Journal of Hyperstructures 1 (1) (2012), 63-73. ISSN: 2251-8436

*LW***W*-PROPERTY AND TOPOLOGICAL CENTERS OF BANACH ALGEBRAS

K. HAGHNEJAD AZAR

ABSTRACT. In this paper we introduce the new concepts LW^*W property and RW^*W -property for a Banach algebra A. Under certain conditions, we show that if A has LW^*W -property and RW^*W - property, then A is Arens regular. We also offer some applications of these new concepts in group algebras.

Key Words: Arens regularity, LW*W- property, Topological center, Dual space.
2010 Mathematics Subject Classification: Primary: 46L06; Secondary: 46L07, 46L10.

1. INTRODUCTION AND PRELIMINARIES

Through this paper, A is a Banach algebra and A^* and A^{**} are the first and second dual of A, respectively. Arens [1] has shown that for any given Banach algebra A, there exist two algebra multiplications on the second dual of A which extend multiplication on A. In the following, we introduce both multiplications which are given in [11]. Let $a, b \in A$, $f \in A^*$ and $F, G \in A^{**}$. Then the first Arens multiplication is defined by

$$\langle f.a,b\rangle = \langle f,ab\rangle,$$

*Address correspondence to K. Haghnejad Azar; E-mail: haghnejad@aut.ac.ir.

Received: 5 April 2012, Accepted: 8 August 2012. Communicated by Behrouz Fathi-Vajargah

^{© 2012} University of Mohaghegh Ardabili.

⁶³

K. Haghnejad Azar

Clearly $F.f \in A^*$ and $F.G \in A^{**}$. We use the notion $(A^{**}, .)$ for A^{**} equipped with the first Arens multiplication. Also we use fa instead of f.a for all $a \in A$ and $f \in A^*$. The second Arens product is defined as follows:

For $a, b \in A$, $f \in A^*$ and $F, G \in A^{**}$, the elements aof, foF of A^* and FoG of A^{**} are defined respectively by the equalities:

$$\langle a \circ f, b \rangle = \langle f, ba \rangle,$$

$$\langle f \circ F, a \rangle = \langle F, aof \rangle,$$

$$\langle F \circ G, f \rangle = \langle G, foF \rangle.$$

An element E of A^{**} is said to be a mixed unit if E is a right unit for the first Arens multiplication and a left unit for the second Arens multiplication. That is, E is a mixed unit if and only if, for each $F \in A^{**}$, $F \cdot E = E \circ F = F$.

We say that a bounded net $(e_{\alpha})_{\alpha \in I}$ in A is an approximate identity (= BAI) if, for each $a \in A$, $ae_{\alpha} \to a$ and $e_{\alpha}a \to a$. For $a \in A$ and $f \in A^*$, we denote by f.a and $a \circ f$ respectively, the functionals on A^* defined by $\langle f.a, b \rangle = \langle f, ab \rangle = f(ab)$ and $\langle a \circ f, b \rangle = \langle f, ba \rangle = f(ba)$. We say that A^{**} is unital with respect to the first Arens product if there exists an element $E \in A^{**}$ such that F.E = E.F = F for all $F \in A^{**}$, and A^{**} is unital with respect to the second Arens product if there exists an element $E \in A^{**}$ such that $F \circ E = E \circ F = F$ for all $F \in A^{**}$. By [3, p.146], an element E of A^{**} is mixed unit if and only if it is a weak^{*} cluster point of some BAI $(e_{\alpha})_{\alpha \in I}$ in A.

Suppose that $F, G \in A^{**}$ and F.G and $F \circ G$ are the first and second Arens multiplications in A^{**} , respectively. Then the mapping $F \to F.G$, for G fixed in A^{**} , is $w^* - w^* -$ continuous, while the mapping $F \to G.F$ for G fixed in A^{**} is not in general $w^* - w^* -$ continuous on A^{**} unless $G \in A$.

