Journal of Hyperstructures 11 (1) (2022), 65-83. ISSN: 2322-1666 print/2251-8436 online

GENERALIZATIONS OF PRIME SUBMODULES OVER NON-COMMUTATIVE RINGS

EMEL ASLANKARAYIGIT UGURLU

ABSTRACT. Throughout this paper, R is an associative ring (not necessarily commutative) with identity and M is a right R-module with unitary. In this paper, we introduce a new concept of ϕ prime submodule over an associative ring with identity. Thus we define the concept as following: Assume that S(M) is the set of all submodules of M and $\phi : S(M) \to S(M) \cup \{\emptyset\}$ is a function. For every $Y \in S(M)$ and ideal I of R, a proper submodule X of M is called ϕ -prime, if $YI \subseteq X$ and $YI \nsubseteq \phi(X)$, then $Y \subseteq X$ or $I \subseteq (X :_R M)$. Then we examine the properties of ϕ -prime submodules and characterize it when M is a multiplication module.

Key Words: φ-prime Submodule, Non-commutative Ring, Multiplication Module.
2010 Mathematics Subject Classification: Primary: 16P40; Secondary: 13A15, 16D60.

1. INTRODUCTION

Throughout this paper, R is an associative ring (unless otherwise stated, not necessarily commutative) with identity and M is a right Rmodule with unitary. Suppose that M is an R-module, S(M) and S(R)are the set of all submodules of M, the set of all ideals of R, respectively. For an ideal A of R, we denote the set $\{t \in M : tA \subseteq X\}$ as $(X :_M A)$. One clearly proves that $(X :_M A) \in S(M)$ and $X \subseteq (X :_M A)$. Also, for two subsets X and Y of M, the subset $\{r \in R : Xr \subseteq Y\}$ of R is denoted by $(Y :_R X)$. If Y is a submodule of M, then it is obviously

Received: 27 March 2022, Accepted: 28 April 2022. Communicated by Ahmad Yousefian Darani;

^{*}Address correspondence to Emel Aslankarayigit Ugurlu E-mail: emelakyugurlu@gmail.com © 2022 University of Mohaghegh Ardabili.

⁶⁵

proved that for any subset X of M, the set $(Y :_R X)$ is a right ideal of R. It is obtained $(Y :_R X)$ is an ideal of R for $X, Y \in S(M)$, see [15]. Thus, clearly one can see that $(X :_R M)$ is an ideal of R, for all $X \in S(M)$.

A proper ideal A of a commutative ring R is prime if whenever $a_1, a_2 \in R$ with $a_1a_2 \in A$, then $a_1 \in A$ or $a_2 \in A$, [7]. In 2003, the authors [3] said that if whenever $a_1, a_2 \in R$ with $0_R \neq a_1a_2 \in A$, then $a_1 \in A$ or $a_2 \in A$, a proper ideal A of a commutative ring R is weakly prime. In [9], Bhatwadekar and Sharma defined a proper ideal A of an integral domain R as almost prime (resp. n-almost prime) if for $a_1, a_2 \in R$ with $a_1a_2 \in A - A^2$, (resp. $a_1a_2 \in A - A^n, n \geq 3$) then $a_1 \in A$ or $a_2 \in A$. This definition can be made for any commutative ring R. Later, Anderson and Batanieh [2] introduced a concept which covers all the previous definitions in a commutative ring R as following: Let $\phi: S(R) \to S(R) \cup \{\emptyset\}$ be a function. A proper ideal A of a commutative ring $a_1 \in A - \phi(A)$, then $a_1 \in A$ or $a_2 \in A$.

The notion of the prime ideal in a commutative ring R is extended to modules by several studies, [10, 12, 13]. For a commutative ring R, a proper $X \in S(M)$ is said to be prime [1], if $ma \in X$, then $m \in X$ or $a \in (X :_R M)$, for $a \in R$ and $m \in M$. In [6], the authors introduced weakly prime submodules over a commutative ring R as following: A proper submodule X of M is called weakly prime if for $r \in R$ and $m \in M$ with $0_M \neq mr \in X$, then $m \in X$ or $r \in (X :_R M)$. Then, N. Zamani [16] introduced the concept of ϕ -prime submodules over a commutative ring R as following: Let $\phi : S(M) \to S(M) \cup \{\emptyset\}$ be a function. A proper submodule X of an R-module M is said to be ϕ -prime if $r \in R$, $m \in M$ with $mr \in X - \phi(X)$, then $m \in X$ or $r \in (X :_R M)$. He defined the map $\phi_{\alpha} : S(M) \to S(M) \cup \{\emptyset\}$ as follows:

- (1) $\phi_{\emptyset} : \phi(X) = \emptyset$ defines prime submodules.
- (2) $\phi_0: \phi(X) = \{0_M\}$ defines weakly prime submodules.
- (3) $\phi_2 : \phi(X) = X(X :_R M)$ defines almost prime submodules.
- (4) $\phi_n : \phi(X) = X(X :_R M)^{n-1}$ defines *n*-almost prime submodules $(n \ge 2).$
- (5) $\phi_{\omega}: \phi(X) = \bigcap_{n=1}^{\infty} X(X:_R M)^n$ defines ω -prime submodules.
- (6) $\phi_1 : \phi(X) = X$ defines any submodule.

On the other hand, in [8], P. Karimi Beiranvand and R. Beyranvand introduced the almost prime and weakly prime submodules over R (not necessarily commutative) as following: A proper submodule X of an

R-module *M* is called *almost prime*, for any ideal *I* of *R* and any submodule *Y* of *M*, if $YI \subseteq X$ and $YI \notin X(X :_R M)$, then $Y \subseteq X$ or $I \subseteq (X :_R M)$. Also, *X* is called *weakly prime*, for any ideal *I* of *R* and any submodule *X* of *M*, if $0_M \neq YI \subseteq X$, then $Y \subseteq X$ or $I \subseteq (X :_R M)$. In the mentioned study, they obtain some important results on the two submodules over *R*.

In any non-commutative ring, T. Y. Lam [11] proved that an ideal A of R is a prime ideal (i.e., for two ideals I_1, I_2 of $R, I_1I_2 \subseteq A$ implies $I_1 \subseteq A$ or $I_2 \subseteq A$) \iff for $a_1, a_2 \in R, a_1a_2 \in A$ implies $a_1 \in A$ or $a_2 \in A$. Similarly, for any module over any non-commutative ring, J. Dauns [10] showed that for M over R, a proper $X \in S(M)$ is prime (i.e., if $mRa \subseteq X$, then $m \in X$ or $a \in (X :_R M)$, for $a \in R$ and $m \in M$) \iff for an ideal A of R and for a submodule Y of $M, YA \subseteq X$ implies $Y \subseteq X$ or $A \subseteq (X :_R M)$.

Moreover, note that in commutative ring theory, we know that there is a relation between prime ideals and multiplicatively closed sets. Similarly, in *non-commutative ring theory*, there is a relation between prime ideals and *m-system* sets. In [11], one can see that if for all $x, y \in S$, there exists $a \in R$ with $xay \in S$, then $\emptyset \neq S \subseteq R$ is called an *m*-system. Also, T. Y. Lam [11] defined the radical of an ideal A of R as: $\sqrt{A} = \{s \in R :$ every *m*-system containing s meets $A\} \subseteq \{s \in R : s^n \in A \text{ for some} n \geq 1\}$. Then he proved that \sqrt{A} equals the intersection of all prime ideals containing A and \sqrt{A} is an ideal, see, (10.7) Theorem in [11].

