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Abstract. In the present paper we study some properties of the
para-Kenmotsu manifold with respect to Zamkovoy connection. We
discuss locally φ-symmetric para-Kenmotsu manifold with respect
to the Zamkovoy connection. Also, we study Ricci Soliton on para-
Kenmotsu manifold with respect to Zamkovoy connection. Besides
these, we discuss Wi-curvature tensor (i=0,1,2...9) with respect to
Zamkovoy connection on para-Kenmotsu manifold.
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1. Introduction

The notion of para-Kenmotsu manifold analogous to the structure of
Kenmotsu manifold [7] was introduced by Welyczko [23]. Also, Sinha
and Sai Prasad [19] introduced para-Kenmotsu manifolds as a subclass
of para-contact manifold. Further, para-Kenmotsu manifolds have been
studied by many researcher. For instance, we see ([4], [12], [13], [17],
[18]) and the references therein.

In 2008, the notion of Zamkovoy canonical connection (briefly, Zamkovoy
connection) on para contact manifold was introduced by S. Zamkovoy
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[24]. Zamkovoy connection was defined as a canonical para contact con-
nection whose torsion is the obstruction of paracontact manifold to be a
para-Sasakian manifold. This connection was further studied by many
authors. For instance, we see ( [1], [2], [4], [5], [8], [9] [10], [11]). For
an n-dimensional almost para-contact metric manifold M equipped with
an almost para-contact metric structure (φ, ξ, η, g) consisting of a (1, 1)
tensor field φ, a vector field ξ, a 1-form η and a Riemannian metric g,
the Zamkovoy connection (∇∗) in terms of Levi-Civita connection (∇)
is defined as

(1.1) ∇∗
XY = ∇XY + (∇Xη) (Y ) ξ − η (Y )∇Xξ + η (X)φY,

for all X,Y ∈ χ (M) , where χ (M) denotes the set of all vector fields on
M.

The concept of Ricci flow and its existence was introduced by R. S.
Hamilton [6] in the year 1982. Hamilton observed that the Ricci flow is
an excellent tool for simplifying the structure of a manifold. This con-
cept was developed to answer Thurston’s geometric conjecture which
says that each closed three manifolds admits a geometric decomposi-
tion. By positive curvature operator, Hamilton also classified all com-
pact manifolds of dimension four. The Ricci flow equation is given by

(1.2)
∂g

∂t
= −2S,

where g is Riemannian metric, S is Ricci tensor and t is the time. A
Ricci soliton is a self similar solution of the Ricci flow equation, where
the metrices at different times differ by a diffeomorphism of the manifold.
A Ricci soliton is represented by a triple (g, V, λ), where V is a vector
field and λ is a scalar, which satisfies the equation:

(1.3) LV g + 2S + 2λg = 0,

where, S is Ricci tensor, LV g denotes the Lie derivative of g along the
vector field V. The Ricci soliton is said to be shrinking, steady or ex-
panding according as λ < 0, λ = 0 or λ > 0, respectively. If the vector
field V is gradient of a smooth function h, then the Ricci soliton (g, V, λ)
is called a gradient Ricci soliton and the function h is called the poten-
tial function. Ricci soliton was further studied by many researchers. For
more details, we refer ([14], [16], [20], [21]) and their references.

Definition 1.1. A Riemannian manifold M is said to be symmetric if
its curvature tensor R satisfies the condition

(∇WR) (X,Y )Z = 0,
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for all vector fields X,Y, Z,W on M.

Definition 1.2. A Riemannian manifoldM is called locally φ-symmetric
if its curvature tensor R satisfies the condition

φ2 (∇WR) (X,Y )Z = 0,

for all vector fields X,Y, Z,W on M which are orthogonal to the struc-
ture tensor field of the manifold.

Definition 1.3. A non-flat Riemannian manifold M (n > 2) is said to
be φ-pseudo symmetric if its curvature tensor R satisfies
φ2 (∇WR) (X,Y )Z = 2A (W )R (X,Y )Z +A (X)R (W,Y )Z

+A (Y )R (X,W )Z +A (Z)R (X,Y )W + g (R (X,Y )Z,W ) ρ,
where A is a non-zero associated 1-form, ρ is a vector field defined by

g (W,ρ) = A (W ) for every vector field W and ∇ denotes the operator
of covariant differentiation with respect to the metric g.

