Journal of Hyperstructures 11 (1) (2022), 166-182. ISSN: 2322-1666 print/2251-8436 online

SOME CURVATURE PROPERTIES OF PARA-KENMOTSU MANIFOLD WITH RESPECT TO ZAMKOVOY CONNECTION

ABHIJIT MANDAL, AFSAR HOSSAIN SARKAR, ASHIS BISWAS, ASHOKE DAS

ABSTRACT. In the present paper we study some properties of the para-Kenmotsu manifold with respect to Zamkovoy connection. We discuss locally ϕ -symmetric para-Kenmotsu manifold with respect to the Zamkovoy connection. Also, we study Ricci Soliton on para-Kenmotsu manifold with respect to Zamkovoy connection. Besides these, we discuss W_i -curvature tensor (i=0,1,2...9) with respect to Zamkovoy connection on para-Kenmotsu manifold.

Key words and phrases : Para-Kenmotsu manifold, Zamkovoy connection, Ricci soliton, W_i -curvature tensor.

2020 Mathematics Subject Classification: 53C15.

1. INTRODUCTION

The notion of para-Kenmotsu manifold analogous to the structure of Kenmotsu manifold [7] was introduced by Welyczko [23]. Also, Sinha and Sai Prasad [19] introduced para-Kenmotsu manifolds as a subclass of para-contact manifold. Further, para-Kenmotsu manifolds have been studied by many researcher. For instance, we see ([4], [12], [13], [17], [18]) and the references therein.

In 2008, the notion of Zamkovoy canonical connection (briefly, Zamkovoy connection) on para contact manifold was introduced by S. Zamkovoy

Received: 1 May 2021, Accepted: 27 July 2021. Communicated by Dariush Latifi

^{*}Address correspondence to Abhijit Mandal; E-mail: abhijit4791@gmail.com © 2022 University of Mohaghegh Ardabili.

¹⁶⁶

[24]. Zamkovoy connection was defined as a canonical para contact connection whose torsion is the obstruction of paracontact manifold to be a para-Sasakian manifold. This connection was further studied by many authors. For instance, we see ([1], [2], [4], [5], [8], [9] [10], [11]). For an *n*-dimensional almost para-contact metric manifold M equipped with an almost para-contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g, the Zamkovoy connection (∇^*) in terms of Levi-Civita connection (∇) is defined as

(1.1)
$$\nabla_X^* Y = \nabla_X Y + (\nabla_X \eta) (Y) \xi - \eta (Y) \nabla_X \xi + \eta (X) \phi Y,$$

for all $X, Y \in \chi(M)$, where $\chi(M)$ denotes the set of all vector fields on M.

The concept of Ricci flow and its existence was introduced by R. S. Hamilton [6] in the year 1982. Hamilton observed that the Ricci flow is an excellent tool for simplifying the structure of a manifold. This concept was developed to answer Thurston's geometric conjecture which says that each closed three manifolds admits a geometric decomposition. By positive curvature operator, Hamilton also classified all compact manifolds of dimension four. The Ricci flow equation is given by

(1.2)
$$\frac{\partial g}{\partial t} = -2S,$$

where g is Riemannian metric, S is Ricci tensor and t is the time. A Ricci soliton is a self similar solution of the Ricci flow equation, where the metrices at different times differ by a diffeomorphism of the manifold. A Ricci soliton is represented by a triple (g, V, λ) , where V is a vector field and λ is a scalar, which satisfies the equation:

$$(1.3) L_V g + 2S + 2\lambda g = 0$$

where, S is Ricci tensor, $L_V g$ denotes the Lie derivative of g along the vector field V. The Ricci soliton is said to be shrinking, steady or expanding according as $\lambda < 0, \lambda = 0$ or $\lambda > 0$, respectively. If the vector field V is gradient of a smooth function h, then the Ricci soliton (g, V, λ) is called a gradient Ricci soliton and the function h is called the potential function. Ricci soliton was further studied by many researchers. For more details, we refer ([14], [16], [20], [21]) and their references.

Definition 1.1. A Riemannian manifold M is said to be symmetric if its curvature tensor R satisfies the condition

$$\left(\nabla_W R\right)\left(X,Y\right)Z = 0,$$

for all vector fields X, Y, Z, W on M.

Definition 1.2. A Riemannian manifold M is called locally ϕ -symmetric if its curvature tensor R satisfies the condition

$$\phi^2 \left(\nabla_W R \right) \left(X, Y \right) Z = 0,$$

for all vector fields X, Y, Z, W on M which are orthogonal to the structure tensor field of the manifold.

Definition 1.3. A non-flat Riemannian manifold M (n > 2) is said to be ϕ -pseudo symmetric if its curvature tensor R satisfies

 $\phi^{2}\left(\nabla_{W}R\right)\left(X,Y\right)Z = 2A\left(W\right)R\left(X,Y\right)Z + A\left(X\right)R\left(W,Y\right)Z$

 $+A\left(Y\right)R\left(X,W\right)Z+A\left(Z\right)R\left(X,Y\right)W+g\left(R\left(X,Y\right)Z,W\right)\rho,$

where A is a non-zero associated 1-form, ρ is a vector field defined by $g(W, \rho) = A(W)$ for every vector field W and ∇ denotes the operator of covariant differentiation with respect to the metric g.

