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ON COINCIDENCE AND FIXED-POINT THEOREMS IN

FUZZY SYMMETRIC SPACES

T. K. SAMANTA, B. DINDA∗, S. MOHINTA, S. ROY AND J. GHOSH

Abstract. In this paper, common fixed point theorems have been

studied in fuzzy symmetric space instead of fuzzy metric space.

Using weakly compatibility, property (E.A. ), we have generalized

the common fixed point theorems for a pair of weakly compatible

self mappings, for four self mappings in fuzzy symmetric space.

Also we have established the unique common fixed point for four

self mappings in this space.
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1. Introduction

The notion of compatible maps was introduced by Jungck [5] and

the study of common fixed point theorems for contractive maps has cen-

tered around the study of compatible maps and its weaker forms. On the

other hand, the study of noncompatible maps is also equally interesting.

Pant [14], Aamri and Moutawkil [9] and others have initiated wonderful

works in this field. In [10], the authors gave a notion of the prop-

erty (E.A.) which generalizes the concept of noncompatible mappings in
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metric spaces, and they proved some common fixed point theorems for

noncompatible mappings under strict contractive conditions. Recently,

in [11] the authors extended the results of [10, 14] to symmetric spaces

under tight conditions, where the metric does not satisfy the triangular

inequality.

Symmetric spaces were introduced in 1931 by Wilson [17], as metric-like

spaces lacking the triangle inequality. Several fixed point results in such

spaces were obtained, for example, see [7, 11, 16]. Hicks and Rhoades

[6] established some common fixed point theorems in symmetric spaces

using the fact that some of the properties of metrics are not required in

the proofs of certain metric theorems.

Most of the existing mathematical tools for formal modeling, reasoning

and computing are crisp, deterministic and precise in character. But,

in real life situation, the problem in economics, engineering, environ-

ment, social science, medical science, etc. does not always involve crisp

data. Consequently, we can not successfully use the traditional classical

methods because of various type of uncertainties. To deal with these

uncertainties, fuzzy set theory [8] can be considered as one of the math-

ematical tool. Kramosil and Michalek [12] introduced the concept of

fuzzy metric spaces ( briefly , FM-spaces ) in 1975 , which opened an

avenue for further development of analysis in such spaces. Later on it is

modified that a few concepts of mathematical analysis have been devel-

oped by George and Veeramani [1, 2] and also they have developed the

fixed point theorem in fuzzy metric space [15]. In fuzzy metric space,

the notion of compatible maps under the name of asymptotically com-

muting maps was introduced in the paper [13] and then in the paper [3],

the notion of weak compatibility has been studied in fuzzy metric space.

Later on Pant and Pant[18] studied the common fixed points of a pair

of non-compatible maps in fuzzy metric space.

In this paper, we have studied the common fixed point theorems in

fuzzy symmetric space. Here, our target is to generalize the common

fixed point theorems for a pair of weakly compatible self mappings, for
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four self mappings in fuzzy symmetric space. Using weakly compatibil-

ity, property (E.A.), we have established the unique common fixed point

for four self mappings in fuzzy symmetric space.

2. Preliminaries

We quote some definitions and statements of a few theorems which

will be needed in the sequel.

Definition 2.1. [4]. A binary operation ∗ : [ 0 , 1 ] × [ 0 , 1 ] −→
[ 0 , 1 ] is called a continuous t - norm if ∗ satisfies the following

conditions :

( i ) ∗ is commutative and associative;

( ii ) ∗ is continuous;

( iii ) a ∗ 1 = a, ∀ a ε [ 0 , 1 ];

( iv ) a ∗ b ≤ c ∗ d , whenever a ≤ c , b ≤ d and

a , b , c , d ∈ [ 0 , 1 ].