As an example for the algebras $L^1(G)^{**}$ and $M(G)^{**}$ whenever G is an infinite topological group the mapping $F \to G.F$, in general, is not $w^* - w^* - \text{ continuous on } L^1(G)^{**}$ and $M(G)^{**}$, see [10, 11]. The first topological center of A^{**} with respect to the first Arens product is defined as follows

$$Z_1 = \{ G \in A^{**} : F \longrightarrow G.F \text{ is } w^* - w^* - continuous \text{ on } A^{**} \}.$$

For fixed G in A^{**} , the mapping $F \to GoF$ is $w^* - w^* -$ continuous on A^{**} , but the mapping $F \to FoG$ is not in general $w^* - w^* -$ continuous on A^{**} unless $G \in A$. The second topological center of A^{**} with respect to second Arens product is defined as follows

$$Z_2 = \{ G \in A^{**} : F \longrightarrow F \circ G \text{ is } w^* - w^* - continuous \text{ on } A^{**} \}.$$

It is clear that $A \subseteq Z_1 \bigcap Z_2$ and Z_1 , Z_2 are closed subalgebras of A^{**} endowed with the first and second Arens multiplication, respectively. If, for each $F, G \in A^{**}$, the equality $F.G = F \circ G$ holds, then the algebra A is said to be Arens regular, see [1, 2]. In this case $Z_1 = Z_2 = A^{**}$.

The other extreme situation is that $Z_1 = A$, in this case A is called left strongly Arens irregular, see [9, 10, 11]. We recall that the topological center of A^{**} is defined to be the set of all functionals $F \in A^{**}$ which satisfy $F.G = F \circ G$ for all $G \in A^{**}$, see [11]. In the other words, the topological centers of A^{**} with respect to the first and second Arens products can also be defined as the following sets

$$Z_1 = \{ F \in A^{**} : F : G = F \circ G \ \forall G \in A^{**} \},\$$

$$Z_2 = \{ F \in A^{**} : G \cdot F = G \circ F \ \forall G \in A^{**} \}.$$

respectively.

For a Banach algebra A the topological center of the algebra $(A^*A)^*$ is defined as follows, see [11].

$$\widetilde{Z} = \{ \mu \in (A^*A)^* : \lambda \to \lambda . \mu \text{ is } w^* - w^* - continuous \text{ on } (A^*A)^* \}.$$

A functional f in A^* is said to be wap (weakly almost periodic) on A if the mapping $a \to f.a$ from A into A^* is weakly compact. Pym in [12] proved that this definition is equivalent to the following condition:

For any two nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in $\{a \in A : ||a|| \le 1\}$, we have

$$\lim_{\alpha}\lim_{\beta}\langle f, a_{\alpha}b_{\beta}\rangle = \lim_{\beta}\lim_{\alpha}\langle f, a_{\alpha}b_{\beta}\rangle,$$

whenever both iterated limits exist. The collection of all wap functionals on A is denoted by wap(A). By [12], $f \in wap(A)$ if and only if $\langle F.G, f \rangle = \langle F \circ G, f \rangle$ for every $F, G \in A^{**}$.

In this paper, for a Banach algebra A, the notation WSC is used for weakly sequentially complete and WCC for weakly completely continuous, that is, A is said to be weakly sequentially complete, if every weakly Cauchy sequence in A has a weak limit, and A is said to be WCC, if for each $a \in A$, the multiplication operator $x \to ax$ is weakly compact, see [6].

2. Main results

In this section, we define new concepts LW^*W -property and RW^*W property for a Banach algebra A and we study the relationships between these new concepts and Arens regularity of A

Definition 2.1. Let $(f_{\alpha})_{\alpha \in I} \subseteq A^*$. If for $a \in A$, the convergence $a.f_{\alpha} \xrightarrow{w^*} 0$ implies $a.f_{\alpha} \xrightarrow{w} 0$, then we say that a has $Left-Weak^*-Weak$ property or LW^*W -property with respect to the first Arens product. The definition of RW^*W -property is similar.

We say that A has the LW^*W -property if for every $a \in A$, a has LW^*W -property.