Definition 1.4. A non-flat Riemannian manifold M (n > 2) is called generalized Ricci-recurrent manifold if its Ricci tensor S satisfies the condition

$$\left(\nabla_{X}S\right)\left(Y,Z\right) = A\left(X\right)S\left(Y,Z\right) + B\left(X\right)g\left(Y,Z\right),$$

where A and B are two non-zero 1-forms. Such a manifold shall be denoted by GR_n .

Definition 1.5. A Riemannian manifold M is said to be pseudo Ricci symmetric if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the relation

$$(\nabla_X S)(Y,Z) = 2A(X)S(Y,Z) + A(Y)S(X,Z) + A(Z)S(X,Y),$$

where A is a non-zero associated 1-form, ρ is a vector field defined by $g(X, \rho) = A(X)$ for every vector field X on M.

The paper is organized as follows:

Section-1 and Section-2 are kept for indroduction and preliminaries. In Section-3 we introduce Zamkovoy connection on para-Kenmotsu manifold. In Section-4, we have discussed para-Kenmotsu manifold admitting Zamkovoy connection and obtained Riemannian curvature tensor R^* , Ricci tensor S^* , scalar curvature r^* , Ricci operator Q^* with respect to Zamkovoy connection. Section-5 concerns with locally ϕ symmetric para-Kenmotsu manifold with respect to the connection ∇^* . Section-6 contains the study of Ricci Soliton on para-Kenmotsu manifold with respect to Zamkovoy connection. In Section-7, we have

discussed ϕ -pseudo-symmetric para-Kenmotsu manifold with respect to Zamkovoy connection. Section-7 concerns with W_i -curvature tensors with respect to Zamkovoy connection on para-Kenmotsu manifold.

2. Preliminaries

Let M be an n-dimensional differentiable manifold with an almost para-contact metric structure (ϕ, ξ, η, g) , where φ is a (1, 1) tensor field, ξ is a vector field, η is a a 1-form and g is a pseudo-Riemannian metric such that

$$\begin{array}{rcl} (2.1) & \varphi^{2}X & = & X - \eta\left(X\right)\xi, \eta(\xi) = 1, \eta\left(\varphi X\right) = 0, \varphi\xi = \\ (2.2) & g\left(\varphi X, \varphi Y\right) & = & -g\left(X,Y\right) + \eta\left(X\right)\eta\left(Y\right), \\ (2.3) & g\left(X, \varphi Y\right) & = & -g\left(\varphi X,Y\right), g\left(X,\xi\right) = \eta\left(X\right), \end{array}$$

for all vector fields X, Y on M.

If an almost paracontact metric manifold satisfies

(2.4)
$$(\nabla_X \varphi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X,$$

for all vector fields X, Y on M, then M is called almost para-Kenmotsu manifold. A normal almost para-Kenmotsu manifold is said to be para-Kenmotsu manifold. The para-Kenmotsu structure for 3-dimensional normal almost para-contact metric structures was introduced by J. Welyczko [23].

Also for an n-dimensional para-Kenmotsu manifold M, following relations hold

(2.5)	$ abla_X \xi$	=	$X - \eta\left(X\right)\xi,$
(2.6)	$(\nabla_X \eta) Y$	=	$g(X,Y) - \eta(X) \eta(Y),$
(2.7)	$R\left(X,Y\right) \xi$	=	$\eta\left(X\right)Y - \eta\left(Y\right)X,$
(2.8)	$R(\xi, X)Y$	=	$\eta\left(Y\right)X - g(X,Y)\xi,$
(2.9)	$\eta\left(R\left(X,Y\right)Z\right)$	=	$g(X,Z)\eta(Y) - g(Y,Z)\eta(X),$
(2.10)	$S\left(X,\xi\right)$	=	$-\left(n-1\right) \eta \left(X\right) ,$
(2.11)	$Q\xi$	=	$-(n-1)\xi,$

where R is the Riemannian curvature tensor, S is Ricci tensor and Q is Ricci operator.

0,

Lemma 3.1. The relation between Zamkovoy connection (∇^*) and Levi-Civita connection (∇) on para-Kenmotsu manifold is given by

(3.1)
$$\nabla_X^* Y = \nabla_X Y + g(X, Y)\xi - \eta(Y)X + \eta(X)\phi Y,$$

with torsion tensor

(3.2)
$$T^{*}(X,Y) = \eta(X)Y - \eta(Y)X + \eta(X)\phi Y - \eta(Y)\phi X,$$

Proof. In view of (1.1) and (2.6), we have

(3.3)
$$(\nabla_X^* g)(Y, Z) = 0.$$

Suppose that the Zamkovoy connection ∇^* defined on an *n*-dimensional para-Kenmotsu manifold M is connected with the Levi-Civita connection ∇ by the relation

(3.4)
$$\nabla_X^* Y = \nabla_X Y + P(X,Y),$$

where P(X, Y) is a tensor field of type (1, 1). Then, by definition of torsion tensor we have

(3.5)
$$T^{*}(X,Y) = P(X,Y) - P(Y,X).$$

Due to (3.3), Zamkovoy connection is a metric connection and hence from (3.5), we get

(3.6)
$$g(P(X,Y),Z) + g(P(X,Z),Y) = 0.$$

In view of (3.5) and (3.6), we get

$$g(T^{*}(X,Y),Z) + g(T^{*}(Z,X),Y) + g(T^{*}(Z,Y),X)$$

= $g(P(X,Y),Z) - g(P(Y,X),Z) + g(P(Z,X),Y)$
 $-g(P(X,Z),Y) + g(P(Z,Y),X) - g(P(Y,Z),X)$

(3.7) = 2g(P(X,Y),Z).