Definition 2.2. [1] The 3-tuple (X , µ , ∗) is called a fuzzy metric

space if X is an arbitrary non-empty set, ∗ is a continuous t-norm and

µ is a fuzzy set in X2 × (0,∞) which satisfying the following conditions:

( i ) µ (x , y , t ) > 0 ;

( ii ) µ (x , y , t ) = 1 if and only if x = y ;

( iii ) µ (x , y , t ) = µ ( y , x , t );

( iv ) µ (x , y , s ) ∗ µ ( y , z , t ) ≤ µ (x , z , s + t ) ;

( v ) µ (x , y , · ) : (0 , ∞ ) → (0 , 1] is continuous;

for all x , y , z ∈ X and t, s > 0.

Definition 2.3. The pair (X , µ ) is called a fuzzy symmetric space

if X is an arbitrary non-empty set and µ is a fuzzy set in X2 × (0,∞)

satisfying the following conditions :

( i ) µ (x , y , t ) > 0 ;

( ii ) µ (x , y , t ) = 1 if and only if x = y ;

( iii ) µ (x , y , t ) = µ ( y , x , t );
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( iv ) µ (x , y , · ) : (0 , ∞ ) → (0 , 1] is continuous for all x , y ∈ X

and t > 0.

If (X , µ ) is a fuzzy symmetric space, then µ is called fuzzy sym-

metric for X.

Note 2.4. Every fuzzy metric space is a fuzzy symmetric space but the

converse is not necessarily true. For example, consider X = [ 0 , ∞ )

and µ(x , y , t ) = t
t + |x− y | if x 6= 0 , y 6= 0 and µ(x , y , t ) = t

t + 1
x

if x 6= 0 . It is easy to see that (X , µ ) is a fuzzy symmetric space.

Let x = 1 , y = 1
2 , z = 0 , s = 1 , t = 0 and a ∗ b = max { a , b } .

Then (iv) of definition(2.2) is not satisfied and hence (X , µ ) is not a

fuzzy metric space but it is a fuzzy symmetric space.

Definition 2.5. A subset S of a fuzzy symmetric space (X ,µ ) is said

to be µ-closed if for a sequence {xn } in S and a point x ∈ X ,

lim
n → ∞

µ (xn , x , t ) = 1 =⇒ x ∈ S .

Definition 2.6. Two self mappings f and g of a fuzzy symmetric

space (X , µ ) are called compatible if lim
n → ∞

µ ( fgxn , gfxn , t ) = 1

whenever {xn} is a sequence in X such that

lim
n → ∞

fxn = lim
n → ∞

gxn = x

for some x in X , where fg denotes the composition of f and g .

Definition 2.7. Let X be a set and f , g be self mappings of X . A

point x in X is called a coincidence point of f and g if and only if

fx = gx . We shall call w = fx = gx a point of coincidence of

f and g .

Definition 2.8. A pair of self mappings S and T is called weakly

compatible if they commute at their coincidence points .

Definition 2.9. We say that a pair of self mappings S and T satisfy

the property (E .A. ) if there exists a sequence {xn} in X such that

lim
n → ∞

µ (Sxn , l , t ) = lim
n → ∞

µ (Txn , l , t ) = 1 ,
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for some l ∈ X .

Definition 2.10. The mappings A ,B , S , T : X −→ X of a fuzzy

symmetric space (X ,µ ) satisfy a common property (E .A. ) if there

exist sequences {xn} and {yn} such that

lim
n → ∞

µ (Axn , l , t ) = lim
n → ∞

µ (Sxn , l , t ) = 1

lim
n → ∞

µ (Byn , l , t ) = lim
n → ∞

µ (Tyn , l , t ) = 1

for some l ∈ X .

We denote Φ by the class of continuous function φ : [ 0 , 1 ] −→
[ 0 , 1 ] satisfying:

(φ 1 ) φ ( l ) > l for all l ∈ [ 0 , 1 ) ,

(φ 2 ) φ ( 1 ) = 1 .

We denote Λ by the class of continuous function α : [ 0 , 1 ] −→
[ 0 , 1 ] satisfying :

(α 1 ) α ( 1 ) = 1 ,

(α 2 ) α ( s ) < 1 for all s ∈ [ 0 , 1 ) .