Our aim in this paper, similar to [8], to introduce the concept of ϕ prime submodule over an associative ring (not necessarily commutative) with identity. For this purpose, we define a ϕ -prime submodules over R. In Section 2, after the introducing of ϕ -prime submodules over R, in Theorem 2.5, we characterize a ϕ -prime submodule. Then with Theorem 2.6, we give another equivalent definitions for ϕ -prime submodule. Also, in the section some properties of the submodules are examined. In Theorem 2.17, another characterization of ϕ -prime submodule is obtained. In Section 3, after a reminder about multiplication module, it is shown that X is ϕ -prime $\iff Y_1Y_2 \subseteq X$ and $Y_1Y_2 \not\subseteq \phi(X)$ implies $Y_1 \subseteq X$ or $Y_2 \subseteq X$, for $Y_1, Y_2 \in S(M)$, see Corollary 3.2. Moreover, in Theorem 3.3, for a multiplication module, under some conditions we prove that X is ϕ -prime in $M \iff (X :_R M)$ is a ψ -prime ideal in R. In Section 4, with Definition 4.1, we introduce a new concept which is called ϕ -m-system. Then we show that in Proposition 4.2, for $X \in S(M)$, X is ϕ -prime $\iff S = M - X$ is a ϕ -m-system. Also, we examine some properties of the ϕ -m-system. Finally, with Definition 4.6, we introduce the radical of Y as $\sqrt{Y} := \{x \in M : \text{every } \phi$ -m-system S containing x such that $\phi(Y) = \phi(\langle S^c \rangle)$ meets Y}, otherwise $\sqrt{Y} := M$, where $S^c = M - S$. As a final result, for the set $\Omega := \{X_i \in S(M) : X_i \text{ is} \phi$ -prime with $Y \subseteq X_i$ and $\phi(Y) = \phi(X_i)$, for $i \in \Lambda$ }, it is obtained that $\sqrt{Y} = \bigcap_{X_i \in \Omega} X_i$, see Theorem 4.7.

2. Properties of ϕ -Prime submodules

Throughout our study, assume that $\phi : S(M) \to S(M) \cup \{\emptyset\}$ is a function.

Definition 2.1. For every $Y \in S(M)$ and $I \in S(R)$, a proper $X \in S(M)$ is said to be ϕ -prime, if $YI \subseteq X$ and $YI \nsubseteq \phi(X)$, then $Y \subseteq X$ or $I \subseteq (X :_R M)$. We defined the map $\phi_{\alpha} : S(M) \to S(M) \cup \{\emptyset\}$ as follows:

- (1) $\phi_{\emptyset} : \phi(X) = \emptyset$ defines prime submodules.
- (2) $\phi_0: \phi(X) = \{0_M\}$ defines weakly prime submodules.
- (3) $\phi_2: \phi(X) = X(X:_R M)$ defines almost prime submodules.
- (4) $\phi_n: \phi(X) = X(X:_R M)^{n-1}$ defines *n*-almost prime submodules $(n \ge 2)$.
- (5) $\phi_{\omega}: \phi(X) = \bigcap_{n=1}^{\infty} X(X:_R M)^n$ defines ω -prime submodules.
- (6) $\phi_1: \phi(X) = X$ defines any submodule.

In the above definition, if we consider $\phi : S(R) \to S(R) \cup \{\emptyset\}$, we obtain the concept of ϕ -prime ideal in an associative ring (not necessarily commutative) with identity as following: For every $I, J \in S(R)$, a proper $A \in S(R)$ is said to be ϕ -prime, if $IJ \subseteq A$ and $IJ \nsubseteq \phi(A)$, then $I \subseteq A$ or $J \subseteq A$. For commutative case, this definition is equivalent to the definition of ϕ -prime ideal in a commutative ring, see the Theorem 13 in [2].

Notice that since $X - \phi(X) = X - (X \cap \phi(X))$, for any submodule X of M, without loss of generality, suppose $\phi(X) \subseteq X$. Let $\psi_1, \psi_2 : S(M) \to S(M) \cup \{\emptyset\}$ be two functions, if $\psi_1(X) \subseteq \psi_2(X)$ for each $X \in S(M)$, we denote $\psi_1 \leq \psi_2$. Thus clearly, we have the following order: $\phi_0 \leq \phi_0 \leq \phi_\omega \leq \ldots \leq \phi_{n+1} \leq \phi_n \leq \ldots \leq \phi_2 \leq \phi_1$. Whenever $\psi_1 \leq \psi_2$, any ψ_1 -prime submodule is ψ_2 -prime.

Example 2.2. Let p and q be two prime numbers. Consider \mathbb{Z} -module \mathbb{Z}_{pq} . The zero submodule is ϕ_0 -prime, but it is not ϕ_{\emptyset} -prime. Moreover, in \mathbb{Z} -module \mathbb{Z}_{pq^2} , the submodule $q^2\mathbb{Z}_{pq^2}$ is ϕ_2 -prime. However, since $q^2\mathbb{Z}_{pq^2}(q^2\mathbb{Z}_{pq^2}:\mathbb{Z}|\mathbb{Z}_{pq^2}) = q^2\mathbb{Z}_{pq^2}$, it is not ϕ_0 -prime.

Example 2.3. Let M be an R-module.

- (1) The zero submodule of R is both ϕ_0 -prime submodule and ϕ_2 -prime submodule, on the other hand it may not be ϕ_{\emptyset} -prime.
- (2) If M is a prime R-module and N be a proper submodule of M. Then N is ϕ_{\emptyset} -prime if and only if ϕ_0 -prime.
- (3) Let M be a homogeneous semisimple R-module and N be a proper submodule of M. Then since every proper submodule is prime, hence N is prime, so is ϕ -prime.

Example 2.4. (Example 2.2 (f) in [8])Let $M = S_1 \bigoplus S_2$, which S_1, S_2 are simple *R*-module such that $S_1 \not\cong S_2$ and *N* be a proper submodule of *M*. Then since every non-zero proper submodule is prime, then *N* is prime, so is ϕ -prime. Indeed, assume that $0_M \neq X \in S(M)$ is proper and $YI \subseteq X$ where $Y \in S(M)$ and $I \in S(R)$. By Proposition 9.4 in [5], we have $M/X \cong S_1$ or $M/X \cong S_2$. Then $((Y + X)/X)I = 0_M$ and as $(Y + X)/X \in S(M/X)$ and M/X is simple, we get $(Y + X)/X = 0_M$ or Ann((Y + X)/X) = Ann(M/X). This means that Y + X = X or $(M/X)I = 0_M$. Consequently, $Y \subseteq X$ or $MI \subseteq X$.

Note that for an element a of R, the ideal generated by a in R is denoted by RaR. Similarly, the right and left ideal generated by a in R are denoted by aR, Ra, respectively. Also, we denote the ideal generated by A as $\langle A \rangle$, for a subset A of R. For an element x of M, the submodule generated by x in M is denoted by xR. Finally, for a subset X of M, we denote the submodule generated by X in M as $\langle X \rangle$.

In the following Theorem, we obtain a characterization of a ϕ -prime submodule of M.

Theorem 2.5. For a proper submodule X of M, the followings are equivalent:

- (1) X is a ϕ -prime submodule of M.
- (2) For all $m \in M X$,
 - $(X :_R mR) = (X :_R M) \cup (\phi(X) :_R mR).$
- (3) For all $m \in M X$, $(X :_R mR) = (X :_R M)$ or $(X :_R mR) = (\phi(X) :_R mR)$.

Proof. (1) \Longrightarrow (2) : Let X be a ϕ -prime submodule of M. For all $m \in M - X$, choose $a \in (X :_R mR) - (\phi(X) :_R mR)$. Then $(mR)(RaR) \subseteq X$ and $(mR)(RaR) \not\subseteq \phi(X)$. As X is ϕ -prime, one can see $mR \subseteq X$ or $RaR \subseteq (X :_R M)$. The first option gives us a contradiction. Thus $a \in (X :_R M)$. Moreover, as $\phi(X) \subseteq X$, we always have $(\phi(X) :_R mR) \subseteq (X :_R mR)$.

 $(2) \Longrightarrow (3)$: If an ideal is a union of two ideals, it equals to one of them.

 $(3) \Longrightarrow (1)$: Choose $Y \in S(M)$ and an ideal I in R which $YI \subseteq X$ and $I \nsubseteq (X :_R M), Y \nsubseteq X$. Let us prove $YI \subseteq \phi(X)$. For all $r \in I$ and $m \in Y$, we have $mr \in YI \subseteq X$.

Now, take $m \in Y - X$. Then we have 2 cases:

Case 1: $r \notin (X :_R M)$. Since $mr \in YI \subseteq X$, one can see $(mR)r \subseteq YI \subseteq X$, i.e., $r \in (X :_R mR)$. Thus $(X :_R mR) = (\phi(X) :_R mR)$ by our hypothesis (3). This means $r \in (\phi(X) :_R mR)$, so, $mr \in \phi(X)$.