Setting

(3.8)
$$g\left(T^*\left(Z,X\right),Y\right) = g\left(\overline{T}\left(X,Y\right),Z\right),$$
$$g\left(T^*\left(Z,Y\right),X\right) = g\left(\overline{T}\left(Y,X\right),Z\right),$$

and using (3.8) in (3.7), we get

(3.9)

$$g\left(T^{*}\left(X,Y\right),Z\right)+g\left(\overline{T}\left(X,Y\right),Z\right)+g\left(\overline{T}\left(Y,X\right),Z\right)=2g\left(P\left(X,Y\right),Z\right)$$
 which implies that

(3.10)
$$P(X,Y) = \frac{1}{2} \left[T^*(X,Y) + \overline{T}(X,Y) + \overline{T}(Y,X) \right]$$

From (3.2) and (3.8), we have

(3.11)
$$T(X,Y) = g(X,Y)\xi - \eta(X)Y$$
$$-g(X,\phi Y)\xi + \eta(X)\phi Y.$$

(3.12)
$$\overline{T}(Y,X) = g(Y,X)\xi - \eta(Y)X -g(Y,\phi X)\xi + \eta(Y)\phi X$$

Using (3.2), (3.11) and (3.12) in (3.10), we have

$$(3.13) P(X,Y) = g(X,\phi Y)\xi - \eta(Y)\phi X + \eta(X)\phi Y.$$

In view of (3.4) and (3.13), we can easily bring out the equation (3.1). Hence the linear connection ∇^* defined on an *n*-dimensional para-Kenmotsu manifold is a metric connection with torsion tensor given by equation (3.2).

Proposition 3.2. Zamkovoy connection on para-Kenmotsu manifold is a metric compatible linear connection and its torsion is of the form

$$T^{*}(X,Y) = \eta(X)Y - \eta(Y)X + \eta(X)\phi Y - \eta(Y)\phi X.$$

Proposition 3.3. In a para-Kenmotsu manifold, the structure vector field ξ , 1-form η and the metric g are parallel with respect to Zamkovoy connection.

Proof. From the equation (3.3), it is obvious that

(3.14)
$$\nabla_X^* \xi = 0, (\nabla_X^* \eta) Y = 0.$$

Proposition 3.4. In a para-Kenmotsu manifold, the integral curve of ξ is a geodesic with respect to Zamkovoy connection.

4. Some properties of para-Kenmotsu manifold with respect to Zamkovoy connection

Let R^* be the Riemannian curvature tensor with respect to Zamkovoy connection and it is defined as

(4.1)
$$R^*(X,Y) Z = \nabla_X^* \nabla_Y^* Z - \nabla_Y^* \nabla_X^* Z - \nabla_{[X,Y]}^* Z.$$

By the help of (2.4), (2.5), (2.6), (3.1) and (3.14) we get the followings:

$$\begin{aligned}
\nabla_X^*(\phi Z) &= g(\phi X, Z) \xi - \eta(Z) \phi X + \phi(\nabla_X Z) \\
(4.2) &+ g(X, \phi Z) \xi + \eta(X) Z - \eta(X) \eta(Z) \xi. \\
(4.3) &\nabla_X^* g(Y, Z) &= g(\nabla_X Y, Z) + g(Y, \nabla_X Z) \\
(4.4) &\nabla_X^* \eta(Y) &= g(X, \phi Y) + \eta(\nabla_X Y)
\end{aligned}$$

In reference to (3.1), (4.2), (4.3) and (4.4) we have

$$\begin{aligned} \nabla_X^* \nabla_Y^* Z \\ &= \nabla_X \nabla_Y Z + g\left(X, \nabla_Y Z\right) \xi - \eta\left(\nabla_Y Z\right) X \\ &+ \eta\left(X\right) \phi \nabla_Y Z + g\left(\nabla_X Y, Z\right) \xi + g\left(Y, \nabla_X Z\right) \xi \\ &- g\left(X, Z\right) Y - \eta\left(\nabla_X Z\right) Y + \eta\left(X\right) \eta\left(Z\right) Y - \nabla_X Y \eta\left(Z\right) \\ &- g\left(X, Y\right) \eta\left(Z\right) \xi + \eta\left(Y\right) \eta\left(Z\right) X - \eta\left(X\right) \eta\left(Z\right) \phi Y \\ &+ g\left(X, Y\right) \phi Z + \eta\left(\nabla_X Y\right) \phi Z - \eta\left(X\right) \eta\left(Y\right) \phi Z + \phi\left(\nabla_X Z\right) \eta\left(Y\right) \end{aligned}$$

$$(4.5) \quad - \eta\left(Z\right) \eta\left(Y\right) \phi X + \eta\left(X\right) \eta\left(Y\right) Z - \eta\left(X\right) \eta\left(Y\right) \eta\left(Z\right) \xi.$$