3. Axioms on fuzzy symmetric spaces

Through out our discussion, (X , µ ) stands for fuzzy symmetric

space. We now state the following axioms :

(W3 ) For a sequence {xn} in X , x , y ∈ X , lim
n → ∞

µ (xn , x , t ) = 1

and lim
n → ∞

µ (xn , y , t ) = 1 imply x = y .

(W4 ) For sequences {xn} , {yn} in X , x ∈ X , lim
n → ∞

µ (xn , x , t ) =

1 and lim
n → ∞

µ ( yn , xn , t ) = 1 =⇒ lim
n → ∞

µ ( yn , x , t ) = 1 .

(HE ) For sequences {xn} , {yn} in X and x ∈ X , lim
n→∞

µ (xn, x, t ) =

1 and lim
n→∞

µ ( yn , x , t ) = 1 =⇒ lim
n → ∞

µ (xn , yn , t ) = 1 .

(CC ) For a sequence {xn} ∈ X and x , y ∈ X , lim
n → ∞

µ (xn , x , t ) =

1 =⇒ lim
n → ∞

µ (xn , y , t ) = µ (x , y , t ) .
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Proposition 3.1. For axioms in symmetric space (X , µ ) , one has

( 1 ) (W 4 ) =⇒ (W 3 ) ,

( 2 ) (CC ) =⇒ (W 3 ) .

Proof. Let {xn} be a sequence in X and x , y ∈ X with

lim
n → ∞

µ (xn , x , t ) = 1 and lim
n → ∞

µ (xn , y , t ) = 1

( 1 ) . By putting yn = y for each n ∈ N , we have

lim
n → ∞

µ (xn , x , t ) = lim
n → ∞

µ (xn , yn , t ) = 1 .

By (W 4 ) , we have

1 = lim
n → ∞

µ ( yn , x , t ) = lim
n → ∞

µ ( y , x , t ) =⇒ x = y .

( 2 ) . By (CC ) , lim
n → ∞

µ (xn , x , t ) = 1

=⇒ µ (x , y , t ) = lim
n → ∞

µ (xn , y , t ) = 1 =⇒ x = y .

Following the examples of [16], we now establish a few examples, which

would show that other relationships in Proposition(3.1) do not hold.

Example 3.2. If (W 4 ) ; (HE ) and (W 4 ) ; (CC ) then (W 3 )

; (HE ) and (W 3 ); (CC ) by Proposition(3.1) .

Let X = [ 0 , ∞ ) and µ(x , y , t ) = t
t + |x− y | if x 6= 0 , y 6= 0 and

µ(x , y , t ) = t
t + 1

x

if x 6= 0 . By note(2.4) , we see that (X , µ ) is a

fuzzy symmetric space which satisfies (W 4 ) but does not satisfy (HE )

for xn = n, yn = n + 1 . Also (X , µ ) does not satisfy (CC ) .

Example 3.3. If (HE ) ; (W 3 ) then (HE ); (W 4 ) and also

(HE ) ; (CC ) .

Let X = [ 0 , 1 ] ∪ { 2 } and µ(x , y , t ) = t
t + |x− y | if 0 ≤ x ≤

1 , 0 ≤ y ≤ 1 and µ(x , y , t ) = t
t + x if 0 < x ≤ 1 , y = 2

and µ( 0 , 2 , t ) = t
t + 1 . Then (X , µ ) is a fuzzy symmetric space

which satisfies (HE ) . Let xn = 1
n . Then lim

n → ∞
µ (xn , 0 , t ) =

lim
n → ∞

µ (xn , 2 , t ) = 1 . But µ( 0 , 2 , t ) 6= 1 and hence the symmet-

ric space (X , µ ) does not satisfies (W 3 ) .
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Example 3.4. If (CC ) ; (W 4 ) then (W 3 ) ; (W 4 ) by Proposi-

tion(3.1) .