Case 2 : $r \in (X :_R M)$. Thus $r \in I \cap (X :_R M)$. Choose $s \in I - (X :_R M)$. Thus $r + s \in I - (X :_R M)$. Similar to Case 1, since $s \notin (X :_R M)$, one can see $ms \in \phi(X)$. By the same reason, as $r + s \notin (X :_R M)$, $m(r + s) \in \phi(X)$. Since $ms \in \phi(X)$, we obtain $mr \in \phi(X)$.

Now, let $m \in Y \cap X$. Since $Y \not\subseteq X$, there exists $m^* \in Y - X$. By the above observations, $m^*r \in \phi(X)$ and $(m + m^*)r \in \phi(X)$ (since $m + m^* \in Y - X$). This implies that $mr \in \phi(X)$.

Consequently, for every case we get $YI \subseteq \phi(X)$.

Theorem 2.6. For $X \in S(M)$, the items are equivalent:

- (1) X is ϕ -prime.
- (2) For \forall right ideal I in R and $Y \in S(M)$,
- $YI \subseteq X$ and $YI \not\subseteq \phi(X)$ implies that $Y \subseteq X$ or $I \subseteq (X :_R M)$.
- (3) For \forall left ideal I of R and $Y \in S(M)$,
- $YI \subseteq X$ and $YI \not\subseteq \phi(X)$ implies that $Y \subseteq X$ or $I \subseteq (X :_R M)$.
- (4) For $\forall a \in R \text{ and } Y \in S(M)$,
- $Y(RaR) \subseteq X \text{ and } Y(RaR) \nsubseteq \phi(X) \text{ implies that } Y \subseteq X \text{ or } a \in (X :_R M).$ (5) For $\forall a \in R \text{ and } Y \in S(M)$,
- $Y(aR) \subseteq X$ and $Y(aR) \nsubseteq \phi(X)$ implies that $Y \subseteq X$ or $a \in (X :_R M)$.

(6) For $\forall a \in R \text{ and } Y \in S(M)$,

 $Y(Ra) \subseteq X$ and $Y(Ra) \not\subseteq \phi(X)$ implies that $Y \subseteq X$ or $a \in (X :_R M)$.

Proof. (1) \Rightarrow (2) : Suppose that X is ϕ -prime. Choose a right ideal I and $Y \in S(M)$ with $YI \subseteq X$, $YI \nsubseteq \phi(X)$. Let $\langle I \rangle := \{\sum r_i a_i s_i : r_i, s_i \in R \text{ and } a_i \in I\}$ be the ideal generated by I. Then as I is a right ideal, one easily has that $Y < I \geq \subseteq YI \subseteq X$. Moreover, $Y < I \geq \oiint \phi(X)$. Indeed, if $Y < I \geq \subseteq \phi(X)$, then $YI \subseteq Y < I \geq \subseteq \phi(X)$, a contradiction. Thus, since X is ϕ -prime, $Y < I \geq \subseteq X$ and $Y < I \geq \oiint \phi(X)$, we have $Y \subseteq X$ or $\langle I \geq \subseteq (X :_R M)$, so $I \subseteq (X :_R M)$.

 $(2) \Rightarrow (3)$: Choose a left ideal I and $Y \in S(M)$ with $YI \subseteq X$, $YI \notin \phi(X)$. Let consider again the ideal $\langle I \rangle$ of R. Then since $YI \subseteq X$ and I is a left ideal, one can see that $Y \langle I \rangle \subseteq X$. Moreover, let us prove $Y \langle I \rangle \notin \phi(X)$. Asumme that $Y \langle I \rangle \subseteq \phi(X)$, then $YI \subseteq Y \langle I \rangle \subseteq \phi(X)$, a contradiction. Thus, since $\langle I \rangle$ is an ideal (so right ideal) by (2), we obtain $Y \subseteq X$ or $\langle I \rangle \subseteq (X :_R M)$, so $I \subseteq (X :_R M)$.

 $(3) \Rightarrow (4)$: Let $a \in R$ and Y be a submodule of M such that $Y(RaR) \subseteq X$ and $Y(RaR) \notin \phi(X)$. Since $Y = YR, Y(RaR) = YR(aR) = Y(Ra) \subseteq X$ and $Y(Ra) \notin \phi(X)$. Since Ra is a left ideal, by (3), one can see $Y \subseteq X$ or $Ra \subseteq (X :_R M)$. Thus $Y \subseteq X$ or $a \in (X :_R M)$.

 $(4) \Rightarrow (5)$: Assume $a \in R$ and $Y \in S(M)$ with $Y(aR) \subseteq X$ and $Y(aR) \nsubseteq \phi(X)$. Then we see $Y(aR) = YR(aR) \subseteq X$ and $YR(aR) \nsubseteq \phi(X)$. By (4), one obtains $Y \subseteq X$ or $a \in (X :_R M)$.

 $(5) \Rightarrow (6)$: Let $a \in R$ and $Y \in S(M)$ with $Y(Ra) \subseteq X$, $Y(Ra) \notin \phi(X)$. Thus $Ya \subseteq X$ and $Ya \notin \phi(X)$. Then we see $Y(aR) \subseteq X$ and $Y(aR) \notin \phi(X)$. Thus by (5), $Y \subseteq X$ or $a \in (X :_R M)$.

 $(6) \Rightarrow (1)$: Suppose that (6) satisfies. By the help of (1) \Leftrightarrow (2) in Theorem 2.5, let us prove that for all $m \in M - X$, one has $(X :_R mR) = (X :_R M) \cup (\phi(X) :_R mR)$. Let $a \in (X :_R mR)$. Then we see $mRa \subseteq X$. If $mRa \subseteq \phi(X)$, one gets $a \in (\phi(X) :_R mR)$. If $mRa \notin \phi(X)$, this implies that $(mR)(Ra) \notin \phi(X)$. Thus we have $mRa = (mR)(Ra) \subseteq X$ and $(mR)(Ra) \notin \phi(X)$. Then by (6), $mR \subseteq X$ or $a \in (X :_R M)$. The first option gives us a contradiction with $m \in M - X$. Then $a \in (X :_R M)$. Thus $(X :_R mR) \subseteq (X :_R M) \cup (\phi(X) :_R mR)$. Since the other containment always satisfies, we have $(X :_R mR) = (X :_R M) \cup (\phi(X) :_R mR)$. Therefore, X is a ϕ -prime submodule of M.

Theorem 2.7. If X is a ϕ -prime submodule such that $X(X :_R M) \not\subseteq \phi(X)$, then X is prime.

Proof. Assume that I is an ideal of R and Y is a submodule of M such that $YI \subseteq X$. Then we have 2 cases:

Case 1: $YI \not\subseteq \phi(X)$. As X is ϕ -prime, we get $Y \subseteq X$ or $I \subseteq (X :_R M)$. So, it is done.

Case 2: $YI \subseteq \phi(X)$. In this case, we may assume $XI \subseteq \phi(X) \cdots (1)$. Indeed, if $XI \nsubseteq \phi(X)$, then there is an $m \in X$ such that $mI \nsubseteq \phi(X)$. Then we obtain $(Y+mR)I \subseteq X-\phi(X)$. As X is ϕ -prime, $Y+mR \subseteq X$ or $I \subseteq (X :_R M)$. So, $Y \subseteq X$ or $I \subseteq (X :_R M)$. Moreover, we may suppose $Y(X :_R M) \subseteq \phi(X) \cdots (2)$. Indeed, if $Y(X :_R M) \nsubseteq \phi(X)$, there exists an $a \in (X :_R M)$ with $Ya \nsubseteq \phi(X)$. Then we have $Y(I + RaR) \subseteq X$ and $Y(I+RaR) \oiint \phi(X)$. Since X is ϕ -prime, $Y \subseteq X$ or $I+RaR \subseteq (X :_R M)$. Therefore, $Y \subseteq X$ or $I \subseteq (X :_R M)$.