Also,

$$\nabla_{[X,Y]}^* Z = \nabla_{[X,Y]} Z + g (\nabla_X Y, Z) \xi - g (\nabla_Y X, Z) \xi$$

(4.6)
$$-\eta (Z) \nabla_X Y + \eta (Z) \nabla_Y X + \eta (\nabla_X Y) \phi Z - \eta (\nabla_Y X) \phi Z.$$

Interchanging X and Y in (4.5) and using it along with the equations (4.5) and (4.6) in (4.1), we get

(4.7)
$$R^{*}(X,Y)Z = R(X,Y)Z - g(X,Z)Y + g(Y,Z)X.$$

Taking inner product of (4.7) with V, we obtain (4.8)

$$R^{*}(X, Y, Z, V) = R(X, Y, Z, V) - g(X, Z) g(Y, V) + g(Y, Z) g(X, V).$$

Taking an orthnormal frame of M and contracting (4.8) over X and V, we get

(4.9)
$$S^*(Y,Z) = S(Y,Z) + (n-1)g(Y,Z).$$

Consequently, one can easily bring out the followings:

$$\begin{array}{rcl} (4.10) & S^{*}\left(\xi,Z\right) &=& S^{*}\left(Z,\xi\right)=0,\\ (4.11) & Q^{*}Y &=& QY+\left(n-1\right)Y, Q^{*}\xi=0,\\ (4.12) & R^{*}\left(X,Y\right)\xi &=& R^{*}\left(\xi,Y\right)Z=R^{*}\left(X,\xi\right)Z=0,\\ (4.13) & r^{*} &=& r+n\left(n-1\right). \end{array}$$

Proposition 4.1. Let M be an n-dimensional para-Kenmotsu manifold admitting Zamkovoy connection ∇^* , Then

- (i) The curvature tensor R^* with respect to ∇^* is given by (4.7),
- (ii) The Ricci tensor S^* with respect to ∇^* is given by (4.9),
- (iii) The scalar curvature r^* with respect to ∇^* is given by (4.13)
- (iv) The Ricci tensor S^* with respect to ∇^* is symmetric.
- (v) $R^*(X,Y)Z + R^*(Y,Z)X + R^*(Z,X)Y = 0.$

Proposition 4.2. The sectional curvature of a flat para-Kenmotsu manifold with respect to Zamkovoy connection is (-1).

Proof. Let M be flat with respect to ∇^* , then (4.7) gives

$$R(X,Y) Z = -[g(Y,Z) X - g(X,Z) Y].$$

which shows that M is a para-Kenmotsu manifold of sectional curvature (-1). \Box

Proposition 4.3. The para-Kenmotsu manifold M is flat with respect to Zamkovoy connection iff M is locally isometric to the hyperbolic space $H^n(-1)$.

Proposition 4.4. If the para-Kenmotsu manifold M is Ricci flat with respect to Zamkovoy connection then M is an Einstein manifold.

Proof. Let M be Ricci flat with respect to ∇^* , then (4.9) gives

$$S(Y,Z) = -(n-1)g(Y,Z),$$

which shows that M is an Einstein manifold.

5. Locally ϕ -symmetric para-Kenmotsu manifold with respect to the Zamkovoy connection

Theorem 5.1. An n-dimensional para-Kenmotsu manifold is locally ϕ -symmetric with respect to Zamkovoy connection if and only if it is so with respect to Levi-Civita connection.

Proof. Let M be an n-dimensional generalized ϕ -recurrent para-Kenmotsu manifold with respect to the Zamkovoy connection, then curvature tensor R^* satisfies the condition

(5.1)
$$\phi^2 \left(\nabla_W^* R^* \right) (X, Y) Z = 0,$$

for all horizontal vector fields X, Y, Z, W of M.

By virtue of (3.1), we have

(5.2)
$$(\nabla_W^* R^*) (X, Y) Z = \nabla_W^* R^* (X, Y) Z - R^* (\nabla_W^* X, Y) Z - R^* (X, \nabla_W^* Y) Z - R^* (X, Y) \nabla_W^* Z.$$

Using (3.1), (4.7), in (5.2), we get

$$\begin{aligned} & (\nabla_W^* R^*) \, (X,Y) \, Z \\ = & (\nabla_W R) \, (X,Y) \, Z + g \, (W,R \, (X,Y) \, Z) \, \xi \\ & -g \, (X,Z) \, g \, (W,Y) \, \xi + g \, (Y,Z) \, g \, (W,X) \, \xi - \eta \, (R \, (X,Y) \, Z) \, W \\ & -g \, (X,Z) \, \eta \, (Y) \, W + g \, (Y,Z) \, \eta \, (X) \, W + \eta \, (W) \, \phi R \, (X,Y) \, Z \\ & -\eta \, (W) \, g \, (X,Z) \, \phi Y + \eta \, (W) \, g \, (Y,Z) \, \phi X + \eta \, (X) \, R \, (W,Y) \, Z \\ & -g \, (W,Z) \, \eta \, (X) \, Y + g \, (Y,Z) \, \eta \, (X) \, W - \eta \, (W) \, R^* \, (\phi X,Y) \, Z \\ & +g \, (\phi X,Z) \, \eta \, (W) \, Y - g \, (Y,Z) \, \eta \, (W) \, \phi X + \eta \, (Y) \, R^* \, (X,W) \, Z \\ & -g \, (X,Z) \, \eta \, (Y) \, W + g \, (W,Z) \, \eta \, (Y) \, X - \eta \, (W) \, R^* \, (X,\phi Y) \, Z \\ & +g \, (X,Z) \, \eta \, (W) \, \phi Y - g \, (\phi Y,Z) \, \eta \, (W) \, X + \eta \, (Z) \, R \, (X,Y) \, W \\ & -g \, (X,W) \, \eta \, (Z) \, Y + g \, (Y,W) \, \eta \, (Z) \, X - \eta \, (W) \, R \, (X,Y) \, \phi Z \end{aligned}$$