Remark and Example 2.2. It is clear that if A is reflexive, A has LW^*W and RW^*W -property, so that if A has a member which does not have the LW^*W -property or RW^*W -property, then A is not reflexive. If A is commutative, then it is clear that the LW^*W -property and RW^*W -property are equivalent. For Banach algebras $l^1(G)$ and M(G) where G is an infinite group, the unit elements of them do not have

 LW^*W -property or RW^*W -property (We know that $l^{\infty}(G)^* \neq l^1(G)$ and $M(G)^{**} \neq M(G)$).

For a Banach algebra A, if $A^{**} = A^{**}c$ or $A^* = cA^*$ for some $c \in A$ and c has LW^*W -property, then it is easy to see that $A = A^{**}$, and also if $A^{**} = cA^{**}$ or $A^* = A^*c$ for some $c \in A$ and c has RW^*W -property, then $A = A^{**}$.

Now we give an example of a Banach algebra A such that it has LW^*W -property or RW^*W -property.

Let S be a compact semigroup and A = C(S). Then every $f \in C(S)$ such that $f \ge \alpha$ where $\alpha \in (0, \infty)$ has LW^*W -property. Let $(\mu_{\alpha})_{\alpha} \subseteq C(S)^* = M(S)$ and $\mu_{\alpha} f \xrightarrow{w^*} 0$. Hence $\langle \mu_{\alpha} f, g \rangle \to 0$ for all $g \in C(S)$. Consequently we have

$$\langle \mu_{\alpha}.f,g \rangle = \langle \mu_{\alpha},f.g \rangle = \int_{S} fg d\mu_{\alpha} \to 0.$$

If we set $g = \frac{1}{f}$, then $\mu_{\alpha} \to 0$. Now let $F \in C(S)^{**} = M(S)^{*}$. Then we have

$$\langle F, \mu_{\alpha}.f \rangle = \langle F.\mu_{\alpha}, f \rangle = \int_{S} f dF \mu_{\alpha} \to 0.$$

It follows that $\mu_{\alpha} f \xrightarrow{w} 0$.

In the following theorems, by using LW^*W -property or RW^*W -property of Banach algebra A, we study the Arens regularity of A.

Theorem 2.3. For a Banach algebra A the following statements hold.

(1) If $A^{**} = cA^{**}$ for some $c \in A$ and c has RW^*W -property, then A is Arens regular.

(2) If $A^{**} = A^{**}c$ for some $c \in A$ and c has LW^*W -property, then A is Arens regular.

(3) If $A^* = A^*c$ and c has LW^*W -property, then $A^{**}c \subseteq Z_1 \cap Z_2$ and $cA^* \subseteq wap(A) \subseteq A^*c$.

(4) If $A^* = cA^*$ and c has RW^*W -property, then $cA^{**} \subseteq Z_1 \cap Z_2$ and $A^*c \subseteq wap(A) \subseteq cA^*$.

Proof. (1) Let $G \in A^{**}$. We show that the mapping $F \to G.F$ is $w^* - w^* - continuous$. Let $f \in A^*$ and $(F_{\alpha})_{\alpha} \subseteq A^{**}$ be such that $F_{\alpha} \xrightarrow{w^*} F$. Then for all $a \in A$ we have

$$\langle F_{\alpha}.f,a\rangle = \langle F_{\alpha},f.a\rangle \rightarrow \langle F,f.a\rangle = \langle F.f,a\rangle.$$

Consequently, we have $F_{\alpha} f \xrightarrow{w^*} F f$ for all $f \in A^*$ which implies that $(F_{\alpha} f)a \xrightarrow{w^*} (F f)a$ for all $a \in A$. Since c has RW^*W -property, $(F_{\alpha} f)c \xrightarrow{w} (F f)c$. Thus for all $G \in A^{**}$, we have

$$\langle cG, F_{\alpha}.f \rangle = \langle G, (F_{\alpha}.f)c \rangle \rightarrow \langle G, (F.f)c \rangle = \langle cG, F.f \rangle.$$

Since $A^{**} = cA^{**}$, we can replace cG by G, and consequently we have $\langle G.F_{\alpha}, f \rangle \rightarrow \langle G.F, f \rangle$ for all $f \in A^*$. Therefore $G \in Z_1$ so that $Z_1 = A^{**}$. (2)The proof is completely similar to that of (1).

