mu \in \Omega\}$. Then the pair $(_{\mathbf{Z}}\Omega, +)$ is an ordered free abelian group of cardinality \aleph_1 .

Proof. A nonzero element a of the module is of the unique form $a = \sum_{i=1}^{n} k_i \tau_{\mu_i}$ with n a positive integer, $k_i \in \mathbb{Z} \setminus \{0\}$ and $\mu_1 > \mu_2 > \cdots > \mu_n$

(unless otherwise stated, we shall use this presentation of elements of the module). k_1 will be called the leading coefficient of the element a. The set Ω of countable ordinals has a natural embedding $f: \Omega \to \mathbf{Z}\Omega$, $0 \mapsto 0$, $\bigoplus_{i=1}^{n} \tau_{\mu_i} * k_i \mapsto \sum_{i=1}^{n} k_i \tau_{\mu_i}$. The well-order of the basis induces an order on the module $\mathbf{Z}\Omega$. Let the positivity domain $\mathbf{Z}\Omega^+$ be the set of all elements with positive leading coefficients (hence $\sum_{i=1}^{n} k_i \tau_{\mu_i} <$ $\sum_{j=1}^{m} l_j \tau_{\nu_j}$ if and only if $\mu_1 = \nu_1$, $k_1 = l_1 \ \mu_2 = \nu_2$, $k_2 = l_2, \ldots, \mu_{t-1} =$ ν_{t-1} , $k_{t-1} = l_{t-1}$, and $\mu_t < \nu_t$, or $\mu_t = \nu_t$ and $k_t < l_t$ for some t). It is easy to check that the pair ($\mathbf{Z}\Omega$, +) is indeed an ordered free abelian group of cardinality \aleph_1 .

Lemma 2.4. Define multiplication of basis elements of the module $_{\mathbf{Z}}\Omega$ by the rule $\tau_{\mu}\tau_{\nu} = \tau_{f^{-1}(f(\mu)+f(\nu))}$, where f is the natural embedding. Extend the multiplication by distributivity, that is, $(\sum_{i=1}^{n} k_i \tau_{\mu_i})(\sum_{j=1}^{m} l_j \tau_{\nu_j}) = \sum_{i=1}^{n} \sum_{j=1}^{m} k_i l_j \tau_{\mu_i} \tau_{\nu_j}$. The triple $(_{\mathbf{Z}}\Omega, +, \cdot)$ becomes an ordered integral domain.

Proof. Note that f is an order-preserving mapping, although $f(\mu \oplus \nu)$ and $f(\mu) + f(\nu)$ do not necessarily coincide. By a straightforward computation multiplication of basis elements is associative and commutative. Again by a routine check multiplication in the whole module is associative and commutative, 1 is unity, distributivity holds, and the product of positive elements is positive. The triple $(\mathbf{z}\Omega, +, \cdot)$ is indeed an ordered integral domain.

Lemma 2.5. Let Q_{Ω} be the quotient field of the integral domain $_{\mathbf{Z}}\Omega$, consider the integral domain as a subring of the field, elements of which are the fractions. Then Q_{Ω} is a linearly ordered field of cardinality \aleph_1 .

Proof. Let the positivity domain Q_{Ω}^+ be the set of all fractions with numerator and denominator both either positive or negative. Hence if $a, c \in \mathbf{Z}\Omega$ and $b, d \in \mathbf{Z}\Omega^+$ then $\frac{a}{b} < \frac{c}{d}$ if and only if ad < bc. We see that Q_{Ω} is indeed a linearly ordered field of cardinality \aleph_1 .

We shall consider the field Q_{Ω} endowed with the interval topology.

Lemma 2.6. A strictly increasing sequence $\{u_i\}_{i\in\omega^+}$ in the unit interval [0,1] of the field Q_{Ω} has an upper bound h so that $h-\varepsilon$ is not an upper bound for an arbitrarily small $\varepsilon \in Q_{\Omega}^+$.