Applying ϕ^2 on both sides of (5.3) and using (2.1) and cosidering X, Y, Z, W to be horizontal vector fields, i.e., orthogonal to ξ , we get

$$\phi^2\left(\left(\nabla_W^* R^*\right)(X,Y)Z\right) = \phi^2\left(\left(\nabla_W R\right)(X,Y)Z\right),$$

which shows that M is locally ϕ -symmetric with respect to Zamkovoy connection if and only if it is so with respect to Levi-Civita connection.

6. RICCI SOLITON ON PARA-KENMOTSU MANIFOLD WITH RESPECT TO ZAMKOVOY CONNECTION.

Theorem 6.1. A Ricci soliton (g, V, λ) with respect to Zamkovoy connection and Levi-Civita connection is equivalent if and only if the relation

$$2g(Y, Z) \eta(V) = g(\phi V, Z) \eta(Y) + g(\phi V, Y) \eta(Z) + 2(n-1)g(Y, Z),$$

holds for arbitrary vector fields $Y, Z, V \in \chi(M)$.

174

(5

Proof. For a Ricci soliton (g, V, λ) , the equation (1.3) can be written in terms of Zamkovoy connection as

(6.1)
$$(L_V^*g)(Y,Z) + 2S^*(Y,Z) + 2\lambda g(Y,Z) = 0,$$

for all $Y, Z, V \in \chi(M)$, where L_V^* denotes the Lie derivative operator with respect to ∇^* along the vector field V.

Using (3.1) and (4.9) in (6.1), we get

$$\begin{aligned} & (L_V^*g)\,(Y,Z) + 2S^*\,(Y,Z) + 2\lambda g\,(Y,Z) \\ &= g\,(\nabla_Y^*V,Z) + g\,(\nabla_Z^*V,Y) + 2S^*\,(Y,Z) + 2\lambda g\,(Y,Z) \\ &= (L_Vg)\,(Y,Z) + 2S\,(Y,Z) + 2\lambda g\,(Y,Z) - 2g\,(Y,Z)\,\eta\,(V) \\ &+ g\,(\phi V,Z)\,\eta\,(Y) + g\,(\phi V,Y)\,\eta\,(Z) + 2\,(n-1)\,g\,(Y,Z)\,. \end{aligned}$$

This gives the theorem.

Theorem 6.2. If a para-Kenmotsu manifold M is Ricci flat with respect to Zamkovoy connection then the Ricci soliton (g, ξ, λ) is always steady.

Proof. Considering a Ricci soliton (g, ξ, λ) on M it follows from (6.1) that

$$0 = (L_{\xi}^{*}g)(Y,Z) + 2S^{*}(Y,Z) + 2\lambda g(Y,Z)$$

= $g(\nabla_{Y}^{*}\xi,Z) + g(\nabla_{Z}^{*}\xi,Y) + 2S^{*}(Y,Z) + 2\lambda g(Y,Z)$
(6.3) = $S^{*}(Y,Z) + \lambda g(Y,Z)$.

Now, if M is Ricci flat with respect to Zamkovoy connection then (6.3) gives

 $\lambda = 0.$

Therefore, the Ricci soliton (g, ξ, λ) is steady on M.

7. ϕ -pseudo symmetric para-Kenmotsu manifold with respect to Zamkovoy connection.

Theorem 7.1. A ϕ -pseudo-symmetric para-Kenmotsu manifold with respect to Zamkovoy connection is pseudo-Ricci symmetric with respect to Zamkovoy connection if and only if

$$A(R^{*}(W,Y)Z) + A(R^{*}(Z,W)Y) = 0.$$

Proof. Let M be ϕ -pseudo symmetric para-Kenmotsu manifold with respect to Zamkovoy connection, then

$$\phi^{2} (\nabla_{W}^{*} R^{*}) (X, Y) Z = 2A(W) R^{*} (X, Y) Z +A(X) R^{*} (W, Y) Z + A(Y) R^{*} (X, W) Z +A(Z) R^{*} (X, Y) W + g(R^{*} (X, Y) Z, W) \rho,$$
(7.1)

where A is a non zero associated 1-form, ρ is a vector field defined by $g(W, \rho) = A(W)$ for every vector field W and ∇ denotes the operator of covariant differentiation with respect to the metric g.