(3) We show that the mapping $F \to Gc.F$ is $w^* - w^*$ -continuous whenever $F, G \in A^{**}$. Let $(F_\alpha) \subseteq A^{**}$ be a net such that $F_\alpha \xrightarrow{w^*} F$. Then, we have $(F_\alpha.f) \xrightarrow{w^*} (F.f)$ for every $f \in A^*$, hence $(F_\alpha.f - F.f) \xrightarrow{w^*} O$. Since $(F_\alpha.f - F.f) \in A^* = A^*c$, there is $(g_\alpha)_\alpha \subseteq A^*$ such that $(F_\alpha.f - F.f) = g_\alpha c$. Then we have $c(g_\alpha c) \xrightarrow{w^*} O$, it follows that $c(g_\alpha c) \xrightarrow{w} O$, since c has LW^*W -property. Consequently, for all $G \in A^{**}$, we have $\langle G, c(g_\alpha c) \rangle \to O$ which implies $\langle Gc, (F_\alpha.f - F.f) \rangle \to O$. Hence $Gc \in Z_1$ so $A^{**}c \subseteq Z_1$. Similarly $A^{**}c \subseteq Z_2$. Hence we have $A^{**}c \subseteq Z_1 \cap Z_2$. Now let $F, G \in A^{**}$. Since $Gc \in Z_2$, we have Fo(Gc) = F.(Gc), consequently, for all $f \in A^*$, we have the following statements

$$\langle FoG, cf \rangle = \langle Fo(Gc), f \rangle = \langle F.(Gc), f \rangle = \langle F.G, cf \rangle.$$

Hence $cA^* \subseteq wap(A)$.

(4) The proof is similar to that of (3).

Let G be an infinite group. Since M(G) is not Arens regular, by Theorem 2.3, the unit element of M(G) does not have LW^*W -property or RW^*W -property. Similar conclusions hold for the Banach algebra $l^1(G)$.

 LW^*W -property and Topological Centers

Theorem 2.4. Let A and B be Banach algebras and let h be a bounded homomorphism from A onto B. If A has LW*W-property (resp. RW*Wproperty), then B has LW*W-property (resp. RW*W-property).

Proof. Since h is continuous, the second adjoint of h, h^{**} , is $weak^* - weak$ continuous from A^{**} into B^{**} . Hence we conclude that $h^{**}(F.G) = h^{**}(F).h^{**}(G)$ for all $F, G \in A^{**}$.

Let $(g_{\alpha})_{\alpha} \subseteq B^*$ be such that $b.g_{\alpha} \xrightarrow{w^*} 0$ where $b \in B$. We define $h^*(g_{\alpha}) = f_{\alpha} \in A^*$ and get h(a) = b for some $a \in A$. Then for every $x \in A$, we have

$$\begin{split} \langle a.f_{\alpha}, x \rangle &= \langle f_{\alpha}, x.a \rangle = \langle h^{*}(g_{\alpha}), x.a \rangle = \langle g_{\alpha}, h(x.a) \rangle = \langle g_{\alpha}, h(x).h(a) \rangle \\ \langle g_{\alpha}, h(x).b \rangle &= \langle b.g_{\alpha}, h(x) \rangle \to 0. \end{split}$$

Thus $a.f_{\alpha} \xrightarrow{w^*} 0$. Since a has LW^*W -property, $a.f_{\alpha} \xrightarrow{w} 0$. Now, let $G \in B^{**}$. Since h is surjective, by [12, Theorem 3.1.22] there is $F \in A^{**}$ such that $h^{**}(F) = G$. Then we have the following assertions

$$\begin{aligned} \langle G, b.g_{\alpha} \rangle &= \langle G.b, g_{\alpha} \rangle = \langle h^{**}(F)h(a), g_{\alpha} \rangle = \langle h^{**}(F.a), g_{\alpha} \rangle \\ &= \langle (F.a), h^{*}(g_{\alpha}) \rangle = \langle (F.a), f_{\alpha} \rangle = \langle F, a.f_{\alpha} \rangle \to 0 \end{aligned}$$

Thus we conclude that $b.g_{\alpha} \xrightarrow{w} 0$, therefore B has LW^*W -property. \Box

Theorem 2.5. For a Banach algebra A the following assertions hold.