As $X(X :_R M) \nsubseteq \phi(X)$, one can see that there are $b \in (X :_R M)$ and $x \in X$ such that $xb \notin \phi(X)$. Then by (1) and (2), we obtain $(Y+xR)(I+RbR) \subseteq X$ and $(Y+xR)(I+RbR) \nsubseteq \phi(X)$. By the help of the hypothesis, $Y+xR \subseteq X$ or $I+RbR \subseteq (X :_R M)$. Then one obtains $Y \subseteq X$ or $I \subseteq (X :_R M)$.

Corollary 2.8. If X is a weakly prime submodule with $X(X :_R M) \neq 0_M$, then X is prime.

Proof. In Theorem 2.7, set $\phi = \phi_0$.

Corollary 2.9. If X is a ϕ -prime submodule such that $\phi(X) \subseteq X(X :_R M)^2$, then X is ϕ_{ω} -prime.

Proof. Assume that $YI \subseteq X$ and $YI \nsubseteq \bigcap_{i=1}^{\infty} X(X :_R M)^i$, for some $Y \in S(M)$ and ideal I of R. If X is prime, we are done. So, suppose X is not prime. Then Theorem 2.7 implies $X(X :_R M) \subseteq \phi(X) \subseteq X(X :_R M)^2 \subseteq X(X :_R M)$, i.e., $X(X :_R M) = \phi(X) = X(X :_R M)^2$. Thus, we obtain $\phi(X) = \bigcap_{i=1}^{\infty} X(X :_R M)^i$, for every $i \ge 1$. As X is ϕ -prime, $Y \subseteq X$ or $I \subseteq (X :_R M)$. Consequently, we obtain X is ϕ_{ω} -prime. \Box

Note that a submodule X of M is called *radical* if $\sqrt{(X:_R M)} = (X:_R M)$.

Corollary 2.10. Let X be a ϕ -prime submodule of M. Then

- (1) Either $(X :_R M) \subseteq \sqrt{(\phi(X) :_R M)}$ or $\sqrt{(\phi(X) :_R M)} \subseteq (X :_R M)$.
- (2) If $(X :_R M) \subsetneq \sqrt{(\phi(X) :_R M)}$, X is not prime.
- (3) If $\sqrt{(\phi(X):_R M)} \subsetneq (X:_R M)$, X is prime.
- (4) If $\phi(X)$ is a radical submodule, then either $(X :_R M) = (\phi(X) :_R M)$ or X is prime.

Proof. Suppose X is ϕ -prime.

- (1) Assume that X is prime. Then $(X :_R M)$ is a prime ideal of R, see [10]. As $\phi(X) \subseteq X$, we see $(\phi(X) :_R M) \subseteq (X :_R M)$, so $\sqrt{(\phi(X) :_R M)} \subseteq \sqrt{(X :_R M)} = (X :_R M)$. Now assume that X is not prime. By Theorem 2.7, one see $X(X :_R M) \subseteq \phi(X)$. This implies that $\sqrt{(X :_R M)^2} \subseteq \sqrt{(X(X :_R M) :_R M)} \subseteq \sqrt{(\phi(X) :_R M)}$. Hence $(X :_R M) \subseteq \sqrt{(X :_R M)} = \sqrt{(X :_R M)^2} \subseteq \sqrt{(\phi(X) :_R M)}$.
- (2) Suppose $(X :_R M) \subsetneq \sqrt{(\phi(X) :_R M)}$. If X is prime, $\sqrt{(\phi(X) :_R M)} \subseteq \sqrt{(X :_R M)} = (X :_R M)$, i.e., a contradiction. So, X is not prime.
- (3) Let $\sqrt{(\phi(X):_R M)} \subseteq (X:_R M)$. If X is not prime, by the help of Theorem 2.7, we get $X(X:_R M) \subseteq \phi(X)$. Then one see $\sqrt{(X:_R M)^2} \subseteq \sqrt{(X(X:_R M):_R M)} \subseteq \sqrt{(\phi(X):_R M)}$. Hence, since $\sqrt{(X:_R M)^2} = \sqrt{(X:_R M)}$, $(X:_R M) \subseteq \sqrt{(\phi(X):_R M)}$, i.e., a contradiction.
- (4) Let $\phi(X)$ be a radical submodule. Suppose that X is not prime. By the argument in the proof of (1), $(X :_R M) \subseteq \sqrt{(\phi(X) :_R M)}$. Then since $\phi(X)$ is a radical submodule, we see that $(X :_R M) \subseteq \sqrt{(\phi(X) :_R M)} = (\phi(X) :_R M)$. As the other containment is always hold, $(X :_R M) = (\phi(X) :_R M)$.

Remark 2.11. Assume that $X \in S(M)$.

- (1) If X is ϕ -prime but not prime such that $\phi(X) \subseteq X(X :_R M)$, then $\phi(X) = X(X :_R M)$. In particular, if X is not prime and X is weakly prime, then $X(X :_R M) = 0_M$.
- (2) If X is ϕ -prime but not prime such that $\phi(X) \subseteq X(X :_R M)^2$, then $\phi(X) = X(X :_R M)^2$. In particular, if X is not prime and X is ϕ_2 -prime, then $X(X :_R M) = X(X :_R M)^2$.

Now, for $Y \in S(M)$, let us define $\phi_Y : S(M/Y) \to S(M/Y) \cup \{\emptyset\}$ by $\phi_Y(X/Y) = (\phi(X) + Y)/Y$, for every $X \in S(M)$ with $Y \subseteq X$ (and $\phi_Y(X/Y) = \emptyset$ if $\phi(X) = \emptyset$).

Theorem 2.12. Let $X, Y \in S(M)$ be proper with $Y \subseteq X$. Then we have

(1) If X is a ϕ -prime submodule of M, then X/Y is a ϕ_Y -prime submodule of M/Y.

- (2) If Y ⊆ φ(X) and X/Y is a φ_Y-prime submodule of M/Y, then X is a φ-prime submodule of M.
- (3) If $\phi(X) \subseteq Y$ and X is ϕ -prime, then X/Y is weakly prime.
- (4) If $\phi(Y) \subseteq \phi(X)$, Y is ϕ -prime and X/Y is weakly prime, then X is ϕ -prime.

Proof. Let $X, Y \in S(M)$ be proper with $Y \subseteq X$.

(1) : Assume $I \in S(R)$ and Z/Y is a submodule of M/Y with $(Z/Y)I \subseteq X/Y$ and $(Z/Y)I \notin \phi_Y(X/Y)$. Then clearly, (Z/Y)I = ZI + Y/Y and $ZI \subseteq ZI + Y \subseteq X$. Moreover $ZI \notin \phi(X)$. Indeed, if $ZI \subseteq \phi(X)$, then one can see $(ZI+Y)/Y \subseteq (\phi(X)+Y)/Y = \phi_Y(X/Y)$, so $(Z/Y)I \subseteq \phi_Y(X/Y)$, i.e., a contradiction. Since X is ϕ -prime, we see $I \subseteq (X :_R M)$ or $Z \subseteq X$. Then one obtains $I \subseteq (X :_R M) = (X/Y :_R M/Y)$ or $Z/Y \subseteq X/Y$.

(2) : Suppose that I is an ideal of R and Z is a submodule of M such that $ZI \subseteq X$ and $ZI \notin \phi(X)$. Then $ZI + Y/Y = (Z/Y)I \subseteq X/Y$. Moreover, $(Z/Y)I \notin \phi_Y(X/Y)$. Indeed, if $(Z/Y)I \subseteq \phi_Y(X/Y) = (\phi(X) + Y)/Y$, as $Y \subseteq \phi(X)$ we have $ZI + Y/Y \subseteq \phi(X)/Y$, i.e., $ZI \subseteq \phi(X)$, a contradiction. Since X/Y is a ϕ_Y -prime submodule of M/Y, one can see $I \subseteq (X/Y :_R M/Y)$ or $Z/Y \subseteq X/Y$. This implies that $I \subseteq (X :_R M)$ or $Z \subseteq X$.

(3) : Assume that $I \in S(R)$ and Z/Y is a submodule of M/Y with $0_{M/Y} \neq (Z/Y)I \subseteq X/Y$. Clearly, we have $Y \subset ZI \subseteq X$. Then since $\phi(X) \subseteq Y$, we see $ZI \not\subseteq \phi(X)$. As X is ϕ -prime, $I \subseteq (X :_R M)$ or $Z \subseteq X$. This implies $I \subseteq (X/Y :_R M/Y)$ or $Z/Y \subseteq X/Y$.