Using (2.1) in (7.1), we get

$$(\nabla_{W}^{*}R^{*})(X,Y)Z = \eta ((\nabla_{W}^{*}R^{*})(X,Y)Z)\xi + 2A(W)R^{*}(X,Y)Z +A(X)R^{*}(W,Y)Z + A(Y)R^{*}(X,W)Z +A(Z)R^{*}(X,Y)W + g(R^{*}(X,Y)Z,W)\rho.$$
(7.2)

Taking inner product of (7.2) with a vector field V, we obtain

$$g\left(\left(\nabla_{W}^{*}R^{*}\right)\left(X,Y\right)Z,V\right) \\ = \eta\left(\left(\nabla_{W}^{*}R^{*}\right)\left(X,Y\right)Z\right)\eta\left(V\right) + 2A\left(W\right)g\left(R^{*}\left(X,Y\right)Z,V\right) \\ + A\left(X\right)g\left(R^{*}\left(W,Y\right)Z,V\right) + A\left(Y\right)g\left(R^{*}\left(X,W\right)Z,V\right) \\ + A\left(Z\right)g\left(R^{*}\left(X,Y\right)W,V\right) + g\left(R^{*}\left(X,Y\right)Z,W\right)g\left(\rho,V\right). \end{cases}$$

$$(7.3)$$

Let $\{e_i\}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $X = V = e_i$ in (7.3) and taking summation over i $(1 \le i \le n)$ and then using (2.1) in (7.3), we get

$$(\nabla_{W}^{*}S^{*})(Y,Z) = g((\nabla_{W}^{*}R^{*})(\xi,Y)Z,\xi) + 2A(W)S^{*}(Y,Z) + A(R^{*}(W,Y)Z) + A(Y)S^{*}(W,Z) + A(Z)S^{*}(W,Y) + A(R^{*}(Z,W)Y).$$
(7.4)

By virtue of (4.12) it follows from (7.4) that

(
$$\nabla_W^* S^*$$
) $(Y, Z) = 2A(W) S^*(Y, Z)$
+ $A(Y) S^*(W, Z) + A(Z) S^*(W, Y)$
+ $A(R^*(W, Y) Z) + A(R^*(Z, W) Y).$
(7.5)

Therefore, M is pseudo-Ricci-symmetric with respect to Zamkovoy connection if and only if

$$A(R^{*}(W,Y)Z) + A(R^{*}(Z,W)Y) = 0.$$

8. W_i-curvature tensor with respect to Zamkovoy connection on para-Kenmotsu manifold.

The W_i -curvature tensors (i = 0, 1, 2...9) are defined as a particular case of τ -Tensor introduced by M. M. Tripathi and P. Gupta [22]. Some of the W_i -curvature tensors were formerly introduced by Pokhariyal [15]. The W_i -curvature tensor (i = 1, 2...9) of rank three is defined as

$$W_{i}(X,Y)Z = a_{0}R(X,Y)Z + a_{1}S(Y,Z)X +a_{2}S(X,Z)Y + a_{3}S(X,Y)Z + a_{4}g(Y,Z)QX +a_{5}g(X,Z)QY + a_{6}g(X,Y)QZ,$$
(8.1)

for all $X, Y, Z \in \chi(M)$, where R, S and Q are Riemannian curvature tensor, Ricci tensor and Ricci operator respectively. The expressions for W_0, W_1, \dots, W_9 curvature tensors are given by

Value of a_i	Expressions for W_i – curvature tensors
$a_0 = 1, a_1 = -a_5 = -\frac{1}{n-1}$	$W_0(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[S(Y,Z)X - g(X,Z)QY]$
$a_0 = 1, a_1 = -a_2 = \frac{1}{n-1}$	$W_1(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$+\frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y]$
$a_0 = 1, a_4 = -a_5 = -\frac{1}{n-1}$	$W_2(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[g(Y,Z)QX - g(X,Z)QY]$
$a_0 = 1, a_2 = -a_4 = -\frac{1}{n-1}$	$W_3(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[S(X,Z)Y - g(Y,Z)QX]$
$a_0 = 1, a_5 = -a_6 = \frac{1}{n-1}$	$W_4(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$+\frac{1}{n-1}[g(X,Z)QY - g(X,Y)QZ]$
$a_0 = 1, a_2 = -a_5 = -\frac{1}{n-1}$	$W_5(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[S(X,Z)Y - g(X,Z)QY]$
$a_0 = 1, a_1 = -a_6 = -\frac{1}{n-1}$	$W_6(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[S(Y,Z)X - g(X,Y)QZ]$
$a_0 = 1, a_1 = -a_4 = -\frac{1}{n-1}$	$W_7(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[S(Y,Z)X - g(Y,Z)QX]$
$a_0 = 1, a_1 = -a_3 = -\frac{1}{n-1}$	$W_8(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$-\frac{1}{n-1}[S(Y,Z)X - S(X,Y)Z]$
$a_0 = 1, a_3 = -a_4 = \frac{1}{n-1}$	$W_9(X,Y)Z = R(X,Y)Z$
all other $a_i = 0$	$+\frac{1}{n-1}[S(X,Y)Z - g(Y,Z)QX]$

Theorem 8.1. An *n*-dimensional W_i -flat para-Kenmotsu manifold with respect to Zamkovoy connection is an Einstein manifold for $i \neq 6$.