Definition 1.4. A non-flat Riemannian manifold M (n > 2) is called
generalized Ricci-recurrent manifold if its Ricci tensor S satisfies the
condition

(∇XS) (Y,Z) = A (X)S (Y,Z) +B (X) g (Y,Z) ,

where A and B are two non-zero 1-forms. Such a manifold shall be
denoted by GRn.

Definition 1.5. A Riemannian manifold M is said to be pseudo Ricci
symmetric if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the relation

(∇XS) (Y,Z) = 2A (X)S (Y,Z) +A (Y )S (X,Z) +A (Z)S (X,Y ) ,

where A is a non-zero associated 1-form, ρ is a vector field defined by
g (X, ρ) = A (X) for every vector field X on M .

The paper is organized as follows:
Section-1 and Section-2 are kept for indroduction and preliminar-

ies. In Section-3 we introduce Zamkovoy connection on para-Kenmotsu
manifold. In Section-4, we have discussed para-Kenmotsu manifold ad-
mitting Zamkovoy connection and obtained Riemannian curvature ten-
sor R∗, Ricci tensor S∗, scalar curvature r∗, Ricci operator Q∗ with
respect to Zamkovoy connection. Section-5 concerns with locally φ-
symmetric para-Kenmotsu manifold with respect to the connection ∇∗.
Section-6 contains the study of Ricci Soliton on para-Kenmotsu man-
ifold with respect to Zamkovoy connection. In Section-7, we have
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discussed φ-pseudo-symmetric para-Kenmotsu manifold with respect to
Zamkovoy connection. Section-7 concerns with Wi-curvature tensors
with respect to Zamkovoy connection on para-Kenmotsu manifold.

2. Preliminaries

Let M be an n-dimensional differentiable manifold with an almost
para-contact metric structure (φ, ξ, η, g) , where ϕ is a (1, 1) tensor field,
ξ is a vector field, η is a a 1-form and g is a pseudo-Riemannian metric
such that

ϕ2X = X − η (X) ξ, η(ξ) = 1, η (ϕX) = 0, ϕξ = 0,(2.1)

g (ϕX,ϕY ) = −g (X,Y ) + η (X) η (Y ) ,(2.2)

g (X,ϕY ) = −g (ϕX, Y ) , g (X, ξ) = η (X) ,(2.3)

for all vector fields X,Y on M.
If an almost paracontact metric manifold satisfies

(2.4) (∇Xϕ)Y = g (φX, Y ) ξ − η (Y )φX,

for all vector fieldsX,Y onM, thenM is called almost para-Kenmotsu
manifold. A normal almost para-Kenmotsu manifold is said to be para-
Kenmotsu manifold. The para-Kenmotsu structure for 3-dimensional
normal almost para-contact metric structures was introduced by J. We-
lyczko [23].

Also for an n-dimensional para-Kenmotsu manifold M , following re-
lations hold

∇Xξ = X − η (X) ξ,(2.5)

(∇Xη)Y = g (X,Y )− η (X) η (Y ) ,(2.6)

R (X,Y ) ξ = η (X)Y − η (Y )X,(2.7)

R(ξ,X)Y = η (Y )X − g(X,Y )ξ,(2.8)

η (R (X,Y )Z) = g(X,Z)η (Y )− g (Y,Z) η (X) ,(2.9)

S (X, ξ) = − (n− 1) η (X) ,(2.10)

Qξ = − (n− 1) ξ,(2.11)

where R is the Riemannian curvature tensor, S is Ricci tensor and Q
is Ricci operator.
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3. Zamkovoy connection on para-Kenmotsu manifold

Lemma 3.1. The relation between Zamkovoy connection (∇∗) and Levi-
Civita connection (∇) on para-Kenmotsu manifold is given by

(3.1) ∇∗
XY = ∇XY + g (X,Y ) ξ − η (Y )X + η (X)φY,

with torsion tensor

(3.2) T ∗ (X,Y ) = η (X)Y − η (Y )X + η (X)φY − η (Y )φX,

Proof. In view of (1.1) and (2.6), we have

(3.3) (∇∗
Xg) (Y, Z) = 0.