(4) : Suppose that $\phi(Y) \subseteq \phi(X)$, Y is ϕ -prime and X/Y is weakly prime. Choose $Z \in S(M)$ and an ideal I of R which $ZI \subseteq X$, $ZI \not\subseteq \phi(X)$. Then since $\phi(Y) \subseteq \phi(X)$ and $ZI \not\subseteq \phi(X)$, we have $ZI \not\subseteq \phi(Y)$. Then one can see 2 cases :

Case 1 : $ZI \subseteq Y$. As Y is ϕ -prime, $I \subseteq (Y :_R M)$ or $Z \subseteq Y$. Since $Y \subseteq X$, we have $I \subseteq (X :_R M)$ or $Z \subseteq X$, so it is done.

Case 2 : $ZI \not\subseteq Y$. Then $0_{M/Y} \neq ZI + Y/Y = (Z/Y)I \subseteq X/Y$. Since X/Y is weakly prime, $I \subseteq (X/Y) :_R M/Y$ or $Z/Y \subseteq X/Y$. Thus, we obtain $I \subseteq (X :_R M)$ or $Z \subseteq X$.

Corollary 2.13. For a proper $X \in S(M)$, X is ϕ -prime in $M \iff X/\phi(X)$ is weakly prime in $M/\phi(X)$.

Proof. \implies : By (3) of Theorem 2.12. ⇐: By (2) of Theorem 2.12.

Gen. of prime submodules over non-com. rings

Note that we say M is a torsion-free module if $(0_M :_R m) = 0_R$, for all $0_M \neq m \in M$.

Theorem 2.14. Let M be torsion-free and $0_M \neq m \in M$. Then mR is prime $\iff mR$ is almost prime.

Proof. \Longrightarrow : Obvious.

 \Leftarrow : Assume that mR is not prime. Then there are $a \in R, x \in M$ with $a \notin (mR :_R M), x \notin mR$, also $xRa \subseteq mR$. Then we have $(xR)(RaR) \subseteq mR$ and the following 2 cases:

Case 1 : $(xR)(RaR) \nsubseteq mR(mR:_R M) = \phi_2(mR)$. Since $a \notin (mR:_R M)$, $x \notin mR$, one gets $(RaR) \nsubseteq (mR:_R M)$ and $(xR) \nsubseteq mR$. Thus we obtain that mR is not almost prime.

Case 2 : $(xR)(RaR) \subseteq mR(mR :_R M) = \phi_2(mR)$. Then we have $xa \in mR(mR :_R M)$. Moreover, as $xRa \subseteq mR$, we have $(x+m)a \in mR$ and $x+m \notin mR$. Then $(xR+mR)(RaR) \subseteq mR$. If $(xR+mR)(RaR) \notin mR(mR :_R M)$, as $a \notin (mR :_R M)$ and $x+m \notin mR$, one can see mR is not almost prime. If $(xR+mR)(RaR) \subseteq mR(mR :_R M)$, then $(x+m)a \in mR(mR :_R M)$. Then, by the assumption in Case 2, we have $xa \in mR(mR :_R M)$, so, $ma \in mR(mR :_R M)$. Hence there exist an element $b \in (mR :_R M)$ and $r \in R$ such that ma = (mr)b. This implies that $a - rb \in (0_M :_R m) = 0_R$, i.e., $a = rb \in (mR :_R M)$. So, we obtain a contradiction with $a \notin (mR :_R M)$. Consequently, in every case mR is not almost prime.

Theorem 2.15. Let $0_R \neq a \in R$ such that $(0_M :_M a) \subseteq Ma$ and $a(Ma :_R M) = (Ma :_R M)a$. Thus Ma is prime $\iff Ma$ is almost prime.

Proof. \implies : It is obvious.

 \Leftarrow : Suppose that Ma is almost prime. Let $b \in R$, $m \in M$ with $mRb \subseteq Ma$. We prove that $m \in Ma$ or $b \in (Ma :_R M)$. Then one can see clearly, $(mR)(RbR) \subseteq Ma$. Now, we get 2 cases:

Case 1 : $(mR)(RbR) \notin Ma(Ma :_R M) = \phi_2(Ma)$. Since Ma is almost prime, we have $mR \subseteq Ma$ or $RbR \subseteq (Ma :_R M)$. So, $m \in Ma$ or $b \in (Ma :_R M)$.

Case 2 : $(mR)(RbR) \subseteq Ma(Ma:_R M) = \phi_2(Ma)$. As $mb \in Ma$, one gets $m(b + a) \in Ma$. Then $(mR)(RbR + RaR) \subseteq Ma$. If $(mR)(RbR + RaR) \not\subseteq Ma(Ma:_R M)$, as Ma is almost prime, $mR \subseteq Ma$ or $RbR + RaR \subseteq (Ma:_R M)$. Thus, one can see $mR \subseteq Ma$ or $RbR \subseteq (Ma:_R M)$. Therefore, it is done. If $(mR)(RbR + RaR) \subseteq Ma(Ma:_R M)$, then $(mR)(RaR) \subseteq Ma(Ma:_R M) = M(Ma:_R M)a$. Thus $ma \in$ $M(Ma:_R M)a$. Then, one has $n \in M(Ma:_R M)$ with ma = na. Hence $m - n \in (0_M:_M a) \subseteq Ma$. This implies $m \in M(Ma:_R M) + (0_M:_M a) \subseteq Ma$.

Corollary 2.16. Let M be torsion-free and $a \in R$ such that $a(Ma :_R M) = (Ma :_R M)a$. Thus Ma is prime $\iff Ma$ is almost prime.

Proof. By Theorem 2.15, it is clear.

Theorem 2.17. Let X be a proper submodule of M. Then the followings are equivalent:

- (1) X is a ϕ -prime submodule of M.
- (2) For all ideal I of R with $I \nsubseteq (X :_R M)$, then $(X :_M I) = X \cup (\phi(X) :_M I).$
- (3) For all ideal I of R with $I \nsubseteq (X :_R M)$, then $(X :_M I) = X$ or $(X :_M I) = (\phi(X) :_M I)$.

Proof. Choose $X \in S(M)$.

 $(1) \Longrightarrow (2)$: Assume X is ϕ -prime. Choose an ideal I which $I \nsubseteq (X :_R M)$. Then one can see $X \subseteq (X :_M I)$ and $(\phi(X) :_M I) \subseteq (X :_M I)$, so $X \cup (\phi(X) :_M I) \subseteq (X :_M I)$. For the other containment, since $(X :_M I)I \subseteq X$, and one gets 2 cases:

Case 1: $(X :_M I)I \nsubseteq \phi(X)$. Then since $(X :_M I)I \subseteq X$ and X is ϕ -prime, $I \subseteq (X :_R M)$ or $(X :_M I) \subseteq X$. As the first option gives us a contradiction, it must be $(X :_M I) \subseteq X$.

Case 2: $(X :_M I)I \subseteq \phi(X)$. Then we obtain $(X :_M I) \subseteq (\phi(X) :_M I)$, so it is done.

 $(2) \Longrightarrow (3)$: If a submodule is a union of two submodules, it equals to one of them.

(3) \Longrightarrow (1) : Choose an ideal I in $R, Y \in S(M)$ with $YI \subseteq X$, $YI \notin \phi(X)$. If $I \subseteq (X :_R M)$, it is done. Suppose $I \notin (X :_R M)$. Then by (3), one can see $(X :_M I) = X$ or $(X :_M I) = (\phi(X) :_M I)$. If $(X :_M I) = X$, since $YI \subseteq X$, we have $Y \subseteq (X :_M I) = X$. So, we are done. If $(X :_M I) = (\phi(X) :_M I)$, as $YI \notin \phi(X)$, we have $Y \notin (\phi(X) :_M I) = (X :_M I)$, a contradiction with $YI \subseteq X$. \Box

Proposition 2.18. Let X be a proper submodule of M and I be an ideal of R such that $MI \neq XI$ and $XI \neq X$. Then Y = XI is a ϕ -prime submodule of M if and only if $Y = \phi(Y)$.