Proof. The W_i -curvature tensor with respect to Zamkovoy connection is given by

$$W_{i}^{*}(X,Y) Z$$

$$= a_{0}R^{*}(X,Y) Z + a_{1}S^{*}(Y,Z) X$$

$$+a_{2}S^{*}(X,Z) Y + a_{3}S^{*}(X,Y) Z + a_{4}g(Y,Z) Q^{*}X$$

$$+a_{5}g(X,Z) Q^{*}Y + a_{6}g(X,Y) Q^{*}Z,$$
(8.2)

for all $X, Y, Z \in \chi(M)$, where R^*, S^* and Q^* are Riemannian curvature tensor, Ricci tensor and Ricci operator with respect to Zamkovoy connection respectively. If M is W_i -flat with respect ∇^* then (8.2) gives

$$0 = a_0 R^* (X, Y) Z + a_1 S^* (Y, Z) X + a_2 S^* (X, Z) Y + a_3 S^* (X, Y) Z + a_4 g (Y, Z) Q^* X + a_5 g (X, Z) Q^* Y + a_6 g (X, Y) Q^* Z.$$
(8.3)

Taking inner product of (8.3) with a vector field V, we get

$$0 = a_0 g \left(R^* \left(X, Y \right) Z, V \right) + a_1 S^* \left(Y, Z \right) g \left(X, V \right) + a_2 S^* \left(X, Z \right) g \left(Y, V \right) + a_3 S^* \left(X, Y \right) g \left(Z, V \right) + a_4 g \left(Y, Z \right) S^* \left(X, V \right) + a_5 g \left(X, Z \right) S^* \left(Y, V \right) + a_6 g \left(X, Y \right) S^* \left(Z, V \right).$$
(8.4)

Let $\{e_i\}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $X = V = e_i$ in (8.4) and taking summation over i $(1 \le i \le n)$, we get

$$(8.5) \quad 0 = (a_0 + na_1 + a_2 + a_3 + a_5 + a_6) S^*(Y, Z) + r^* a_4 g(Y, Z).$$

Using (4.9) and (4.13) in (8.5), we obtain

(8.6)
$$S(Y,Z) = -\frac{1}{a} \left[ra_4 + (a + na_4) (n - 1) \right] g(Y,Z) ,$$

where, $a = a_0 + na_1 + a_2 + a_3 + a_5 + a_6$ and a = 0 if i = 6. Therefore, M is an Einstein manifold.

Corollary 8.2. The expressions for Ricci tensors for different W_i -flat para-Kenmotsu manifolds are as follows:

Type of flat Manifold	Ricci Tensor
\mathcal{W}_0^* -flat	S(Y,Z) = -(n-1)g(Y,Z),
\mathcal{W}_1^* -flat	S(Y,Z) = -(n-1)g(Y,Z),
\mathcal{W}_2^* -flat	$S(Y,Z) = \frac{r}{n}g(Y,Z),$
\mathcal{W}_3^* - $flat$	$S(Y,Z) = -\frac{1}{n-2} \left[2(n-1)^2 + r \right] g(Y,Z),$
\mathcal{W}_4^* -flat	S(Y,Z) = -(n-1)g(Y,Z),
\mathcal{W}_5^* -flat	S(Y,Z) = -(n-1)g(Y,Z),
\mathcal{W}_{6}^{*} -flat	Indeterminate
\mathcal{W}_7^* -flat	$S\left(Y,Z\right) = rg\left(Y,Z\right),$
\mathcal{W}_8^* -flat	Indeterminate
\mathcal{W}_9^* -flat	$S(Y,Z) = \frac{r}{n}g(Y,Z).$

Proof. The above expressions for Ricci tensors are obtained directly from equation (8.6).

Theorem 8.3. An *n*-dimensional W_i -flat symmetric para-Kenmotsu manifold with respect to Zamkovoy connection is of constant scalar curvature for i = 2, 3, 7, 9.

Proof. If M is symmetric with respect to Zamkovoy connection, i.e., $(\nabla_U^* R^*)(X, Y) Z = 0$, then from (8.3) we get

$$0 = a_1 \left(\nabla_U^* S^* \right) \left(Y, Z \right) X + a_2 \left(\nabla_U^* S^* \right) \left(X, Z \right) Y + a_3 \left(\nabla_U^* S^* \right) \left(X, Y \right) Z + a_4 g \left(Y, Z \right) \left(\nabla_U^* Q^* \right) X + a_5 g \left(X, Z \right) \left(\nabla_U^* Q^* \right) Y + a_6 g \left(X, Y \right) \left(\nabla_U^* Q^* \right) Z.$$
(8.7)

Taking Inner product of (8.7) with a vector field V, we get

$$0 = a_1 \left(\nabla_U^* S^* \right) (Y, Z) g (X, V) + a_2 \left(\nabla_U^* S^* \right) (X, Z) g (Y, V) + a_3 \left(\nabla_U^* S^* \right) (X, Y) g (Z, V) + a_4 g (Y, Z) \left(\nabla_U^* S^* \right) (X, V) + a_5 g (X, Z) \left(\nabla_U^* S^* \right) (Y, V) + a_6 g (X, Y) \left(\nabla_U^* S^* \right) (Z, V) .$$
(8.8)

Let $\{e_i\}$ $(1 \le i \le n)$ be an orthonormal basis of the tangent space at any point of the manifold M. Setting $X = V = e_i$ in (8.8) and taking summation over i $(1 \le i \le n)$, we get

(8.9)
$$0 = (a_1n + a_2 + a_3 + a_5 + a_6) (\nabla_U^* S^*) (Y, Z) + a_4g (Y, Z) \nabla_U^* r^*.$$

Setting $Z = \xi$ and using (4.10), (4.13) in (8.9) we get

$$U\left(r\right) =0.$$

for $a_4 \neq 0$, i.e., i = 2, 3, 7, 9. Therefore, M is a space of constant curvature.