Proof of Cantor's Continuum Hypothesis

Proof. Clearly, for some $\xi \in \Omega$, $\frac{1}{\tau_{\xi}} < \varepsilon$, and $[0,1) = \bigcup_{\gamma \in \Omega, \, \gamma < \tau_{\xi}} \left[\frac{\gamma}{\tau_{\xi}}, \frac{\gamma+1}{\tau_{\xi}} \right)$

is a division of the interval [0, 1). If $a < b, a, b \in [0, 1), b - a > \frac{1}{\tau_{\xi}}$ then a and b are in distinct intervals in the division, hence there exists some division point $\frac{\gamma}{\tau_{\xi}}$ between a and b. Assume that the endpoint 1 is not an ε -least upper bound. Then $1 - \varepsilon$ is an upper bound and some division point is also an upper bound, hence the set

$$\{\beta \in \Omega \mid \beta < \tau_{\xi}, \frac{\beta}{\tau_{\xi}} \text{ is an upper bound of the sequence } \{u_i\}\}$$

of ordinals is nonempty and has a minimal element β_0 . We see that inside the interval $(\frac{\beta_0}{\tau_{\xi}} - \varepsilon, \frac{\beta_0}{\tau_{\xi}})$ there exists a division point $\frac{\gamma}{\tau_{\xi}}$, which is not an upper bound by the construction of the ordinal β_0 . Thus $\frac{\beta_0}{\tau_{\xi}} - \varepsilon$ is not an upper bound, and $h = \frac{\beta_0}{\tau_{\xi}}$ satisfies the requirements of the lemma.

Definition 2.7. We shall call h an ε -least upper bound of the strictly increasing sequence $\{u_i\}_{i \in \omega^+}$ in the unit interval [0, 1] of the field Q_{Ω} .

Proof of Theorem 1.1. It is clear that a nondegenerate interval of the field Q_{Ω} contains uncountably many elements, and, as supremum of countably many countable ordinals is countable, it is obvious that a countable set of positive elements of the field Q_{Ω} has positive upper and lower bounds.

For $i \in \omega^+$ let $[u_i, v_i]$ be a strictly decreasing sequence of closed intervals with $u_i, v_i \in [0, 1]$. Let $\varepsilon \in Q_{\Omega}^+$ be such that $\varepsilon < v_i - u_i$ for all $i \in \omega^+$. The sequence $\{u_i\}$ is strictly increasing, let h be an ε -least upper bound. Then for some i_0 we have $u_{i_0} > h - \varepsilon$ and $u_{i_0} < h < u_{i_0} + \varepsilon < v_{i_0}$, consequently for all $i > i_0$, $u_{i_0} < u_i < h < u_{i_0} + \varepsilon < u_i + \varepsilon < v_i$. We conclude

$$[h, u_{i_0} + \varepsilon] \subseteq \bigcap_{i \in \omega^+} [u_i, v_i]$$

and in the field Q_{Ω} the intersection of a strictly decreasing sequence of closed intervals within the unit interval contains a nondegenerate closed interval.

Apply the construction of Cantor's triadic set in the field Q_{Ω} . It follows that Q_{Ω} contains a subset of continuum cardinality, and itself

is also of continuum cardinality. Consequently \aleph_1 is the cardinality of the power set of a set of cardinality \aleph_0 . The proof of the *Continuum Hypothesis* is complete.

3. PROOF OF THE General Continuum Hypothesis

Denote by \oplus and * the usual addition and multiplication of ordinals, respectively.

Definition 3.1. By transfinite recursion define the ordinals $\tau_{\alpha} \in \Lambda$ for any ordinal $\alpha \in \Lambda$. Let $\tau_0 = 1$, and let

$$\tau_{\alpha} = \sup\{\tau_{\beta} * j \mid \beta < \alpha, \, j \in \omega\}.$$

Construct a number system "of base ω " for ordinals in Λ .

Lemma 3.2. Any nonzero ordinal $\gamma \in \Lambda$ can be written uniquely as $\gamma = \bigoplus_{i=1}^{n} \tau_{\alpha_i} * k_j$ with $\alpha_1 > \alpha_2 > \cdots > \alpha_n$, the $k_j \in \omega$ are all nonzero.

Proof. As the set of all the τ_{α} has supremum Λ , and for limit ordinals α we have $\sup\{\tau_{\beta} \mid \beta < \alpha\} = \tau_{\alpha}$, we see that $\bigcup_{\alpha \in \Lambda} [\tau_{\alpha}, \tau_{\alpha+1}) = \Lambda \setminus \{0\}$. The statement is clear for any ordinal from the interval $[1, \tau_1]$, where $\tau_1 = \omega$. Let $\gamma \in [\tau_{\alpha_1}, \tau_{\alpha_1+1})$. Then $\tau_{\alpha_1+1} = \tau_{\alpha_1} * \omega$ and $[\tau_{\alpha_1}, \tau_{\alpha_1+1}) = \bigcup_{i \in \omega^+} [\tau_{\alpha_1} * i, \tau_{\alpha_1} * (i+1))$. Let $\gamma \in [\tau_{\alpha_1} * k_1, \tau_{\alpha_1} * (k_1+1))$. If γ equals $\tau_{\alpha_1} * k_1$ then the assertion is clear. By induction, ordinals of form $\bigoplus_{j=2}^n \tau_{\alpha_j} * k_j$ with $\tau_{\alpha_2} < \tau_{\alpha_1}$ exhaust the whole interval $(0, \tau_{\alpha_1})$, and every ordinal from the interval can be written in this form uniquely. As the interval $[\tau_{\alpha_1} * k_1, \tau_{\alpha_1} * (k_1 + 1))$ is of order type τ_{α_1} , γ is of form $\tau_{\alpha_1} * k_1 \oplus \theta$, where θ is a unique ordinal from $(0, \tau_{\alpha_1})$, the assertion has been proved.