Suppose that the Zamkovoy connection∇∗ defined on an n-dimensional
para-Kenmotsu manifold M is connected with the Levi-Civita connec-
tion ∇ by the relation

(3.4) ∇∗
XY = ∇XY + P (X,Y ) ,

where P (X,Y ) is a tensor field of type (1, 1). Then, by definition of
torsion tensor we have

(3.5) T ∗ (X,Y ) = P (X,Y )− P (Y,X) .

Due to (3.3), Zamkovoy connection is a metric connection and hence
from (3.5), we get

(3.6) g (P (X,Y ) , Z) + g (P (X,Z) , Y ) = 0.

In view of (3.5) and (3.6), we get

g (T ∗ (X,Y ) , Z) + g (T ∗ (Z,X) , Y ) + g (T ∗ (Z, Y ) , X)

= g (P (X,Y ) , Z)− g (P (Y,X) , Z) + g (P (Z,X) , Y )

−g (P (X,Z) , Y ) + g (P (Z, Y ) , X)− g (P (Y,Z) , X)

= 2g (P (X,Y ) , Z) .(3.7)

Setting

g (T ∗ (Z,X) , Y ) = g
(
T (X,Y ) , Z

)
,

g (T ∗ (Z, Y ) , X) = g
(
T (Y,X) , Z

)
,(3.8)

and using (3.8) in (3.7), we get
(3.9)
g (T ∗ (X,Y ) , Z) + g

(
T (X,Y ) , Z

)
+ g

(
T (Y,X) , Z

)
= 2g (P (X,Y ) , Z)

which implies that

(3.10) P (X,Y ) =
1

2

[
T ∗ (X,Y ) + T (X,Y ) + T (Y,X)

]
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From (3.2) and (3.8), we have

T (X,Y ) = g (X,Y ) ξ − η (X)Y(3.11)

−g (X,φY ) ξ + η (X)φY.

T (Y,X) = g (Y,X) ξ − η (Y )X(3.12)

−g (Y, φX) ξ + η (Y )φX.

Using (3.2), (3.11) and (3.12) in (3.10), we have

(3.13) P (X,Y ) = g (X,φY ) ξ − η (Y )φX + η (X)φY.

In view of (3.4) and (3.13), we can easily bring out the equation
(3.1). Hence the linear connection ∇∗ defined on an n-dimensional para-
Kenmotsu manifold is a metric connection with torsion tensor given by
equation (3.2). �

Proposition 3.2. Zamkovoy connection on para-Kenmotsu manifold is
a metric compatible linear connection and its torsion is of the form

T ∗ (X,Y ) = η (X)Y − η (Y )X + η (X)φY − η (Y )φX.

Proposition 3.3. In a para-Kenmotsu manifold , the structure vector
field ξ, 1-form η and the metric g are parallel with respect to Zamkovoy
connection.

Proof. From the equation (3.3), it is obvious that

(3.14) ∇∗
Xξ = 0, (∇∗

Xη)Y = 0.

�

Proposition 3.4. In a para-Kenmotsu manifold, the integral curve of
ξ is a geodesic with respect to Zamkovoy connection.

4. Some properties of para-Kenmotsu manifold with respect
to Zamkovoy connection

Let R∗ be the Riemannian curvature tensor with respect to Zamkovoy
connection and it is defined as

(4.1) R∗ (X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y∇∗

XZ −∇∗
[X,Y ]Z.