Let X =
{

1
n : n = 1 , 2 , · · ·

}
∪ { 0 } and let µ

(
0 , 1

n , t
)

= t
t + 1

n

if n is odd , µ
(

0 , 1
n , t

)
= t

t + 1 if n is even , µ
(

1
m , 1

n , t
)

=
t

t + | 1
m
− 1

n |
if m + n is even , µ

(
1
m , 1

n , t
)

= t
t + | 1

m
− 1

n |
if m + n

is odd and |m − n | = 1 , µ
(

1
m , 1

n , t
)

= t
t+ 1 if m + n is odd and

|m − n | ≥ 2 . Then the symmetric space (X , µ ) satisfies (CC ) but

does not satisfy (W 4 ) for xn = 1
2n+ 1 and yn = 1

2n .

Example 3.5. (CC ) ; (HE ) .

Let X =
{

1
n : n = 1 , 2 , · · ·

}
∪ { 0 } and µ

(
1
m , 1

n , t
)

= t
t + | 1

m
− 1

n |
if |m − n | ≥ 2 , µ

(
1
m , 1

n , t
)

= t
t+ 1 if |m − n | = 1 and

µ
(

0 , 1
n , t

)
= t

t + 1
n

. Then (X , µ ) is a symmetric space which satis-

fies (CC ) . Let xn = 1
n , yn = 1

n+ 1 . Then lim
n → ∞

µ (xn , 0 , t ) =

lim
n → ∞

µ ( yn , 0 , t ) = 1 . But lim
n → ∞

µ (xn , yn , t ) 6= 1 . Hence the

symmetric space (X , µ ) does not satisfy (HE ) .

4. Common fixed point theorems

Theorem 4.1. Let (X , µ ) be a fuzzy symmetric space that satisfies

(W 3 ) and (HE ) and let A , B , S and T be self-mappings of X such

that

( i ) AX ⊂ TX and BX ⊂ SX ;

( ii ) the pair (B , T ) satisfies property (E .A. ), ( resp. (A , S ) sat-

isfies property (E .A. ) ) ;

( iii ) for any x , y ∈ X , µ(Ax , By , t ) ≥ ν(x, y, t) , where

ν(x , y , t ) = min {µ(Sx, Ty, t) , max{µ(Ax, Sx, t) , µ(By, Ty, t )},

max {µ(Ax , Ty , t ) , µ(By , Sx , t ) } ;

( iv ) SX is a µ-closed subset of X ( resp. TX is a µ-closed sub set

of X ) .

Then there exist u , w ∈ X such that Au = Su = Bw = Tw .
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Proof. From ( ii ) , there exist a sequence {xn} in X , and a point

l ∈ X such that

lim
n → ∞

µ (Txn , l , t ) = lim
n → ∞

µ (Bxn , l , t ) = 1 .

From ( i ) , there exist a sequence {yn} in X , such that Bxn = Syn

and hence lim
n → ∞

µ (Syn , l , t ) = 1 . By (HE ) ,

lim
n → ∞

µ (Bxn , Txn , t ) = lim
n → ∞

µ (Syn , Txn , t ) = 1 .

From ( iv ) , there exists a point u ∈ X such that Su = l .

From ( iii ) , we have

µ(Au , Bxn , t )

≥ min {µ(Su , Txn , t ) , max {µ(Au , Su , t ) , µ(Bxn , Txn , t ) } ,

max {µ(Au , Txn , t ) , µ(Bxn , Su , t ) } } .

By taking n −→ ∞ , we have lim
n → ∞

µ (Au , Bxn , t ) = 1 .

By (W 3 ) , we get Au = Su . Since AX ⊂ TX , there exists a point

w ∈ X such that Au = Tw . We show that Tw = Bw .

From ( iii ) , we have µ(Au , Bw , t )

≥ min {µ(Su , Tw , t ) , max {µ(Au , Su , t ) , µ(Bw , Tw , t ) } ,

max {µ(Au , Tw , t ) , µ(Bw ,Su , t ) } }

= min {µ(Tw , Tw , t ) , max {µ(Au ,Au , t ) , µ(Bw , Tw , t ) } ,

max {µ(Au ,Au , t ) , µ(Bw ,Su , t ) } } ,

=⇒ µ(Au , Bw , t ) = 1 .

Hence , Au = Bw and hence

Au = Su = Bw = Tw.