9. CONCLUSION

In this paper, Zamkovoy connection has been introduced and studied on para-Kenmotsu manifold. Some properties of para-kenmotsu manifold by the help of W_i -curvature tensor and Zamkovoy connection has been studied. It is also investigated that the Ricci solition on a Ricci flat para-Kenmotsu manifold with respect to Zamkovoy connection is always steady.

There is a huge scope of further study of para-Kenmotsu manifold by the help of different curvature tensors with respect to Zamkovoy connection.

Acknowledgments

The authors wish to thank the referee for their valuable suggestions to improve the paper

References

- A. Biswas and K. K. Baishya, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin of the Transilvania University of Brasov, 12(2) (2020), 233-246.
- [2] A. Biswas and K. K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scientific Studies and Research Series Mathematics and Informatics, 29(1) (2019), 59-72.
- [3] D. E Blair, Contact manifolds in Riemannian Geometry, Lect. Notes Math. Springer-Verlag, Berlin 509, (1976).
- [4] A. M. Blaga, Canonical connection on Para Kenmotsu manifold, Novi Sad. J. Math, 45(2) (2015), 131-142.
- [5] A. Das and A. Mandal, Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection, The Aligarh Bull. of Math., 39(2) (2020), 47-61.
- [6] R. S. Hamilton, The Ricci Flow on surfaces, Math. and General Relativity (Santa Cruz CA, 1986), American Math. Soc. Contemp. math., 71 (1988), 232-262.
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2), 24(1) (1972), 93-103.
- [8] A. Mandal and A. Das, On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection, Adv. Math. Sci. J, 9(10) (2020), 8929-8940.
- [9] A. Mandal and A. Das, Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para-Sasakian manifolds, J. Indones. Math. Soc., 26(3) (2020), 369-379.
- [10] A. Mandal and A. Das, LP-Sasakian manifold equipped with Zamkovoy connection and conharmonic curvature tensor, J. Indones. Math. Soc., 27(2) (2021), 137-149.
- [11] A. Mandal and A. Das, Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection, Bull. Cal. Math. Soc., 112(5) (2020), 431-450.

- [12] D. S., Prasad, and D. Deekshitulu, *Ricci and projective curvature tensors on a type of para-Kenmotsu manifold*, Int. J. of Pure and Applied Math., **111(2)** (2016), 273-280.
- [13] K. S. Prasad and T. Satyanarayana, On para-Kenmotsu manifold, Int. J. Pure Appl. Math., 90(1) (2014), 35-41.
- [14] H. G. Nagaraja and C. R. Premalatha, *Ricci solitons in Kenmotsu manifolds*, J. of Mathematical Analysis, **3(2)** (2012) 18-24.
- [15] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic signifcance, Yokohama Math. J., 18 (1970), 105-108.
- [16] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., 24 (2007), 3339-3345.
- [17] K. L. Sai Prasad and T. Satyanarayana., On para-Kenmotsu manifold, Int. J. Pure Appl. Math., 90(1) (2014), 35-41.
- [18] T. Satyanarayana and K. S. Prasad, On a type of para-Kenmotsu manifold, Pure Mathematical Sciences, 2(4) (2013), 165-170.
- [19] B. B. Sinha, K. L. Prosad, A class of almost paracontact metric manifold, Bull. Calcutta Math. Soc., 87 (1995), 307-312.
- [20] R. Sharma, Certain results on K-contact and (k,μ)-contact manifolds, J. of Geom., 89 (2008) 138-147.
- [21] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222v1 [math. D. G.], 2008.
- [22] M. M. Tripathi and P. Gupta, $On \tau$ curvature tensor in K-contact manifold and Sasakian manifold, International Electronic Journal of Mathematics, 4 (2011), 32-47.
- [23] J. Welyczko, Slant curves in 3-dimensional normal Almost paracontact metric manifolds, Mediterr. J. Math. 11 (2014), 965-978.
- [24] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1) (2008), 37-60.

Abhijit Mandal

Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, West Bengal-733134, India Email: abhijit4791@gmail.com

Afsar Hossain Sarkar

Department of Mathematics, Raiganj University, West Bengal-733134, India Email: afsarsarkarmath@gmail.com

Ashis Biswas

Department of Mathematics, Mathabhanga College, Mathabhanga, West Bengal-736146, India Email: biswasashis9065@gmail.com

Ashoke Das

Department of Mathematics, Raiganj University, West Bengal-733134, India Email: biswasashis9065@gmail.com