By the help of (2.4), (2.5), (2.6), (3.1) and (3.14) we get the followings:
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∇∗
X (φZ) = g (φX,Z) ξ − η (Z)φX + φ (∇XZ)

+g (X,φZ) ξ + η (X)Z − η (X) η (Z) ξ.(4.2)

∇∗
Xg (Y,Z) = g (∇XY,Z) + g (Y,∇XZ)(4.3)

∇∗
Xη (Y ) = g (X,φY ) + η (∇XY )(4.4)

In reference to (3.1), (4.2), (4.3) and (4.4) we have

∇∗
X∇∗

Y Z

= ∇X∇Y Z + g (X,∇Y Z) ξ − η (∇Y Z)X

+η (X)φ∇Y Z + g (∇XY,Z) ξ + g (Y,∇XZ) ξ

−g (X,Z)Y − η (∇XZ)Y + η (X) η (Z)Y −∇XY η (Z)

−g (X,Y ) η (Z) ξ + η (Y ) η (Z)X − η (X) η (Z)φY

+g (X,Y )φZ + η (∇XY )φZ − η (X) η (Y )φZ + φ (∇XZ) η (Y )

−η (Z) η (Y )φX + η (X) η (Y )Z − η (X) η (Y ) η (Z) ξ.(4.5)

Also,

∇∗
[X,Y ]Z = ∇[X,Y ]Z + g (∇XY,Z) ξ − g (∇YX,Z) ξ

−η (Z)∇XY + η (Z)∇YX + η (∇XY )φZ − η (∇YX)φZ.(4.6)

Interchanging X and Y in (4.5) and using it along with the equations
(4.5) and (4.6) in (4.1), we get

(4.7) R∗ (X,Y )Z = R (X,Y )Z − g (X,Z)Y + g (Y,Z)X.

Taking inner product of (4.7) with V , we obtain
(4.8)
R∗ (X,Y, Z, V ) = R (X,Y, Z, V )− g (X,Z) g (Y, V ) + g (Y,Z) g (X,V ) .

Taking an orthnornal frame of M and contracting (4.8) over X and V,
we get

(4.9) S∗ (Y,Z) = S (Y,Z) + (n− 1) g (Y,Z) .

Consequently, one can easily bring out the followings:

S∗ (ξ, Z) = S∗ (Z, ξ) = 0,(4.10)

Q∗Y = QY + (n− 1)Y,Q∗ξ = 0,(4.11)

R∗ (X,Y ) ξ = R∗ (ξ, Y )Z = R∗ (X, ξ)Z = 0,(4.12)

r∗ = r + n (n− 1) .(4.13)
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Proposition 4.1. Let M be an n-dimensional para-Kenmotsu manifold
admitting Zamkovoy connection ∇∗, Then

(i) The curvature tensor R∗ with respect to ∇∗ is given by (4.7),
(ii) The Ricci tensor S∗ with respect to ∇∗ is given by (4.9),
(iii) The scalar curvature r∗ with respect to ∇∗ is given by (4.13)
(iv) The Ricci tensor S∗ with respect to ∇∗ is symmetric.
(v) R∗ (X,Y )Z +R∗ (Y,Z)X +R∗ (Z,X)Y = 0.

Proposition 4.2. The sectional curvature of a flat para-Kenmotsu man-
ifold with respect to Zamkovoy connection is (-1).

Proof. Let M be flat with respect to ∇∗, then (4.7) gives

R (X,Y )Z = − [g (Y, Z)X − g (X,Z)Y ] .

which shows that M is a para-Kenmotsu manifold of sectional curvature
(-1). �

Proposition 4.3. The para-Kenmotsu manifold M is flat with respect
to Zamkovoy connection iff M is locally isometric to the hyperbolic space
Hn (−1) .

Proposition 4.4. If the para-Kenmotsu manifold M is Ricci flat with
respect to Zamkovoy connection then M is an Einstein manifold.

Proof. Let M be Ricci flat with respect to ∇∗, then (4.9) gives

S (Y,Z) = − (n− 1) g (Y,Z) ,

which shows that M is an Einstein manifold. �

5. Locally φ-symmetric para-Kenmotsu manifold with
respect to the Zamkovoy connection

Theorem 5.1. An n-dimensional para-Kenmotsu manifold is locally φ-
symmetric with respect to Zamkovoy connection if and only if it is so
with respect to Levi-Civita connection.