Proof. \Leftarrow : Let $Y = \phi(Y)$. Then obviously Y is ϕ -prime.

 \implies : Suppose that Y = XI is a ϕ -prime submodule. Let us consider Theorem 2.17. Now, we have 2 cases:

Gen. of prime submodules over non-com. rings

Case 1 : $I \nsubseteq (Y :_R M)$. By Theorem 2.17, one obtains $(Y :_M I) = Y$ or $(Y :_M I) = (\phi(Y) :_M I)$. If $(Y :_M I) = Y$, we have $X \subseteq (Y :_M I) =$ $(XI :_M I) = Y = XI$, i.e., X = XI, a contradiction. If $(Y :_M I) =$ $(\phi(Y) :_M I)$, as $X \subseteq (Y :_M I)$, we see $Y = XI \subseteq (Y :_M I)I = (\phi(Y) :_M I)I = (\phi(Y) :_M I)I \subseteq \phi(Y)$, so $Y \subseteq \phi(Y)$. Then one obtains $\phi(Y) = Y$. So it is done.

Case 2 : $I \subseteq (Y :_R M)$. Then $MI \subseteq Y = XI$, so MI = XI, a contradiction.

Corollary 2.19. Let X be a proper submodule of M and I be an ideal of R such that $MI^n \neq MI^{n-1}$ for some n > 1. Then $Y = MI^n$ is a ϕ -prime submodule of M if and only if $Y = \phi(Y)$.

Proof. Let consider $X = MI^{n-1}$. Then $XI = MI^n \subsetneq MI^{n-1} \subseteq MI$, i.e., $XI \neq MI$. Moreover, $Y = XI = MI^n \neq MI^{n-1} = X$, i.e., $XI \neq X$. Thus, by Proposition 2.18, it is done.

Proposition 2.20. Let I be a maximal ideal in R. Then MI = M or MI is ϕ -prime in M.

Proof. Let $MI \neq M$. By the proof of Proposition 2.12 in [8], one can see that MI is a prime submodule of M. Thus, MI is ϕ -prime.

Theorem 2.21. Let X be a proper submodule of M. Suppose that ψ : $S(R) \to S(R) \cup \{\emptyset\}$ be a function. If X is ϕ -prime, then $(X :_R Y)$ is a ψ -prime ideal of R, for all $Y \in S(M)$ with $Y \nsubseteq X$ and $(\phi(X) :_R Y) \subseteq \psi((X :_R Y))$.

Proof. Suppose that X is a ϕ -prime submodule of M and Y is a submodule of M such that $Y \not\subseteq X$ and $(\phi(X) :_R Y) \subseteq \psi((X :_R Y))$. Let $IJ \subseteq (X :_R Y)$ and $IJ \not\subseteq \psi((X :_R Y))$ for two ideals I, J of R. Then $(YI)J \subseteq X$ and $(YI)J \not\subseteq \phi(X)$, since $(\phi(X) :_R Y) \subseteq \psi((X :_R Y))$. By our hypothesis, $J \subseteq (X :_R M)$ or $YI \subseteq X$. If $YI \subseteq X$, i.e., $I \subseteq (X :_R Y)$, it is done. If $J \subseteq (X :_R M)$, since $(X :_R M) \subseteq (X :_R Y)$, we see $J \subseteq (X :_R Y)$. Consequently, $(X :_R Y)$ is a ψ -prime ideal of R. \Box

Corollary 2.22. Let X be a proper submodule of M. Suppose that ψ : $S(R) \rightarrow S(R) \cup \{\emptyset\}$ be a function with $(\phi(X) :_R M) \subseteq \psi((X :_R M))$. If X is a ϕ -prime submodule of M, then $(X :_R M)$ is a ψ -prime ideal of R.

Proof. Set Y = M in Theorem 2.21.

Note that, an *R*-module *M* is called a *multiplication module* if there is an ideal *I* of *R* such that X = MI, for all $X \in S(M)$, see [15]. Also, in a multiplication module, one can see $X = M(X :_R M)$, for all $X \in S(M)$, see [15].

Let X and Y be two submodules of a multiplication R-module M with $X = M(X :_R M)$ and $Y = M(Y :_R M)$. The product of X and Y is denoted by XY and it is defined by $XY = M(X :_R M)(Y :_R M)$. It is clear that the product is well-defined.

Proposition 3.1. Let M be multiplication and $X \in S(M)$. Then if X is ϕ -prime, then for $Y_1, Y_2 \in S(M), Y_1Y_2 \subseteq X$ and $Y_1Y_2 \nsubseteq \phi(X)$ implies that $Y_1 \subseteq X$ or $Y_2 \subseteq X$.

Proof. Let Y_1, Y_2 be any submodule in M with $Y_1Y_2 \subseteq X$ and $Y_1Y_2 \notin \phi(X)$. As M is multiplication, we know that $Y_1 = M(Y_1 :_R M)$ and $Y_2 = M(Y_2 :_R M)$. Then $Y_1Y_2 = M(Y_1 :_R M)(Y_2 :_R M) \subseteq X$ and $Y_1Y_2 \notin \phi(X)$. Since X is ϕ -prime, one can see $M(Y_1 :_R M) \subseteq X$ or $(Y_2 :_R M) \subseteq (X :_R M)$. This implies that $Y_1 \subseteq X$ or $Y_2 = M(Y_2 :_R M) \subseteq M(Y_2 :_R M) \subseteq X$.

Note that we say M is a cancellation module if MI = MJ implies that I = J for two ideals I, J of R. For the definition of a cancellation module over commutative ring, see [4].

Corollary 3.2. Let M be multiplication and cancellation. For $X \in S(M)$, the statements are equivalent:

- (1) X is ϕ -prime.
- (2) For $Y_1, Y_2 \in S(M)$, if $Y_1Y_2 \subseteq X$ and $Y_1Y_2 \nsubseteq \phi(X)$, then $Y_1 \subseteq X$ or $Y_2 \subseteq X$.

Proof. $(1) \Longrightarrow (2)$: By Proposition 3.1.

 $\begin{array}{ll} (2) \Longrightarrow (1): \text{Choose an ideal } I \in S(R), Y \in S(M) \text{ with } YI \subseteq X \text{ and} \\ YI \nsubseteq \phi(X). \text{ Since } M \text{ is multiplication}, Y = M(Y:_R M). \text{ Then we have} \\ M(Y:_R M)I = YI \subseteq X \text{ and } YI \oiint \phi(X). \text{ Also, as } M \text{ is multiplication}, \\ MI = M(MI:_R M). \text{ Then this implies that } I = (MI:_R M), \text{ since } M \\ \text{ is cancellation. Hence } Y(MI) = M(Y:_R M)(MI:_R M) = M(Y:_R M)I = YI. \text{ So, we have } Y(MI) \subseteq X \text{ and } Y(MI) \oiint \phi(X). \text{ Then by } (2), \\ \text{ one see } Y \subseteq X \text{ or } MI \subseteq X. \text{ This means that } Y \subseteq X \text{ or } I \subseteq (X:_R M). \end{array}$

Gen. of prime submodules over non-com. rings

Theorem 3.3. Let M be a multiplication R-module and X be a proper submodule of M. Suppose that $\psi : S(R) \to S(R) \cup \{\emptyset\}$ be a function with $(\phi(X) :_R M) = \psi((X :_R M))$. Then the followings are equivalent:

- (1) X is ϕ -prime in M.
- (2) $(X :_R M)$ is a ψ -prime ideal in R.

Proof. $(1) \Longrightarrow (2)$: By Corollary 2.22.