(1)If A*A = A* and A has RW*W-property, then A is Arens regular.
(2) If AA* = A* and A has LW*W-property, then A is Arens regular.

Proof. (1) Let $(F_{\alpha}) \subseteq A^{**}$ be a net such that $F_{\alpha} \xrightarrow{w^*} F$. Then, we have $(F_{\alpha}.f).a \xrightarrow{w^*} (F.f).a$ for every $a \in A$ and $f \in A^*$, and so $F_{\alpha}.(f.a) \xrightarrow{w^*} F.(f.a)$. Since A has RW^*W -property, we conclude that $F_{\alpha}.(f.a) \xrightarrow{w} F.(f.a)$. Therefore for all $G \in A^{**}$, $f \in A^*$ and $a \in A$ we have

$$\langle G.F_{\alpha}, f.a \rangle = \langle G, F_{\alpha}(f.a) \rangle = \langle G, (F_{\alpha}.f).a \rangle \rightarrow \langle G, (F.f).a \rangle$$

= $\langle G.F, f.a \rangle$.

Since $A^*A = A^*$, the result follows.

(2) The proof is similar to that of (1).

Let the algebra $C_0 = (C_0, .)$ to be the collection of all sequences of scalars that converge to 0, with the same vector space operations and norm as in ℓ^{∞} . Then, C_0 is a Banach algebra which satisfies all conditions of Theorem 2.5.

By Theorem 2.4 and Theorem 2.5(2), if A and B are Banach algebras and h is a bounded homomorphism from A onto B whenever B factors on the right as Banach A - bimodule, then if A has LW^*W -property, B is Arens regular. Also from Theorem 2.5 and [11, Proposition 2.6] we conclude that when A is WSC and $AA^* = A^*$ (or A is unital) and Ahas RW^*W -property, then A is Arens regular.

Lemma 2.6. For a Banach algebra A the following statements hold.

(1) For all $f \in A^*$ and $F \in A^{**}$ there is a net $(x_{\alpha})_{\alpha} \subseteq A$ such that $f.x_{\alpha} \xrightarrow{w^*} foF$.

(2) Let $F \in A^{**}$ and $(x_{\alpha})_{\alpha} \subseteq A$ be such that $x_{\alpha} \xrightarrow{w^*} F$. Then A is Arens regular if and only if $f.x_{\alpha} \xrightarrow{w} foF$ for all $f \in A^*$.

Theorem 2.7. For a Banach algebra A the following assertions hold. (1) Suppose that

$$\lim_{\alpha} \lim_{\beta} \langle f_{\beta}, a_{\alpha} \rangle = \lim_{\beta} \lim_{\alpha} \langle f_{\beta}, a_{\alpha} \rangle$$

for every $(a_{\alpha})_{\alpha} \subseteq A$ and $(f_{\beta})_{\beta} \subseteq A^*$. Then, if $A^*A = A^*$ or $AA^* = A^*$ it follows that A is Arens regular. Also if $A^{**} = cA^{**}$ or $A^{**} = A^{**}c$ for some $c \in A$, then A is reflexive.

(2) Let A be Arens regular and let $(a_{\alpha})_{\alpha} \subseteq A$ and $(f_{\beta})_{\beta} \subseteq A^*$ be such that they are convergence to some points in the weak^{*} and weak topology in A^{**} and A^* , respectively. Then for all $F \in A^{**}$, we have

$$\lim_{\alpha} \lim_{\beta} \langle F, f_{\beta}.a_{\alpha} \rangle = \lim_{\beta} \lim_{\alpha} \langle F, f_{\beta}.a_{\alpha} \rangle.$$

(3) If for some $a \in A$, we have

$$\lim_{\alpha}\lim_{\beta}\langle f_{\beta}a,a_{\alpha}\rangle = \lim_{\beta}\lim_{\alpha}\langle f_{\beta}a,a_{\alpha}\rangle,$$

 $LW^{\ast}W\text{-}\mathrm{property}$ and Topological Centers

then a has RW^{*}W-property. Also if

$$\lim_{\alpha} \lim_{\beta} \langle af_{\beta}, a_{\alpha} \rangle = \lim_{\beta} \lim_{\alpha} \langle af_{\beta}, a_{\alpha} \rangle,$$

then a has LW^*W -property.