Proof. LetM be an n-dimensional generalized φ-recurrent para-Kenmotsu
manifold with respect to the Zamkovoy connection, then curvature ten-
sor R∗ satisfies the condition

(5.1) φ2 (∇∗
WR

∗) (X,Y )Z = 0,

for all horizontal vector fields X,Y, Z,W of M.
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By virtue of (3.1), we have

(∇∗
WR

∗) (X,Y )Z = ∇∗
WR

∗ (X,Y )Z −R∗ (∇∗
WX,Y )Z

−R∗ (X,∇∗
WY )Z −R∗ (X,Y )∇∗

WZ.(5.2)

Using (3.1), (4.7), in (5.2), we get

(∇∗
WR

∗) (X,Y )Z

= (∇WR) (X,Y )Z + g (W,R (X,Y )Z) ξ

−g (X,Z) g (W,Y ) ξ + g (Y,Z) g (W,X) ξ − η (R (X,Y )Z)W

−g (X,Z) η (Y )W + g (Y,Z) η (X)W + η (W )φR (X,Y )Z

−η (W ) g (X,Z)φY + η (W ) g (Y,Z)φX + η (X)R (W,Y )Z

−g (W,Z) η (X)Y + g (Y,Z) η (X)W − η (W )R∗ (φX, Y )Z

+g (φX,Z) η (W )Y − g (Y,Z) η (W )φX + η (Y )R∗ (X,W )Z

−g (X,Z) η (Y )W + g (W,Z) η (Y )X − η (W )R∗ (X,φY )Z

+g (X,Z) η (W )φY − g (φY,Z) η (W )X + η (Z)R (X,Y )W

−g (X,W ) η (Z)Y + g (Y,W ) η (Z)X − η (W )R (X,Y )φZ

+g (X,φZ) η (W )Y − g (Y, φZ) η (W )X.(5.3)

Applying φ2 on both sides of (5.3) and using (2.1) and cosideringX,Y, Z,W
to be horizontal vector fields, i.e., orthogonal to ξ, we get

φ2 ((∇∗
WR

∗) (X,Y )Z) = φ2 ((∇WR) (X,Y )Z) ,

which shows that M is locally φ-symmetric with respect to Zamkovoy
connection if and only if it is so with respect to Levi-Civita connection.

�

6. Ricci Soliton on para-Kenmotsu manifold with respect
to Zamkovoy connection.

Theorem 6.1. A Ricci soliton (g, V, λ) with respect to Zamkovoy con-
nection and Levi-Civita connection is equivalent if and only if the rela-
tion

2g (Y,Z) η (V ) = g (φV,Z) η (Y )

+g (φV, Y ) η (Z) + 2 (n− 1) g (Y, Z) ,

holds for arbitrary vector fields Y,Z, V ∈ χ (M) .
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Proof. For a Ricci soliton (g, V, λ) , the equation (1.3) can be written in
terms of Zamkovoy connection as

(6.1) (L∗
V
g) (Y, Z) + 2S∗ (Y,Z) + 2λg (Y,Z) = 0,

for all Y, Z, V ∈ χ (M) , where L∗
V

denotes the Lie derivative operator
with respect to ∇∗ along the vector field V.

Using (3.1) and (4.9) in ( 6.1), we get

(L∗
V
g) (Y,Z) + 2S∗ (Y, Z) + 2λg (Y, Z)

= g (∇∗
Y V,Z) + g (∇∗

ZV, Y ) + 2S∗ (Y, Z) + 2λg (Y, Z)

= (LV g) (Y,Z) + 2S (Y,Z) + 2λg (Y, Z)− 2g (Y,Z) η (V )

+g (φV,Z) η (Y ) + g (φV, Y ) η (Z) + 2 (n− 1) g (Y,Z) .(6.2)

This gives the theorem. �

Theorem 6.2. If a para-Kenmotsu manifold M is Ricci flat with respect
to Zamkovoy connection then the Ricci soliton (g, ξ, λ) is always steady.