 $(2) \Longrightarrow (1) : \text{ Assume that } (X :_R M) \text{ is } \psi \text{-prime. Choose an ideal} I \text{ of } R \text{ and a submodule } Y \text{ of } M \text{ with } YI \subseteq X \text{ and } YI \not\subseteq \phi(X). \text{ As } M \text{ is multiplication, } Y = M(Y :_R M). \text{ Hence } M(Y :_R M)I \subseteq X \text{ and } M(Y :_R M)I \not\subseteq \phi(X). \text{ Then one gets } (Y :_R M)I \subseteq (X :_R M) \text{ and } (Y :_R M)I \not\subseteq (\phi(X) :_R M). \text{ Since } (\phi(X) :_R M) = \psi((X :_R M)), (Y :_R M)I \not\subseteq \psi((X :_R M)). \text{ By our hypothesis, } I \subseteq (X :_R M) \text{ or } (Y :_R M) \subseteq (X :_R M). \text{ If } I \subseteq (X :_R M), \text{ it is done. If } (Y :_R M) \subseteq (X :_R M), \text{ as } M \text{ is multiplication, one can see } Y = M(Y :_R M) \subseteq M(X :_R M) = X. \text{ Therefore, } X \text{ is } \phi \text{-prime.} \square$

Recall that if there exists an element $s \in R$ with r = rsr, for all $r \in R$, R is called *von-Neumann regular*, see [15]. Also, the center of a ring R is denoted by Center(R).

Lemma 3.4. [8] Assume that M is multiplication, R is a von-Neumann regular ring and $J \subseteq Center(R)$ is an ideal in R. Then $X \cap MJ = (X :_M J)J$, for any submodule X of M.

Lemma 3.5. [8] Assume that M is multiplication, R is a von-Neumann regular ring and $J \subseteq Center(R)$ is an ideal in R. If for all $Y, Z \in S(M)$, $YJ \subseteq ZJ$ implies that $Y \subseteq Z$, then $(XI :_M J) = (X :_M J)I$ for $X \in S(MJ)$ and any ideal I of R.

Theorem 3.6. Let M be a multiplication R-module and R be a von-Neumann regular ring. Let $I \subseteq Center(R)$ be an ideal of R such that $YI \subseteq ZI$ implies that $Y \subseteq Z$ for all $Y, Z \in S(M)$. Let $\phi((X :_M I)) =$ $(\phi(X) :_M I)$. Then $X \in S(MI)$ is ϕ -prime $\iff (X :_M I) \in S(M)$ is ϕ -prime.

Proof. \Longrightarrow : Assume that $X \in S(MI)$ is ϕ -prime. Choose an ideal J of $R, Y \in S(M)$ with $YJ \subseteq (X :_M I)$ and $YJ \notin \phi((X :_M I))$. Then clearly $YJI \subseteq X$. We show that $YJI \notin \phi(X)$. If $YJI \subseteq \phi(X)$, then $YJ \subseteq (\phi(X) :_M I) = \phi((X :_M I))$, a contradiction. By $I \subseteq Center(R)$, one can see YJI = YIJ. Hence, $YIJ \subseteq X$ and $YIJ \notin \phi(X)$ implies $YI \subseteq X$ or $J \subseteq (X :_R MI)$, since X is ϕ -prime submodule of MI.

Moreover, as $I \subseteq Center(R)$, we see $(X :_R MI) = ((X :_M I) :_R M)$. So, $YI \subseteq X$ or $J \subseteq (X :_R MI)$ implies $Y \subseteq (X :_M I)$ or $J \subseteq ((X :_M I) :_R M)$.

 $\begin{array}{l} \displaystyle \Leftarrow: \mbox{Let } (X:_M I) \mbox{ be } \phi\mbox{-prime in } M \mbox{ for } X \in S(MI). \mbox{ Choose an ideal} \\ J \mbox{ of } R, Y \in S(MI) \mbox{ with } YJ \subseteq X, YJ \not\subseteq \phi(X). \mbox{ Then we see that } (Y:_M I)J = (YJ:_M I) \subseteq (X:_M I) \mbox{ by Lemma 3.5. Now, let us prove } (Y:_M I)J \not\subseteq \phi((X:_M I)). \mbox{ Indeed, if } (Y:_M I)J \subseteq \phi((X:_M I)) = (\phi(X):_M I), \mbox{ then } (Y:_M I)JI = (Y:_M I)IJ \subseteq (\phi(X):_M I)I, \mbox{ as } I \subseteq Center(R). \mbox{ By Lemma 3.4, we get } YJ = (Y \cap MI)J = (Y:_M I)IJ \subseteq (\phi(X):_M I)I = \\ \phi(X) \cap MI = \phi(X), \mbox{ a contradiction. Hence, as } (X:_M I) \mbox{ is } \phi\mbox{-prime, one can see } (Y:_M I) \subseteq (X:_M I) \mbox{ or } J \subseteq ((X:_M I):_R M). \mbox{ The first option gives us } Y = Y \cap MI = (Y:_M I)I \subseteq (X:_M I)I = X \cap MI = X, \mbox{ by Lemma 3.4. The second option means that } J \subseteq ((X:_M I):_R M) = \\ (X:_R MI), \mbox{ as } I \subseteq Center(R). \mbox{ Thus we are done.} \end{tabular}$

4. The radical of a submodule

In the following definition, we shall introduce the concept of ϕ -m-system.

Definition 4.1. $\emptyset \neq S \subseteq M$ is called a ϕ -m-system if $(Y_1 + Y_2) \cap S \neq \emptyset$, $(Y_1 + MI) \cap S \neq \emptyset$ and $Y_2I \not\subseteq \phi(\langle S^c \rangle)$, then $(Y_1 + Y_2I) \cap S \neq \emptyset$ for $\forall Y_1, Y_2 \in S(M)$ and any ideal I of R, where $S^c = M - S$.

Proposition 4.2. For $X \in S(M)$, X is ϕ -prime $\iff S = M - X$ is a ϕ -m-system.

Proof. ⇒: Suppose that X is ϕ -prime. Choose an ideal I of R and two submodules Y_1, Y_2 of M with $(Y_1 + Y_2) \cap S \neq \emptyset$, $(Y_1 + MI) \cap S \neq \emptyset$ and $Y_2I \not\subseteq \phi(\langle S^c \rangle)$, where $S^c = X$. We show that $(Y_1 + Y_2I) \cap S \neq \emptyset$. If $(Y_1 + Y_2I) \cap S = \emptyset$, then $(Y_1 + Y_2I) \subseteq X$, since S = M - X. Then one can see $Y_2I \subseteq X$ and $Y_1 \subseteq X$. Also, by our hypothesis, $Y_2I \not\subseteq \phi(\langle S^c \rangle) = \phi(X)$. Then as X is ϕ -prime, we get $Y_2 \subseteq X$ or $I \subseteq (X :_R M)$. If $Y_2 \subseteq X$, we see $Y_1 + Y_2 \subseteq X$, i.e., $(Y_1 + Y_2) \cap S = \emptyset$, a contradiction. If $I \subseteq (X :_R M)$, then $MI \subseteq X$, so we get $Y_1 + MI \subseteq X$, i.e., $(Y_1 + MI) \cap S = \emptyset$, a contradiction. Thus $(Y_1 + Y_2I) \cap S \neq \emptyset$.

 \Leftarrow : Let S = M - X be a ϕ -m-system. Let Y be a submodule of M and I be an ideal of R such that $YI \subseteq X$ and $YI \notin \phi(X)$. Suppose that $Y \notin X$ and $I \notin (X :_R M)$. Then one can see $Y \cap S \neq \emptyset$ and $MI \cap S \neq \emptyset$. In the definition of ϕ -m-system, consider as $Y_1 = 0_M$ and $Y_2 = Y$. Then since $Y \cap S \neq \emptyset$, $MI \cap S \neq \emptyset$ and $YI \notin \phi(X) = \phi(S^c)$, we

obtain $YI \cap S = (0_M + YI) \cap S \neq \emptyset$, by S is a ϕ -m-system. Therefore, $YI \cap S \neq \emptyset$, but this contradicts with $YI \subseteq X$.

Proposition 4.3. For a proper $X \in S(M)$, let S := M - X. The followings are equivalent:

- (1) X is a ϕ -prime submodule.
- (2) If $(Y_1 + Y_2) \cap S \neq \emptyset$, $MI \cap S \neq \emptyset$ and $Y_2I \not\subseteq \phi(S^c)$, for all $Y_1, Y_2 \in S(M)$ and any ideal I of R, then $(Y_1 + Y_2I) \cap S \neq \emptyset$.
- (3) If $Y_2 \cap S \neq \emptyset$, $MI \cap S \neq \emptyset$ and $Y_2I \not\subseteq \phi(S^c)$, for all $Y_2 \in S(M)$ and any ideal I of R, then $Y_2I \cap S \neq \emptyset$.

