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GENERALIZATIONS OF PRIME SUBMODULES OVER

NON-COMMUTATIVE RINGS

EMEL ASLANKARAYIGIT UGURLU

Abstract. Throughout this paper, R is an associative ring (not
necessarily commutative) with identity and M is a right R-module
with unitary. In this paper, we introduce a new concept of φ-
prime submodule over an associative ring with identity. Thus we
define the concept as following: Assume that S(M) is the set of
all submodules of M and φ : S(M) → S(M) ∪ {∅} is a function.
For every Y ∈ S(M) and ideal I of R, a proper submodule X of
M is called φ-prime, if Y I ⊆ X and Y I * φ(X), then Y ⊆ X
or I ⊆ (X :R M). Then we examine the properties of φ-prime
submodules and characterize it when M is a multiplication module.
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1. Introduction

Throughout this paper, R is an associative ring (unless otherwise
stated, not necessarily commutative) with identity and M is a right R-
module with unitary. Suppose that M is an R-module, S(M) and S(R)
are the set of all submodules of M , the set of all ideals of R, respectively.
For an ideal A of R, we denote the set {t ∈M : tA ⊆ X} as (X :M A).
One clearly proves that (X :M A) ∈ S(M) and X ⊆ (X :M A). Also,
for two subsets X and Y of M , the subset {r ∈ R : Xr ⊆ Y } of R is
denoted by (Y :R X). If Y is a submodule of M , then it is obviously
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proved that for any subset X of M , the set (Y :R X) is a right ideal
of R. It is obtained (Y :R X) is an ideal of R for X,Y ∈ S(M), see
[15]. Thus, clearly one can see that (X :R M) is an ideal of R, for all
X ∈ S(M).

A proper ideal A of a commutative ring R is prime if whenever a1, a2 ∈
R with a1a2 ∈ A, then a1 ∈ A or a2 ∈ A, [7]. In 2003, the authors [3]
said that if whenever a1, a2 ∈ R with 0R 6= a1a2 ∈ A, then a1 ∈ A or
a2 ∈ A, a proper ideal A of a commutative ring R is weakly prime. In
[9], Bhatwadekar and Sharma defined a proper ideal A of an integral
domain R as almost prime (resp. n-almost prime) if for a1, a2 ∈ R
with a1a2 ∈ A − A2, (resp. a1a2 ∈ A − An, n ≥ 3) then a1 ∈ A or
a2 ∈ A. This definition can be made for any commutative ring R.
Later, Anderson and Batanieh [2] introduced a concept which covers
all the previous definitions in a commutative ring R as following: Let
φ : S(R)→ S(R)∪{∅} be a function. A proper ideal A of a commutative
ring R is called φ-prime if for a1, a2 ∈ R with a1a2 ∈ A − φ(A), then
a1 ∈ A or a2 ∈ A.

The notion of the prime ideal in a commutative ring R is extended
to modules by several studies, [10, 12, 13]. For a commutative ring R,
a proper X ∈ S(M) is said to be prime [1], if ma ∈ X, then m ∈ X or
a ∈ (X :R M), for a ∈ R and m ∈ M. In [6], the authors introduced
weakly prime submodules over a commutative ring R as following: A
proper submodule X of M is called weakly prime if for r ∈ R and m ∈M
with 0M 6= mr ∈ X, then m ∈ X or r ∈ (X :R M). Then, N. Zamani
[16] introduced the concept of φ-prime submodules over a commutative
ring R as following: Let φ : S(M) → S(M) ∪ {∅} be a function. A
proper submodule X of an R-module M is said to be φ-prime if r ∈ R,
m ∈M with mr ∈ X −φ(X), then m ∈ X or r ∈ (X :R M). He defined
the map φα : S(M)→ S(M) ∪ {∅} as follows:

(1) φ∅ : φ(X) = ∅ defines prime submodules.
(2) φ0 : φ(X) = {0M} defines weakly prime submodules.
(3) φ2 : φ(X) = X(X :R M) defines almost prime submodules.
(4) φn : φ(X) = X(X :R M)n−1 defines n-almost prime submodules

(n ≥ 2).
(5) φω : φ(X) = ∩∞n=1X(X :R M)n defines ω-prime submodules.
(6) φ1 : φ(X) = X defines any submodule.