Lemma 3.3. Let $_{\mathbf{Z}}\Lambda$ be the free left \mathbf{Z} -module with well-ordered basis $\{\tau_{\mu} \mid \mu \in \Lambda\}$. Then the pair $(_{\mathbf{Z}}\Lambda, +)$ is an ordered free abelian group of cardinality $\aleph_{S\rho}$.

Proof. A nonzero element a of the module is of the unique form $a = \sum_{i=1}^{n} k_i \tau_{\mu_i}$ with n a positive integer, $k_i \in \mathbb{Z} \setminus \{0\}$ and $\mu_1 > \mu_2 > \cdots > \mu_n$ (unless otherwise stated, we shall use this presentation of elements of the module). k_1 will be called the leading coefficient of the element a. The set Λ has a natural embedding $f : \Lambda \to \mathbb{Z}\Lambda$, $0 \mapsto 0$, $\bigoplus_{i=1}^{n} \tau_{\mu_i} * k_i \mapsto \sum_{i=1}^{n} k_i \tau_{\mu_i}$. The well-order of the basis induces an order on the module $\mathbb{Z}\Lambda$. Let the positivity domain $\mathbb{Z}\Lambda^+$ be the set of all elements with positive leading coefficients (hence $\sum_{i=1}^{n} k_i \tau_{\mu_i} < \sum_{j=1}^{m} l_j \tau_{\nu_j}$ if and only if $\mu_1 = \nu_1$, $k_1 = l_1 \ \mu_2 = \nu_2$, $k_2 = l_2, \ldots, \mu_{t-1} = \nu_{t-1}$, $k_{t-1} = l_{t-1}$, and

Proof of Cantor's Continuum Hypothesis

 $\mu_t < \nu_t$, or $\mu_t = \nu_t$ and $k_t < l_t$ for some t). It is easy to check that the pair $(\mathbf{z}\Lambda, +)$ is indeed an ordered free abelian group of cardinality $\aleph_{S\rho}$.

Lemma 3.4. Define multiplication of basis elements of the module $\mathbf{z}\Lambda$ by the rule $\tau_{\mu}\tau_{\nu} = \tau_{f^{-1}(f(\mu)+f(\nu))}$, where f is the natural embedding. Extend the multiplication by distributivity, that is, $(\sum_{i=1}^{n} k_i \tau_{\mu_i})(\sum_{j=1}^{m} l_j \tau_{\nu_j}) =$ $\sum_{i=1}^{n} \sum_{j=1}^{m} k_i l_j \tau_{\mu_i} \tau_{\nu_j}$. The triple $(\mathbf{z}\Lambda, +, \cdot)$ is an ordered integral domain.

Proof. Note that f is an order-preserving mapping, although $f(mu \oplus \nu)$ and $f(\mu) + f(\nu)$ do not necessarily coincide. By a straightforward computation multiplication of basis elements is associative and commutative. Again by a routine check multiplication in the whole module is associative and commutative, 1 is unity, distributivity holds, and the product of positive elements is positive. The triple $(\mathbf{z}\Lambda, +, \cdot)$ is indeed an ordered integral domain.

Lemma 3.5. Let Q_{Λ} be the quotient field of the integral domain $_{\mathbf{Z}}\Lambda$ (we consider the integral domain as a subring of the field, elements of which are the fractions). Then Q_{Λ} is a linearly ordered field of cardinality $\aleph_{S\rho}$.

Proof. Let the positivity domain Q_{Λ}^+ be the set of all fractions with numerator and denominator both either positive or negative. Hence if $a, c \in \mathbf{Z}\Lambda$ and $b, d \in \mathbf{Z}\Lambda^+$ then $\frac{a}{b} < \frac{c}{d}$ if and only if ad < bc. We see that Q_{Λ} is indeed a linearly ordered field of cardinality $\aleph_{S\rho}$.