Theorem 4.2. Let (X , µ ) be a fuzzy symmetric space that satisfies

(W 3 ) and (HE ) and let A , B , S and T be self-mappings of X such

that

( i ) AX ⊂ TX and BX ⊂ SX ;
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( ii ) the pair (B , T ) satisfies property (E .A. ), ( resp. (A .S ) sat-

isfies property (E .A. ) ) ;

( iii ) the pairs (A , S ) and (B , T ) are weakly compatible ;

( iv ) for any x , y ∈ X (x 6= y ) , µ(Ax , By , t ) > ν(x, y, t) , where

ν(x , y , t ) = min {µ(Sx, Ty, t) , max{µ(Ax, Sx, t) , µ(By, Ty, t)},

max {µ(Ax , Ty , t ) , µ(By , Sx , t ) } } ;

( v ) SX is a µ-closed subset of X ( resp. TX is a µ-closed subset of

X ) .

Then A , B , S , and T have a unique common fixed point in X .

Proof. From Theorem 4.1 , there exist u , w ∈ X such that Au =

Su = Bw = Tw . From ( iii ) , ASu = SAu ,

AAu = ASu = SAu = SSu and BTw = TBw = TTw = BBw.

If Au 6= w , then from ( iv ) , we have

µ(Au ,AAu , t )

= µ(AAu ,Bw , t )

> min {µ(SAu , Tw , t ) , max {µ(AAu , SAu , t ) ,

µ(Bw , Tw , t ) } , max {µ(AAu , Tw , t ) , µ(Bw ,SAu , t ) } }

= min {µ(AAu , Au , t ) , 1 , µ(AAu , Au , t )} = µ(AAu , Au , t ) ,

=⇒ µ(Au ,AAu , t ) > µ(Au ,AAu , t ) ,

which is a contradiction and this contradiction proves that Au = w.

Similarly, we have Bw = u , which implies that ,

Au = w = Su = Bw = Tw = u ,

that is, w is a common fixed point of A , B , S and T . For the unique-

ness , let z be another common fixed point of A , B , S and T . If

w 6= z , then from ( iv ) we get

µ( z , w , t )
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= µ(Az ,Bw , t )

> min {µ(Sz , Tw , t ) , max {µ(Az , Sz , t ) ,

µ(Bw , Tw , t ) } , max {µ(Az , Tw , t ) , µ(Bw , Sz , t ) } }

= min {µ( z , w , t ) , max {µ( z , z , t ) , µ(w ,w , t ) } ,

max {µ( z , w , t ) , µ(w , z , t ) } } ,

=⇒ µ( z , w , t ) > µ( z , w , t ) ,

which is a contradiction . Hence w = z .

Theorem 4.3. Let (X , µ ) be a fuzzy symmetric space that satisfies

(CC ) and (HE ) and let A , B , S and T be self-mappings of X and

α ∈ Λ and φ ∈ Φ satisfying

( i ) AX ⊂ TX and BX ⊂ SX ;

( ii ) the pair (B , T ) satisfies property (E .A. ), (resp. (A .S ) satis-

fies property (E .A. ) ) ;

( iii ) the pairs (A , S ) and (B , T ) are weakly compatible ;

( iv ) for any x , y ∈ X ,α(µ(Ax , By , t ) ) ≥ φ(α( ν(x , y , t ) ) , where

ν(x , y , t ) = min {µ(Sx , Ty , t ) , µ(Ax , Sx , t ) , µ(By , Ty , t ) ,

µ(Ax , Ty , t ) , µ(By , Sx , t )} ;

( v ) SX is a µ-closed subset of X ( resp. , TX is a µ-closed sub set of

X ) .

Then A , B , S and T have a unique common fixed point in X .

Proof. From ( ii ) , there exist a sequence {xn} in X and a point

l ∈ X such that

lim
n → ∞

µ (Txn , l , t ) = lim
n → ∞

µ (Bxn , l , t ) = 1 .