On the other hand, in [8], P. Karimi Beiranvand and R. Beyranvand
introduced the almost prime and weakly prime submodules over R (not
necessarily commutative) as following: A proper submodule X of an



Gen. of prime submodules over non-com. rings 67

R-module M is called almost prime, for any ideal I of R and any sub-
module Y of M, if Y I ⊆ X and Y I * X(X :R M), then Y ⊆ X or
I ⊆ (X :R M). Also, X is called weakly prime, for any ideal I of R and
any submodule X of M, if 0M 6= Y I ⊆ X, then Y ⊆ X or I ⊆ (X :R M).
In the mentioned study, they obtain some important results on the two
submodules over R.

In any non-commutative ring, T. Y. Lam [11] proved that an ideal A
of R is a prime ideal (i.e., for two ideals I1, I2 of R, I1I2 ⊆ A implies
I1 ⊆ A or I2 ⊆ A ) ⇐⇒ for a1, a2 ∈ R, a1a2 ∈ A implies a1 ∈ A or
a2 ∈ A. Similarly, for any module over any non-commutative ring, J.
Dauns [10] showed that for M over R, a proper X ∈ S(M) is prime (i.e.,
if mRa ⊆ X, then m ∈ X or a ∈ (X :R M), for a ∈ R and m ∈ M)
⇐⇒ for an ideal A of R and for a submodule Y of M, Y A ⊆ X implies
Y ⊆ X or A ⊆ (X :R M).

Moreover, note that in commutative ring theory, we know that there
is a relation between prime ideals and multiplicatively closed sets. Simi-
larly, in non-commutative ring theory, there is a relation between prime
ideals andm-system sets. In [11], one can see that if for all x, y ∈ S, there
exists a ∈ R with xay ∈ S, then ∅ 6= S ⊆ R is called an m-system. Also,
T. Y. Lam [11] defined the radical of an ideal A of R as:

√
A = {s ∈ R :

every m-system containing s meets A} ⊆ {s ∈ R : sn ∈ A for some

n ≥ 1}. Then he proved that
√
A equals the intersection of all prime

ideals containing A and
√
A is an ideal, see, (10.7) Theorem in [11].

Our aim in this paper, similar to [8], to introduce the concept of φ-
prime submodule over an associative ring (not necessarily commutative)
with identity. For this purpose, we define a φ-prime submodules over
R. In Section 2, after the introducing of φ-prime submodules over R, in
Theorem 2.5, we characterize a φ-prime submodule. Then with Theo-
rem 2.6, we give another equivalent definitions for φ-prime submodule.
Also, in the section some properties of the submodules are examined.
In Theorem 2.17, another characterization of φ-prime submodule is ob-
tained. In Section 3, after a reminder about multiplication module, it
is shown that X is φ-prime ⇐⇒ Y1Y2 ⊆ X and Y1Y2 * φ(X) implies
Y1 ⊆ X or Y2 ⊆ X, for Y1, Y2 ∈ S(M), see Corollary 3.2. Moreover,
in Theorem 3.3, for a multiplication module, under some conditions we
prove that X is φ-prime in M ⇐⇒ (X :R M) is a ψ-prime ideal in R. In
Section 4, with Definition 4.1, we introduce a new concept which is called
φ-m-system. Then we show that in Proposition 4.2, for X ∈ S(M), X
is φ-prime ⇐⇒ S = M − X is a φ-m-system. Also, we examine some
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properties of the φ-m-system. Finally, with Definition 4.6, we introduce
the radical of Y as

√
Y := {x ∈ M : every φ-m-system S containing

x such that φ(Y ) = φ(< Sc >) meets Y }, otherwise
√
Y := M, where

Sc = M − S. As a final result, for the set Ω := {Xi ∈ S(M) : Xi is
φ-prime with Y ⊆ Xi and φ(Y ) = φ(Xi), for i ∈ Λ }, it is obtained that√
Y =

⋂
Xi∈Ω

Xi, see Theorem 4.7.

2. Properties of φ−Prime submodules

Throughout our study, assume that φ : S(M) → S(M) ∪ {∅} is a
function.

Definition 2.1. For every Y ∈ S(M) and I ∈ S(R), a properX ∈ S(M)
is said to be φ-prime, if Y I ⊆ X and Y I * φ(X), then Y ⊆ X or
I ⊆ (X :R M). We defined the map φα : S(M) → S(M) ∪ {∅} as
follows:

(1) φ∅ : φ(X) = ∅ defines prime submodules.
(2) φ0 : φ(X) = {0M} defines weakly prime submodules.
(3) φ2 : φ(X) = X(X :R M) defines almost prime submodules.
(4) φn: φ(X) = X(X :R M)n−1 defines n-almost prime submodules(n ≥

2).
(5) φω : φ(X) = ∩∞n=1X(X :R M)n defines ω-prime submodules.
(6) φ1 : φ(X) = X defines any submodule.