Proof. Considering a Ricci soliton (g, ξ, λ) on M it follows from (6.1)
that

0 = (L∗
ξ
g) (Y,Z) + 2S∗ (Y,Z) + 2λg (Y, Z)

= g (∇∗
Y ξ, Z) + g (∇∗

Zξ, Y ) + 2S∗ (Y,Z) + 2λg (Y, Z)

= S∗ (Y,Z) + λg (Y,Z) .(6.3)

Now, if M is Ricci flat with respect to Zamkovoy connection then (6.3)
gives

λ = 0.

Therefore, the Ricci soliton (g, ξ, λ) is steady on M. �

7. φ-pseudo symmetric para-Kenmotsu manifold with
respect to Zamkovoy connection.

Theorem 7.1. A φ-pseudo-symmetric para-Kenmotsu manifold with re-
spect to Zamkovoy connection is pseodo-Ricci symmetric with respect to
Zamkovoy connection if and only if

A (R∗ (W,Y )Z) +A (R∗ (Z,W )Y ) = 0.
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Proof. Let M be φ-pseudo symmetric para-Kenmotsu manifold with
respect to Zamkovoy connection, then

φ2 (∇∗
WR

∗) (X,Y )Z = 2A (W )R∗ (X,Y )Z

+A (X)R∗ (W,Y )Z +A (Y )R∗ (X,W )Z

+A (Z)R∗ (X,Y )W + g (R∗ (X,Y )Z,W ) ρ,(7.1)

where A is a non zero associated 1-form, ρ is a vector field defined by
g (W,ρ) = A (W ) for every vector field W and ∇ denotes the operator
of covariant differentiation with respect to the metric g.

Using (2.1) in (7.1), we get

(∇∗
WR

∗) (X,Y )Z = η ((∇∗
WR

∗) (X,Y )Z) ξ + 2A (W )R∗ (X,Y )Z

+A (X)R∗ (W,Y )Z +A (Y )R∗ (X,W )Z

+A (Z)R∗ (X,Y )W + g (R∗ (X,Y )Z,W ) ρ.(7.2)

Taking inner product of (7.2) with a vector field V, we obtain

g ((∇∗
WR

∗) (X,Y )Z, V )

= η ((∇∗
WR

∗) (X,Y )Z) η (V ) + 2A (W ) g (R∗ (X,Y )Z, V )

+A (X) g (R∗ (W,Y )Z, V ) +A (Y ) g (R∗ (X,W )Z, V )

+A (Z) g (R∗ (X,Y )W,V ) + g (R∗ (X,Y )Z,W ) g (ρ, V ) .(7.3)

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at
any point of the manifold M . Setting X = V = ei in (7.3) and taking
summation over i (1 ≤ i ≤ n) and then using (2.1) in (7.3), we get

(∇∗
WS

∗) (Y, Z)

= g ((∇∗
WR

∗) (ξ, Y )Z, ξ)

+2A (W )S∗ (Y, Z) +A (R∗ (W,Y )Z) +A (Y )S∗ (W,Z)

+A (Z)S∗ (W,Y ) +A (R∗ (Z,W )Y ) .(7.4)

By virtue of (4.12) it follows from (7.4) that

(∇∗
WS

∗) (Y,Z) = 2A (W )S∗ (Y, Z)

+A (Y )S∗ (W,Z) +A (Z)S∗ (W,Y )

+A (R∗ (W,Y )Z) +A (R∗ (Z,W )Y ) .(7.5)

Therefore, M is pseudo-Ricci-symmetric with respect to Zamkovoy con-
nection if and only if

A (R∗ (W,Y )Z) +A (R∗ (Z,W )Y ) = 0.

�
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8. Wi-curvature tensor with respect to Zamkovoy
connection on para-Kenmotsu manifold.