From ( i ) , there exists a sequence {yn} in X such that Bxn = Syn

and hence

lim
n → ∞

µ (Syn , l , t ) = 1 . By (HE ) ,

lim
n → ∞

µ (Bxn , Txn , t ) = lim
n → ∞

µ (Syn , Txn , t ) = 1 .
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From ( v ) , there exists a point u ∈ X such that Su = l . We show

Au = Su . From ( iv ) we have

α(µ(Au , Bxn , t ) )

≥ φ(α( min {µ(Su , Txn , t ) , µ(Au , Su , t ) ,

µ(Bxn , Txn , t ) , µ(Au , Txn , t ) , µ(Bxn , Su , t )} ) ) .

In the above inequality , we take n −→ ∞ then by (CC ) and (HE )

we have

α(µ(Au , Su , t ) )

≥ φ(α( min {1 , µ(Au , Su , t ) , 1 , µ(Au , Su , t ) , 1 } ) )

= φ(α(µ(Au , Su , t ) ) ) , which implies α(µ(Au , Su , t ) ) = 1 .

By (α 1 ) , we have µ(Au , Su , t ) = 1 . Hence Au = Su .

Since AX ⊂ TX , there exists a point w ∈ X such that Au = Tw .

Thus we get Au = Su = Tw .

We show that Tw = Bw . From ( iv ) we have

α(µ(Tw , Bw , t ) ) = α(µ(Au , Bw , t ) )

≥ φ(α(min{µ(Su , Tw , t ) , µ(Au , Su , t ) , µ(Bw , Tw , t ) ,

µ(Au , Tw , t ) , µ(Bw , Su , t )}))

= φ(α(min{µ(Tw , Tw , t ) , µ(Au , Au , t ) , µ(Bw , Tw , t ) ,

µ(Au , Au , t ) , µ(Bw , Tw , t )}))

= φ(α(µ(Bw , Tw , t ) ) ) .

Thus we get α(µ(Bw , Tw , t ) ) = 1 . Hence µ(Bw , Tw , t ) = 1 ,

i.e. , Tw = Bw . Therefore we have

Au = Su = Bw = Tw = z (say) ( 1 )

From ( iv ) , we have

AAu = ASu = SAu = SSu ( 2 )

and

BTw = TBw = TTw = BBW ( 3 )

We show z = Az . From ( iv ) , ( 1 ) , ( 2 ) we have

α(µ( z , Az , t ) ) = α(µ(Au , AAu , t ) ) = α(µ(AAu , Bw , t ) )
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≥ φ(α( min {µ(SAu , Tw , t ) , µ(AAu , SAu , t ) , µ(Bw , Tw , t ) ,

µ(AAu , Tw , t ) , µ(Bw , SAu , t ) } ) )

= φ(α( min {µ(AAu,Au, t), 1, 1, µ(AAu,Au, t), µ(AAu,Au, t) }))

= φ(α(µ(AAu , Au , t ) ) ) = φ(α(µ( z , Az , t ) ) ) ,

which implies α(µ( z , Az , t ) ) = 1 . Thus we have α(µ( z , Az , t ) ) =

1 , i.e. , z = Az . From ( 1 ) and ( 2 ) we get

z = Az = Sz ( 4 )

Next , we show z = Bz . Again from ( iv ) , ( 1 ) , ( 3 ) we have

α(µ( z , Bz , t ) ) = α(µ(Bw , BBw , t ) ) = α(µ(Au , BBw , t ) )

≥ φ(α( min {µ(Su , TBw , t ) , µ(Au , Su , t ) ,

µ(BBw , TBw , t ) , µ(Au , TBw , t ) , µ(BBw , Su , t ) } ) )

= φ(α( min {µ(Bw , BBw , t ) , µ(Bw , Bw , t ) ,

µ(BBw , BBw , t ) , µ(Bw , BBw , t ) , µ(BBw , Bw , t ) } ) )

= φ(α( min {µ(Bw,BBw, t), 1, 1, µ(Bw,BBw, t), µ(Bw,BBw, t) } ) )

= φ(α(µ(Bw , BBw , t ) ) ) = φ(α(µ( z , Bz , t ) ) )

which implies α(µ( z , Bz , t ) ) = 1 . Thus we have µ( z , Bz , t ) ) = 1

i.e. , z = Bz . Thus from ( 1 ) and ( 3 ) we get

z = Bz = Tz .