In the above definition, if we consider φ : S(R) → S(R) ∪ {∅}, we
obtain the concept of φ-prime ideal in an associative ring (not necessarily
commutative) with identity as following: For every I, J ∈ S(R), a proper
A ∈ S(R) is said to be φ-prime, if IJ ⊆ A and IJ * φ(A), then I ⊆ A
or J ⊆ A. For commutative case, this definition is equivalent to the
definition of φ-prime ideal in a commutative ring, see the Theorem 13
in [2].

Notice that since X − φ(X) = X − (X ∩ φ(X)), for any submodule
X of M , without loss of generality, suppose φ(X) ⊆ X. Let ψ1, ψ2 :
S(M) → S(M) ∪ {∅} be two functions, if ψ1(X) ⊆ ψ2(X) for each
X ∈ S(M), we denote ψ1 ≤ ψ2. Thus clearly, we have the following
order: φ∅ ≤ φ0 ≤ φω ≤ ... ≤ φn+1 ≤ φn ≤ ... ≤ φ2 ≤ φ1. Whenever
ψ1 ≤ ψ2, any ψ1-prime submodule is ψ2-prime.
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Example 2.2. Let p and q be two prime numbers. Consider Z−module
Zpq. The zero submodule is φ0−prime, but it is not φ∅−prime. Moreover,
in Z−module Zpq2 , the submodule q2Zpq2 is φ2−prime. However, since

q2Zpq2(q2Zpq2 :Z Zpq2) = q2Zpq2 , it is not φ0−prime.

Example 2.3. Let M be an R-module.

(1) The zero submodule of R is both φ0−prime submodule and
φ2−prime submodule, on the other hand it may not be φ∅−prime.

(2) If M is a prime R-module and N be a proper submodule of M .
Then N is φ∅−prime if and only if φ0−prime.

(3) Let M be a homogeneous semisimple R-module and N be a
proper submodule of M . Then since every proper submodule is
prime, hence N is prime, so is φ−prime.

Example 2.4. (Example 2.2 (f) in [8])Let M = S1
⊕
S2, which S1, S2 are

simple R-module such that S1 � S2 and N be a proper submodule of
M. Then since every non-zero proper submodule is prime, then N is
prime, so is φ−prime. Indeed, assume that 0M 6= X ∈ S(M) is proper
and Y I ⊆ X where Y ∈ S(M) and I ∈ S(R). By Proposition 9.4 in [5],
we have M/X ∼= S1 or M/X ∼= S2. Then ((Y + X)/X)I = 0M and as
(Y + X)/X ∈ S(M/X) and M/X is simple, we get (Y + X)/X = 0M
or Ann((Y + X)/X) = Ann(M/X). This means that Y + X = X or
(M/X)I = 0M . Consequently, Y ⊆ X or MI ⊆ X.

Note that for an element a of R, the ideal generated by a in R is
denoted by RaR. Similarly, the right and left ideal generated by a in R
are denoted by aR, Ra, respectively. Also, we denote the ideal generated
by A as < A >, for a subset A of R. For an element x of M, the
submodule generated by x in M is denoted by xR. Finally, for a subset
X of M , we denote the submodule generated by X in M as < X >.

In the following Theorem, we obtain a characterization of a φ-prime
submodule of M .

Theorem 2.5. For a proper submodule X of M , the followings are
equivalent:

(1) X is a φ-prime submodule of M.
(2) For all m ∈M −X,

(X :R mR) = (X :R M) ∪ (φ(X) :R mR).
(3) For all m ∈M −X,

(X :R mR) = (X :R M) or (X :R mR) = (φ(X) :R mR).
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Proof. (1) =⇒ (2) : Let X be a φ-prime submodule of M. For all m ∈
M −X, choose a ∈ (X :R mR)− (φ(X) :R mR). Then (mR)(RaR) ⊆ X
and (mR)(RaR) * φ(X). As X is φ-prime, one can see mR ⊆ X or
RaR ⊆ (X :R M). The first option gives us a contradiction. Thus
a ∈ (X :R M). Moreover, as φ(X) ⊆ X, we always have (φ(X) :R
mR) ⊆ (X :R mR).