We shall consider the field Q_{Λ} endowed with the interval topology.

Lemma 3.6. Let κ be a nonzero limit ordinal not exceeding λ and $\{u_i\}_{i \in \kappa^+}$ be a strictly increasing net in the unit interval [0,1] of the field Q_{Λ} . The net $\{u_i\}$ has an upper bound h so that $h - \varepsilon$ is not an upper bound for an arbitrarily small $\varepsilon \in Q_{\Lambda}^+$.

Proof. Clearly, for some $\xi \in \Lambda$, $\frac{1}{\tau_{\varepsilon}} < \varepsilon$, and

$$[0,1) = \bigcup_{\gamma \in \Lambda, \, \gamma < \tau_{\xi}} \left[\frac{\gamma}{\tau_{\xi}}, \frac{\gamma+1}{\tau_{\xi}} \right)$$

is a division of the interval [0, 1). If a < b, $a, b \in [0, 1)$, $b - a > \frac{1}{\tau_{\xi}}$ then a and b are in distinct intervals in the division, hence there exists some division point $\frac{\gamma}{\tau_{\xi}}$ between a and b. Assume that the endpoint 1 is not an

 ε -least upper bound. Then $1 - \varepsilon$ is an upper bound and some division point is also an upper bound, hence the set

$$\{\beta \in \Lambda \mid \beta < \tau_{\xi}, \frac{\beta}{\tau_{\xi}} \text{ is an upper bound of the net } \{u_i\}\}$$

of ordinals is nonempty and has a minimal element β_0 . We see that inside the interval $(\frac{\beta_0}{\tau_{\xi}} - \varepsilon, \frac{\beta_0}{\tau_{\xi}})$ there exists a division point $\frac{\gamma}{\tau_{\xi}}$, which is not an upper bound by the construction of the ordinal β_0 . Thus $\frac{\beta_0}{\tau_{\xi}} - \varepsilon$ is not an upper bound, and $h = \frac{\beta_0}{\tau_{\xi}}$ satisfies the requirements of the lemma.

Definition 3.7. We shall call h an ε -least upper bound of the strictly increasing net $\{u_i\}_{i\in\kappa^+}$ in the unit interval [0,1] of the field Q_{Λ} .

Proof of Theorem 1.2. It is clear that a nondegenerate interval of the field Q_{Λ} is of cardinality $\aleph_{S\rho}$, and, as supremum of a set of cardinality not exceeding \aleph_{ρ} of ordinals from Λ is also in Λ , it is obvious that a set of cardinality not exceeding \aleph_{ρ} of positive elements of the field Q_{Λ} has positive upper and lower bounds.

For $i \in \kappa^+$, where κ is a nonzero limit ordinal not exceeding λ , let $[u_i, v_i]$ be a strictly decreasing chain of closed intervals with $u_i, v_i \in [0, 1]$. Let $\varepsilon \in Q_{\Lambda}^+$ be such that $\varepsilon < v_i - u_i$ for all $i \in \kappa^+$. The net $\{u_i\}$ is strictly increasing, let h be an ε -least upper bound. Then for some i_0 we have $u_{i_0} > h - \varepsilon$ and $u_{i_0} < h < u_{i_0} + \varepsilon < v_{i_0}$, consequently for all $i > i_0$, $u_{i_0} < u_i < h < u_{i_0} + \varepsilon < v_i$. We conclude

$$[h, u_{i_0} + \varepsilon] \subseteq \bigcap_{i \in \kappa^+} [u_i, v_i]$$

and in the field Q_{Ω} the intersection of a strictly decreasing (well-ordered) chain of closed intervals of length not exceeding λ within the unit interval contains a nondegenerate closed interval.

This fact yields that by transfinite induction the iterated construction of Cantor's triadic set can be applied in the field Q_{Λ} to obtain a set (a tree) of strictly decreasing (well-ordered) chains of closed intervals of length λ , and the cardinality of this set equals the cardinality of the power set of λ . As the intersection of each chain is nonempty, the set Q_{Λ} contains a subset of cardinality that of the power set of λ . It follows that the power set of λ is of cardinality $\aleph_{S\rho}$.

The proof of the *General Hypothesis* is complete.

References

- A. V. Arkhangelsky, *Cantor's Set Theory*, Moscow: Moscow University Press (1988), in Russian.
- [2] K. Kunen, Set Theory, Amsterdam, New York, Oxford: North Holland (1980).

J. Kurdics

Department of Mathematics and Informatics, College of Nyíregyháza, Sostoi 31/b Nyíregyháza, Hungary Email: kurdics@nyf.hu