Therefore, by ( 4 ) , we have

z = Az = Sz = Tz = Bz .

For the uniqueness , let w be an another common fixed point of

A , B , S and T . Now from ( 4 ) we get

α(µ( z , w , t ) ) = α(µ(Az , Bw , t ) )

≥ φ(α( min {µ(Sz , Tw , t ) , µ(Az , Sz , t ) , µ(Bw , Tw , t ) ,

µ(Az , Tw , t ) , µ(Bw , Sz , t ) } ) )

= φ(α(min {µ(z, w, t), µ(z, z, t), µ(w,w, t), µ(z, w, t), µ(w, z, t) }))
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= φ(α( min {µ( z , w , t ) , 1 , 1 , µ(w , z , t ) , µ(w , z , t ) } ) )

= φ(α(µ( z , w , t ) ) ) ,

which implies that α(µ( z , w , t ) ) = 1 and so µ( z , w , t ) = 1 .

Hence w = z .

Corollary 4.4. Let (X , µ ) be a fuzzy symmetric space that satisfies

(CC ) and (HE ) and let A , B , S and T be self-mappings of X and

α ∈ Λ and φ ∈ Φ satisfying

( i ) AX ⊂ TX and BX ⊂ SX ;

( ii ) the pair (B , T ) satisfies property (E .A. ) ( resp. (A , S ) satis-

fies property (E .A. ) ) ;

( iii ) the pairs (A , S ) and (B , T ) are weakly compatible ;

( iv ) for any x , y ∈ X ,

α(µ(Ax,By, t) ≥ φ(α(min {µ(Sx, Ty, t) , µ(By, ty, t) , µ(By, Sx, t)})) ;

( v ) SX is a µ-closed subset of X (resp. TX is a µ-closed sub set of

X) .

Then A , B , S and T have a unique common fixed point in X .

Theorem 4.5. Let (X , µ ) be a fuzzy symmetric space that satisfies

(W 4 ) and (HE ) and let A , B , S and T be self-mappings of X and

α ∈ Λ and φ ∈ Φ satisfying

( i ) AX ⊂ TX and BX ⊂ SX ;

( ii ) the pair (B , T ) satisfies property (E .A. ) ( resp. , (A , S ) satis-

fies property (E .A. ) ) ;

( iii ) the pairs (A , S ) and (B , T ) are weakly compatible ;

( iv ) for any x , y ∈ X ,

α (µ(Ax , By , t ) ) ≥ φ (α ( min {µ(Sx , Ty , t ) , µ(Ax , Sx , t ) ,

µ(By , Ty , t ) , µ(Ax , Ty , t ) , µ(By , Sx , t )}) ) ;

( v ) one of AX , BX , SX and TX is complete subspace of X .

Then A , B , S and T have a unique common fixed point in X .
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Proof. As in proof of Theorem(4.3), there exist sequences {xn } and

{ yn } in X and a point l ∈ X such that

lim
n → ∞

µ (Txn , l , t ) = lim
n → ∞

µ (Bxn , l , t ) = lim
n → ∞

µ (Bxn , Txn , t )

= lim
n → ∞

µ (Syn , Txn , t ) = 1

and Bxn = Syn . We now show that lim
n→∞

µ(Ayn, l, t ) = 1.

From (iv) we have

α(µ(Ayn , Bxn , t ) )

≥ φ(α (min {µ(Syn , Txn , t ) , µ(Bxn , Txn , t ) , µ(Bxn , Syn , t ) } ) ) .

Let n → ∞ . We have

lim
n → ∞

α (µ (Ayn , Bxn , t ) ) ≥ φ (α( 1 ) ) = 1 .

Thus, lim
n → ∞

µ (Ayn , Bxn , t ) = 1 . By (W 4 ) , we get

lim
n → ∞

µ (Ayn , l , t ) = 1 .