(2) =⇒ (3) : If an ideal is a union of two ideals, it equals to one of
them.

(3) =⇒ (1) : Choose Y ∈ S(M) and an ideal I in R which Y I ⊆ X
and I * (X :R M), Y * X. Let us prove Y I ⊆ φ(X). For all r ∈ I and
m ∈ Y, we have mr ∈ Y I ⊆ X.

Now, take m ∈ Y −X. Then we have 2 cases:
Case 1: r /∈ (X :R M). Since mr ∈ Y I ⊆ X, one can see (mR)r ⊆

Y I ⊆ X, i.e., r ∈ (X :R mR). Thus (X :R mR) = (φ(X) :R mR) by our
hypothesis (3). This means r ∈ (φ(X) :R mR), so, mr ∈ φ(X).

Case 2 : r ∈ (X :R M). Thus r ∈ I ∩ (X :R M). Choose s ∈ I− (X :R
M). Thus r+ s ∈ I − (X :R M). Similar to Case 1, since s /∈ (X :R M),
one can see ms ∈ φ(X). By the same reason, as r + s /∈ (X :R M),
m(r + s) ∈ φ(X). Since ms ∈ φ(X), we obtain mr ∈ φ(X).

Now, let m ∈ Y ∩ X. Since Y * X, there exists m∗ ∈ Y − X. By
the above observations, m∗r ∈ φ(X) and (m + m∗)r ∈ φ(X) (since
m+m∗ ∈ Y −X). This implies that mr ∈ φ(X).

Consequently, for every case we get Y I ⊆ φ(X). �

Theorem 2.6. For X ∈ S(M), the items are equivalent:

(1) X is φ-prime.
(2) For ∀ right ideal I in R and Y ∈ S(M),

Y I ⊆ X and Y I * φ(X) implies that Y ⊆ X or I ⊆ (X :R M).

(3) For ∀ left ideal I of R and Y ∈ S(M),

Y I ⊆ X and Y I * φ(X) implies that Y ⊆ X or I ⊆ (X :R M).

(4) For ∀a ∈ R and Y ∈ S(M),

Y (RaR) ⊆ X and Y (RaR) * φ(X) implies that Y ⊆ X or a ∈ (X :R M).

(5) For ∀a ∈ R and Y ∈ S(M),

Y (aR) ⊆ X and Y (aR) * φ(X) implies that Y ⊆ X or a ∈ (X :R M).

(6) For ∀a ∈ R and Y ∈ S(M),

Y (Ra) ⊆ X and Y (Ra) * φ(X) implies that Y ⊆ X or a ∈ (X :R M).
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Proof. (1)⇒ (2) : Suppose that X is φ-prime. Choose a right ideal I and
Y ∈ S(M) with Y I ⊆ X, Y I * φ(X). Let < I >:= {

∑
riaisi : ri, si ∈ R

and ai ∈ I} be the ideal generated by I. Then as I is a right ideal, one
easily has that Y < I >⊆ Y I ⊆ X. Moreover, Y < I >* φ(X). Indeed,
if Y < I >⊆ φ(X), then Y I ⊆ Y < I >⊆ φ(X), a contradiction. Thus,
since X is φ-prime, Y < I >⊆ X and Y < I >* φ(X), we have Y ⊆ X
or < I >⊆ (X :R M), so I ⊆ (X :R M).

(2) ⇒ (3) : Choose a left ideal I and Y ∈ S(M) with Y I ⊆ X,
Y I * φ(X). Let consider again the ideal < I > of R. Then since Y I ⊆
X and I is a left ideal, one can see that Y < I >⊆ X. Moreover,
let us prove Y < I >* φ(X). Asumme that Y < I >⊆ φ(X), then
Y I ⊆ Y < I >⊆ φ(X), a contradiction. Thus, since < I > is an ideal
(so right ideal) by (2), we obtain Y ⊆ X or < I >⊆ (X :R M), so
I ⊆ (X :R M).

(3) ⇒ (4) : Let a ∈ R and Y be a submodule of M such that
Y (RaR) ⊆ X and Y (RaR) * φ(X). Since Y = Y R, Y (RaR) = Y R(aR) =
Y (Ra) ⊆ X and Y (Ra) * φ(X). Since Ra is a left ideal, by (3), one
can see Y ⊆ X or Ra ⊆ (X :R M). Thus Y ⊆ X or a ∈ (X :R M).