Proof. (1) \Longrightarrow (2) : Assume that $(Y_1 + Y_2) \cap S \neq \emptyset$, $MI \cap S \neq \emptyset$ and $Y_2I \not\subseteq \phi(S^c)$ for all $Y_1, Y_2 \in S(M)$ and any ideal I of R. Since X is a ϕ -prime submodule, by Proposition 4.2, we know S = M - X is a ϕ -m-system. Also, since $MI \cap S \neq \emptyset$, $(Y_1 + MI) \cap S \neq \emptyset$. Thus, by the definition of ϕ -m-system, $(Y_1 + Y_2I) \cap S \neq \emptyset$.

 $(2) \Longrightarrow (3) : \text{Set } Y_1 = 0_M.$

(3) \Longrightarrow (1) : Suppose that $Y \in S(M)$ and I is an ideal of R with $YI \subseteq X, YI \notin \phi(X)$. Let $Y \notin X$ and $I \notin (X :_R M)$. Since $Y \notin X$, we have $Y \cap S \neq \emptyset$. Also, as $I \notin (X :_R M)$, i.e., $MI \notin X$, one can see $MI \cap S \neq \emptyset$. Thus, since $Y \cap S \neq \emptyset, MI \cap S \neq \emptyset$ and $YI \notin \phi(X) = \phi(S^c)$, we obtain $YI \cap S \neq \emptyset$ by (3). This contradicts with $YI \subseteq X$. Hence we are done.

Definition 4.4. For $\phi : S(M) \to S(M) \cup \{\emptyset\}$,

- (1) The function ϕ is called containment preserving, if for any two submodules $X_1, X_2 \in S(M), X_1 \subseteq X_2$ implies $\phi(X_1) \subseteq \phi(X_2)$.
- (2) The function ϕ is called sum preserving, if $\phi(\sum X_i) = \sum \phi(X_i)$, for all $X_i \in S(M)$.

Lemma 4.5. Let ϕ be containment preserving. Assume that $S \subseteq M$ is a ϕ -m-system and $X \in S(M)$ maximal with respect to $X \cap S = \emptyset$ and $\phi(X) = \phi(\langle S^c \rangle)$. Then X is a ϕ -prime submodule of M.

Proof. Let I be any ideal of R and $Y \in S(M)$ such that $YI \subseteq X$ and $YI \not\subseteq \phi(X)$. Let $Y \not\subseteq X$ and $I \not\subseteq (X :_R M)$. Then as $Y \not\subseteq X$, one can see $X \subsetneq X + Y$. We show that $(X + Y) \cap S \neq \emptyset$. Indeed, if $(X + Y) \cap S = \emptyset$, then $X + Y \subseteq S^c$, so $X + Y \subseteq < S^c >$. Thus, $\phi(< S^c >) = \phi(X) \subseteq \phi(X + Y) \subseteq \phi(< S^c >)$, i.e., $\phi(X + Y) = \phi(< S^c >)$. This doesn't happen because of the properties of X. Also, as $I \not\subseteq (X :_R M)$, i.e., $MI \not\subseteq X$, we have $X \subsetneq X + MI$. We show that $(X + MI) \cap S \neq \emptyset$. Indeed, if $(X + MI) \cap S = \emptyset$, then similar the above, we obtain $\phi(X + MI) = \phi(\langle S^c \rangle)$, a contradiction. Thus, since $YI \nsubseteq \phi(X) = \phi(\langle S^c \rangle), (X + Y) \cap S \neq \emptyset$ and $(X + MI) \cap S \neq \emptyset$, one obtains $(X + YI) \cap S \neq \emptyset$, by S is a ϕ -m-system. Then as $YI \subseteq X$, one gets $X \cap S \neq \emptyset$. This gives us a contradiction. Consequently, one can see that $Y \subseteq X$ or $I \subseteq (X :_R M)$

Definition 4.6. Let $Y \in S(M)$. If there is a ϕ -prime submodule X contains Y such that $\phi(Y) = \phi(X)$, then we define the radical of Y as :

 $\sqrt{Y} := \{x \in M : \text{every } \phi \text{-}m \text{-system } S \text{ containing } x \text{ such that } \phi(Y) = \phi(\langle S^c \rangle) \text{ meets } Y\}, \text{ otherwise } \sqrt{Y} := M.$

Theorem 4.7. Let ϕ be containment and sum preserving. For $Y \in S(M)$, let $\Omega := \{X_i \in S(M) : X_i \text{ is } \phi\text{-prime with } Y \subseteq X_i \text{ and } \phi(Y) = \phi(X_i), \text{ for } i \in \Lambda \}$. Then we have

$$\sqrt{Y} = \bigcap_{X_i \in \Omega} X_i.$$

Proof. Assume that $\sqrt{Y} \neq M$. Choose $x \in \sqrt{Y}$ and $X_i \in \Omega$. By Proposition 4.2, we know $S = M - X_i$ is a ϕ -m-system. As $S \cap Y = \emptyset$ and $x \in \sqrt{Y}$, we have $x \notin S$. Thus $x \in X_i$ and so $\sqrt{Y} \subseteq \bigcap_{X_i \in \Omega} X_i$. For the

other containment, choose $y \notin \sqrt{Y}$. Thus, there is a ϕ -*m*-system S in M with $y \in S$, $\phi(Y) = \phi(\langle S^c \rangle)$ and $S \cap Y = \emptyset$. Let us consider, the following set :

$$\Delta := \{ X_i \in S(M) : Y \subseteq X_i, \ S \cap X_i = \emptyset \text{ and } \phi(X_i) = \phi(\langle S^c \rangle) \}$$

One can see clearly, $Y \in \Delta$, so $\Delta \neq \emptyset$. Let $X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots$ be a chain in Δ . Then it is easy to see that $Y \subseteq \bigcup X_i$ and $S \cap (\bigcup X_i) = \emptyset$. Also, since ϕ is containment and sum preserving with $\phi(X_i) = \phi(\langle S^c \rangle)$, one can see $\phi(\bigcup X_i) = \phi(\langle S^c \rangle)$. Thus $\bigcup X_i \in \Delta$. Hence, by Zorn's Lemma, Δ has a maximal element, say X_{i_1} . Then $y \notin X_{i_1}$, since $y \in S$ and $S \cap X_{i_1} = \emptyset$. Thus $y \notin \bigcap_{X_i \in \Omega} X_i$, so we obtain $\bigcap_{X_i \in \Omega} X_i \subseteq \sqrt{Y}$. \Box

Acknowledgments

The authors wish to thank the referees for their invaluable comments.

References

- R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. Math. Sci., 27 (2003), 1715–1724.
- [2] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686–696.
- [3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003) 831–840.
- [4] D. D. Anderson, Cancellation modules and related modules, Lect. Notes Pure Appl. Math., 220 (2001), 13-25.
- [5] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, (1992).
- [6] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38 (3) (2007), 247–252.
- [7] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, CRC Press (1969).
- [8] P. K. Beiranvand and R. Beyranvand, Almost prime and weakly prime submodules, J. Algebra Appl., 18 (7) (2019), 1950129, 14 pp.
- [9] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43–49.
- [10] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156–181.
- [11] T. Y. Lam, A first course in noncommutative rings, Second Edition, Springer, (1991).
- [12] C. P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61–69.
- [13] R. L. McCasland and M. E. Moore, *Prime submodules*, Comm. Algebra, **20** (1992), 1803–1817.
- [14] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy essential-small submodules and Fuzzy small-essential submodules, Journal of Hyperstructures, 9 (2), (2020), 52-67.
- [15] A. A. Tuganbaev, *Multiplication modules*, Journal of Mathematical Sciences, 123
 (2) (2004), 3839–3905.
- [16] N. Zamani, φ-prime submodules, Glasgow Math. J., **52** (2) (2010), 253–259.

Emel Aslankarayigit Ugurlu

Department of Mathematics, Marmara University, P.O.Box 34722, Istanbul, Turkey Email: emel.aslankarayigit@marmara.edu.tr