If SX is complete subspace of X , then there exists u ∈ X such that

l = Su . Thus we have

lim
n → ∞

µ (Ayn , Su , t ) = lim
n → ∞

µ (Bxn , Su , t )

= lim
n → ∞

µ (Txn , Su , t ) = lim
n → ∞

µ (Syn , Su , t ) = 1 .

We now show that Au = Su . From ( iv ) we have

α(µ(Au , Bxn , t ) )

≥ φ(α( min {µ(Su , Txn , t ) , µ(Bxn , Txn , t ) , µ(Bxn , Su , t ) } ) ) .

Taking n −→ ∞ , we get

lim
n → ∞

α(µ (Au , Bxn , t ) ) ≥ φ(α( 1 ) ) = 1 ,

=⇒ lim
n → ∞

α(µ (Au , Bxn , t ) ) = 1 .

By Proposition(3.1) , (X , µ ) satisfies (W 3 ) and we have Su = Au =

z (say) . By ( iii ) we have

Az = Sz . ( 5 )
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From ( i ) there exists v ∈ X such that Au = Tv . Thus we get

Au = Tv = Su = z . We claim that Bv = Tv . If not , then we have

α(µ(Tv , Bv , t ) ) = α(µ(Au , Bv , t ) )

≥ φ(α( min {µ(Su , Tv , t ) , µ(Bv , Tv , t ) , µ(Bv , Su , t )

= φ(α( min {µ(Tv , Tv , t ) , µ(Bv , Tv , t ) , µ(Bv , Tv , t )

= φ(α(µ(Bv , Tv , t )

=⇒ α(µ(Bv , Tv , t ) ) > α(µ(Bv , Tv , t ) ) ,

which is a contradiction . Thus we have Bv = Tv . Therefore , we get

Bv = Tv = Su = Au = z . ( 6 )

From ( iii ) we have Bz = Tz . We show that z = Az . From

( iii ) , ( 1 ) and ( 2 ) we have

α(µ( z , Az , t ) ) = α(µ(Az , Bv , t ) )

≥ φ(α( min {µ(Sz , Tv , t ) , µ(Bv , Tv , t ) , µ(Bv , Sz , t ) } ) )

= φ(α( min {µ(Az , z , t ) , µ( z , z , t ) , µ( z , Az , t ) } ) )

= φ(α(µ( z , Az , t ) ) ) ,

which implies α(µ( z , Az , t ) = 1 and so µ( z , Az , t ) = 1 .

Hence z = Az . From ( 5 ) we have

z = Az = Sz . ( 7 )

We show that z = Bz . Using Bz = Tz and from ( iv ) and ( 4 ) we

have

α(µ( z , Bz , t ) ) = α(µ(Az , Bz , t ) )

≥ φ(α( min {µ(Sz , Tz , t ) , µ(Bz , Tz , t ) , µ(Bz , Sz , t ) } ) )

= φ(α( min {µ(Bz , z , t ) , 1 , µ( z , Bz , t ) } ) )

= φ (α (µ( z , Bz , t ) ) ) ,
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which implies α(µ( z , Bz , t ) ) = 1 and so µ( z , Bz , t ) = 1 .

Hence z = Bz and thus we have

z = Bz = Tz . ( 8 )

There fore , by ( 7 ) and ( 8 ) we have

z = Az = Bz = Tz = Sz .

For the uniqueness , let w be an another common fixed point of

A , B , S and T . If w 6= z then from ( iv ) we get

α(µ( z , w , t ) ) = α(µ(Az , Bw , t ) )

≥ φ(α( min {µ(Sz , Tw , t ) , µ(Bw , Tw , t ) , µ(Bw , Sz , t )} ) )

= φ(α( min {µ( z , w , t ) , µ(w , w , t ) , µ(w , z , t ) } ) )

= φ (α ( min {µ( z , w , t ) , 1 , µ(w , z , t ) } ) )

= φ (α (µ( z , w , t ) ) ) .

=⇒ α(µ( z , w , t ) ) > α(µ( z , w , t ) ) ,

which is a contradiction . Thus we have α (µ( z , w , t ) ) = 1 and

so µ( z , w , t ) = 1 . Hence w = z .
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