The Wi-curvature tensors (i = 0, 1, 2...9) are defined as a particular
case of τ -Tensor introduced by M. M. Tripathi and P. Gupta [22]. Some
of the Wi-curvature tensors were formerly introduced by Pokhariyal [15].
The Wi-curvature tensor (i = 1, 2...9) of rank three is defined as

Wi (X,Y )Z = a0R (X,Y )Z + a1S (Y, Z)X

+a2S (X,Z)Y + a3S (X,Y )Z + a4g (Y,Z)QX

+a5g (X,Z)QY + a6g (X,Y )QZ,(8.1)

for all X,Y, Z ∈ χ (M) , where R,S and Q are Riemannian curvature
tensor, Ricci tensor and Ricci operator respectively. The expressions for
W0,W1....W9 curvature tensors are given by

V alue of ai Expressions for Wi − curvature tensors
a0= 1, a1= −a5= − 1

n−1
all other ai = 0

W0(X,Y )Z = R(X,Y )Z
− 1

n−1 [S(Y,Z)X − g(X,Z)QY ]

a0= 1, a1= −a2= 1
n−1

all other ai = 0

W1(X,Y )Z = R(X,Y )Z
+ 1

n−1 [S(Y, Z)X − S(X,Z)Y ]

a0= 1, a4= −a5= − 1
n−1

all other ai = 0

W2(X,Y )Z = R(X,Y )Z
− 1

n−1 [g(Y, Z)QX − g(X,Z)QY ]

a0= 1, a2= −a4= − 1
n−1

all other ai = 0

W3(X,Y )Z = R(X,Y )Z
− 1

n−1 [S(X,Z)Y − g(Y,Z)QX]

a0= 1, a5= −a6= 1
n−1

all other ai = 0

W4(X,Y )Z = R(X,Y )Z
+ 1

n−1 [g(X,Z)QY − g(X,Y )QZ]

a0= 1, a2= −a5= − 1
n−1

all other ai = 0

W5(X,Y )Z = R(X,Y )Z
− 1

n−1 [S(X,Z)Y − g(X,Z)QY ]

a0= 1, a1= −a6= − 1
n−1

all other ai = 0

W6(X,Y )Z = R(X,Y )Z
− 1

n−1 [S(Y,Z)X − g(X,Y )QZ]

a0= 1, a1= −a4= − 1
n−1

all other ai = 0

W7(X,Y )Z = R(X,Y )Z
− 1

n−1 [S(Y,Z)X − g(Y,Z)QX]

a0= 1, a1= −a3= − 1
n−1

all other ai = 0

W8(X,Y )Z = R(X,Y )Z
− 1

n−1 [S(Y, Z)X − S(X,Y )Z]

a0= 1, a3= −a4= 1
n−1

all other ai = 0

W9(X,Y )Z = R(X,Y )Z
+ 1

n−1 [S(X,Y )Z − g(Y,Z)QX]

Theorem 8.1. An n-dimensional Wi-flat para-Kenmotsu manifold with
respect to Zamkovoy connection is an Einstein manifold for i 6= 6.
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Proof. The Wi-curvature tensor with respect to Zamkovoy connection is
given by

W ∗
i (X,Y )Z

= a0R
∗ (X,Y )Z + a1S

∗ (Y,Z)X

+a2S
∗ (X,Z)Y + a3S

∗ (X,Y )Z + a4g (Y, Z)Q∗X

+a5g (X,Z)Q∗Y + a6g (X,Y )Q∗Z,(8.2)

for all X,Y, Z ∈ χ (M) , where R∗, S∗ and Q∗ are Riemannian curva-
ture tensor, Ricci tensor and Ricci operator with respect to Zamkovoy
connection respectively. If M is Wi-flat with respect ∇∗ then (8.2) gives

0 = a0R
∗ (X,Y )Z + a1S

∗ (Y,Z)X

+a2S
∗ (X,Z)Y + a3S

∗ (X,Y )Z + a4g (Y,Z)Q∗X

+a5g (X,Z)Q∗Y + a6g (X,Y )Q∗Z.(8.3)

Taking inner product of (8.3) with a vector field V , we get

0 = a0g (R∗ (X,Y )Z, V ) + a1S
∗ (Y,Z) g (X,V )

+a2S
∗ (X,Z) g (Y, V ) + a3S

∗ (X,Y ) g (Z, V )

+a4g (Y,Z)S∗ (X,V ) + a5g (X,Z)S∗ (Y, V )

+a6g (X,Y )S∗ (Z, V ) .(8.4)

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at
any point of the manifold M . Setting X = V = ei in (8.4) and taking
summation over i (1 ≤ i ≤ n), we get

(8.5) 0 = (a0 + na1 + a2 + a3 + a5 + a6)S∗ (Y, Z) + r∗a4g (Y, Z) .