Proof. (1) If we show that A has both LW^*W -property and RW^*W property then by Theorem 2.3 and Theorem 2.5, the proof is complete. Suppose that $(f_{\beta})_{\beta} \subseteq A^*$ and $a \in A$ are such that $a.f_{\beta} \xrightarrow{w^*} 0$. Let $F \in A^{**}$. Since $w^* - closureA = A^{**}$, there is $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} F$. Consequently, we have the following equalities

$$\begin{split} \lim_{\beta} \langle F, a.f_{\beta} \rangle &= \lim_{\beta} \langle F.a, f_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle a_{\alpha}.a, f_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle f_{\beta}, a_{\alpha}.a \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle f_{\beta}, a_{\alpha}.a \rangle = \lim_{\alpha} \lim_{\beta} \langle a.f_{\beta}, a_{\alpha} \rangle = 0. \end{split}$$

Therefore, we obtain $a.f_{\beta} \xrightarrow{w} 0$. Similarly A has RW^*W -property.

(2) Suppose that $(a_{\alpha})_{\alpha} \subseteq A$ is such that $a_{\alpha} \xrightarrow{w^*} G$ for some $G \in A^{**}$. Let $(f_{\beta})_{\beta} \subseteq A^*$ be such that $f_{\beta} \xrightarrow{w} f$ where $f \in A^*$. Then by Lemma 2.6, for fixed β , we have $f_{\beta}.a_{\alpha} \xrightarrow{w} f_{\beta}oG$. So, for all $F \in A^{**}$ we have the following relations

$$\begin{split} \lim_{\beta} \lim_{\alpha} \langle F, f_{\beta}.a_{\alpha} \rangle &= \lim_{\beta} \langle F, f_{\beta}.oG \rangle = \lim_{\beta} \langle GoF, f_{\beta} \rangle = \langle GoF, f \rangle \\ &= \langle G.F, f \rangle = \langle G, F.f \rangle = \lim_{\alpha} \langle F.f, a_{\alpha} \rangle = \lim_{\alpha} \langle F, f.a_{\alpha} \rangle \\ &= \lim_{\alpha} \langle a_{\alpha}.F, f \rangle = \lim_{\alpha} \lim_{\beta} \langle a_{\alpha}.F, f_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \langle F, f_{\beta}.a_{\alpha} \rangle. \end{split}$$

(3) Suppose that $(f_{\beta})_{\beta} \subseteq A^*$ and $f_{\beta}a \xrightarrow{w^*} 0$. Let $F \in A^{**}$ and $(a_{\alpha})_{\alpha} \subseteq A$ such that $a_{\alpha} \xrightarrow{w^*} F$. Then, we have

$$\lim_{\beta} \langle F, f_{\beta}a \rangle = \lim_{\beta} \langle aF, f_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle f_{\beta}, aa_{\alpha} \rangle$$
$$= \lim_{\alpha} \lim_{\beta} \langle f_{\beta}, aa_{\alpha} \rangle = \lim_{\alpha} \lim_{\beta} \langle f_{\beta}a, a_{\alpha} \rangle = 0$$

Consequently, we have $f_{\beta}a \xrightarrow{w} 0$.

Definition 2.8. Let A be a Banach algebra. We say that A^* strongly left (resp., right) factors, if for all $(f_{\alpha})_{\alpha} \subseteq A^*$, there are $(a_{\alpha})_{\alpha} \subseteq A$ and

 $f \in A^*$ such that $f_{\alpha} = f.a_{\alpha}$ (resp., $f_{\alpha} = a_{\alpha}.f$) where $(a_{\alpha})_{\alpha} \subseteq A$ has limit in the *weak*^{*} topology in A^{**} . If A^* strongly left and right factors, then we say that A^* strongly factors.