Using (4.9) and (4.13) in (8.5), we obtain

(8.6) S (Y,Z) = −1

a
[ra4 + (a+ na4) (n− 1)] g (Y,Z) ,

where, a = a0 + na1 + a2 + a3 + a5 + a6 and a = 0 if i = 6.
Therefore, M is an Einstein manifold. �

Corollary 8.2. The expressions for Ricci tensors for different Wi-flat
para-Kenmotsu manifolds are as follows:
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Type of flat Manifold Ricci Tensor
W∗

0 -flat S (Y,Z) = − (n− 1) g (Y,Z) ,
W∗

1 -flat S (Y,Z) = − (n− 1) g (Y,Z) ,
W∗

2 -flat S (Y,Z) = r
ng (Y,Z) ,

W∗
3 -flat S (Y,Z) = − 1

n−2

[
2 (n− 1)2 + r

]
g (Y,Z) ,

W∗
4 -flat S (Y,Z) = − (n− 1) g (Y,Z) ,
W∗

5 -flat S (Y,Z) = − (n− 1) g (Y,Z) ,
W∗

6 -flat Indeterminate
W∗

7 -flat S (Y,Z) = rg (Y, Z) ,
W∗

8 -flat Indeterminate
W∗

9 -flat S (Y,Z) = r
ng (Y,Z) .

Proof. The above expressions for Ricci tensors are obtained directly from
equation (8.6). �

Theorem 8.3. An n-dimensional Wi-flat symmetric para-Kenmotsu
manifold with respect to Zamkovoy connection is of constant scalar cur-
vature for i = 2, 3, 7, 9.

Proof. If M is symmetric with respect to Zamkovoy connection, i.e.,
(∇∗

UR
∗) (X,Y )Z = 0, then from (8.3) we get

0 = a1 (∇∗
US

∗) (Y, Z)X + a2 (∇∗
US

∗) (X,Z)Y

+a3 (∇∗
US

∗) (X,Y )Z + a4g (Y, Z) (∇∗
UQ

∗)X

+a5g (X,Z) (∇∗
UQ

∗)Y + a6g (X,Y ) (∇∗
UQ

∗)Z.(8.7)

Taking Inner product of (8.7) with a vector field V , we get

0 = a1 (∇∗
US

∗) (Y, Z) g (X,V ) + a2 (∇∗
US

∗) (X,Z) g (Y, V )

+a3 (∇∗
US

∗) (X,Y ) g (Z, V ) + a4g (Y,Z) (∇∗
US

∗) (X,V )

+a5g (X,Z) (∇∗
US

∗) (Y, V ) + a6g (X,Y ) (∇∗
US

∗) (Z, V ) .(8.8)

Let {ei} (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at
any point of the manifold M . Setting X = V = ei in (8.8) and taking
summation over i (1 ≤ i ≤ n), we get

(8.9) 0 = (a1n+ a2 + a3 + a5 + a6) (∇∗
US

∗) (Y,Z) + a4g (Y,Z)∇∗
Ur

∗.

Setting Z = ξ and using (4.10), (4.13) in (8.9) we get

U (r) = 0.

for a4 6= 0, i.e., i = 2, 3, 7, 9. Therefore, M is a space of constant curva-
ture. �
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9. Conclusion

In this paper, Zamkovoy connection has been introduced and studied
on para-Kenmotsu manifold. Some properties of para-kenmotsu mani-
fold by the help of Wi-curvature tensor and Zamkovoy connection has
been studied. It is also investigated that the Ricci solition on a Ricci
flat para-Kenmotsu manifold with respect to Zamkovoy connection is
always steady.

There is a huge scope of further study of para-Kenmotsu manifold
by the help of different curvature tensors with respect to Zamkovoy
connection.
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