For a Banach algebra A with a BAI, it is clear that if A^* strongly left (resp., right) factors, then A^* factors on the left (resp., right).

Theorem 2.9. Let $AA^* \subseteq wapA$. If A^* strongly factors on the left (resp., right), then A has LW^*W -property (resp., RW^*W -property).

Proof. Suppose that $a \in A$ and $(f_{\alpha})_{\alpha} \subseteq A^*$ are such that $a.f_{\alpha} \xrightarrow{w^*} 0$. Since A^* strongly factors on the left, there are $(a_{\alpha})_{\alpha} \subseteq A$ and $f \in A^*$ such that $f_{\alpha} = f.a_{\alpha}$ where $(a_{\alpha})_{\alpha} \subseteq A$ has limit in the weak* topology on A^{**} . Let $F \in A^{**}$ and $(a_{\beta})_{\beta} \subseteq A$ be such that $b_{\beta} \xrightarrow{w^*} F$. Then

$$\begin{split} \lim_{\alpha} \langle F, a.f_{\alpha} \rangle &= \lim_{\alpha} \lim_{\beta} \langle af_{\alpha}, b_{\beta} \rangle = \lim_{\alpha} \lim_{\beta} \langle af.a_{\alpha}, b_{\beta} \rangle \\ &= \lim_{\alpha} \lim_{\beta} \langle af, a_{\alpha}b_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle af, a_{\alpha}b_{\beta} \rangle = \lim_{\beta} \lim_{\alpha} \langle af.a_{\alpha}, b_{\beta} \rangle \\ &= \lim_{\beta} \lim_{\alpha} \langle af_{\alpha}, b_{\beta} \rangle = 0. \end{split}$$

It follows that $a \in A$ has LW^*W -property and so A has LW^*W -property. \Box

Problems

(1) Suppose that A has LW^*W -property and A is WCC and WSC. Is A reflexive?

(2) For a non abelian Banach algebra A, when LW^*W -property and RW^*W -property concide?

(3) If A^* factors on the right and A has RW^*W -property and A has LW^*W -property, is A Arens regular?

(4) If A factors on the left and it is Arens regular, does A have LW^*W -property?

Acknowledgments

I would like to thank the referee for his/her careful reading of my paper and many valuable suggestions.

References

- R. E. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), 839–848.
- [2] N. Arikan, A simple condition ensuring the Arens regularity of bilinear mapping, Proc. Amer. Math. Soc., 84 (4) (1982), 525–532.
- [3] J.W. Baker, J. S. Pym, H. L. Vasudeva, Totally ordered measure spaces and their algebras, Mathematika, 2 (1982), 42–54.
- [4] J. Baker, A. T. Lau, J.S. Pym, Module homomorphism and topological centers associated with weakly sequentially compact Banach algebras, Journal of Functional Analysis. 158 (1998), 186–208.
- [5] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin (1973).
- [6] N. Dunford, J. T. Schwartz, Linear Operators. I., Wiley, New york (1958).
- [7] E. Hewitt, K. A. Ross, *Abstract Harmonic Analysis*, Springer-Verlag, Berlin, Vol I (1963).
- [8] E. Hewitt, K. A. Ross, *Abstract harmonic analysis*, Springer-Verlag, Berlin, Vol II (1970).
- [9] N. Isik, J. S. Pym, A. Ulger, The second dual of the group algebra of compact groups, J. London. Math. Soc., 35 (2) (1987), 135–148.
- [10] A. T. Lau, V. Losert, On the second conjugate algebra of locally compact groups, J. London Math. Soc., 37 (2) (1988), 464–480.
- [11] A.T. Lau, A. Ulger, Topological center of certain dual algebras, Trans. Amer. Math. Soc., 348 (1996), 1191–1212.
- [12] J.S. Pym, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc., 15 (1965), 84–104.

K. Haghnejad Azar

Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran

Email: haghnejad@aut.ac.ir