(4) ⇒ (5) : Assume a ∈ R and Y ∈ S(M) with Y (aR) ⊆ X and
Y (aR) * φ(X). Then we see Y (aR) = Y R(aR) ⊆ X and Y R(aR) *
φ(X). By (4), one obtains Y ⊆ X or a ∈ (X :R M).

(5) ⇒ (6) : Let a ∈ R and Y ∈ S(M) with Y (Ra) ⊆ X, Y (Ra) *
φ(X). Thus Y a ⊆ X and Y a * φ(X). Then we see Y (aR) ⊆ X and
Y (aR) * φ(X). Thus by (5), Y ⊆ X or a ∈ (X :R M).

(6) ⇒ (1) : Suppose that (6) satisfies. By the help of (1) ⇔ (2) in
Theorem 2.5, let us prove that for all m ∈M−X, one has (X :R mR) =
(X :R M)∪ (φ(X) :R mR). Let a ∈ (X :R mR). Then we see mRa ⊆ X.
If mRa ⊆ φ(X), one gets a ∈ (φ(X) :R mR). If mRa * φ(X), this
implies that (mR)(Ra) * φ(X). Thus we have mRa = (mR)(Ra) ⊆ X
and (mR)(Ra) * φ(X). Then by (6), mR ⊆ X or a ∈ (X :R M).
The first option gives us a contradiction with m ∈ M − X. Then a ∈
(X :R M). Thus (X :R mR) ⊆ (X :R M) ∪ (φ(X) :R mR). Since
the other containment always satisfies, we have (X :R mR) = (X :R
M) ∪ (φ(X) :R mR). Therefore, X is a φ-prime submodule of M. �

Theorem 2.7. If X is a φ-prime submodule such that X(X :R M) *
φ(X), then X is prime.

Proof. Assume that I is an ideal of R and Y is a submodule of M such
that Y I ⊆ X. Then we have 2 cases:
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Case 1: Y I * φ(X). As X is φ-prime, we get Y ⊆ X or I ⊆ (X :R M).
So, it is done.

Case 2: Y I ⊆ φ(X). In this case, we may assume XI ⊆ φ(X) · · · · · ·(1).
Indeed, if XI * φ(X), then there is an m ∈ X such that mI * φ(X).
Then we obtain (Y+mR)I ⊆ X−φ(X). AsX is φ-prime, Y+mR ⊆ X or
I ⊆ (X :R M). So, Y ⊆ X or I ⊆ (X :R M). Moreover, we may suppose
Y (X :R M) ⊆ φ(X) · · · · · ·(2). Indeed, if Y (X :R M) * φ(X), there exists
an a ∈ (X :R M) with Y a * φ(X). Then we have Y (I +RaR) ⊆ X and
Y (I+RaR) * φ(X). SinceX is φ-prime, Y ⊆ X or I+RaR ⊆ (X :R M).
Therefore, Y ⊆ X or I ⊆ (X :R M).

As X(X :R M) * φ(X), one can see that there are b ∈ (X :R M)
and x ∈ X such that xb /∈ φ(X). Then by (1) and (2), we obtain
(Y +xR)(I+RbR) ⊆ X and (Y +xR)(I+RbR) * φ(X). By the help of
the hypothesis, Y +xR ⊆ X or I +RbR ⊆ (X :R M). Then one obtains
Y ⊆ X or I ⊆ (X :R M). �

Corollary 2.8. If X is a weakly prime submodule with X(X :R M) 6=
0M , then X is prime.

Proof. In Theorem 2.7, set φ = φ0. �

Corollary 2.9. If X is a φ-prime submodule such that φ(X) ⊆ X(X :R
M)2, then X is φω-prime.

Proof. Assume that Y I ⊆ X and Y I * ∩∞i=1X(X :R M)i, for some Y ∈
S(M) and ideal I of R. If X is prime, we are done. So, suppose X is not
prime. Then Theorem 2.7 implies X(X :R M) ⊆ φ(X) ⊆ X(X :R M)2

⊆ X(X :R M), i.e., X(X :R M) = φ(X) = X(X :R M)2. Thus, we
obtain φ(X) = ∩∞i=1X(X :R M)i, for every i ≥ 1. As X is φ -prime,
Y ⊆ X or I ⊆ (X :R M). Consequently, we obtain X is φω-prime. �

Note that a submodule X of M is called radical if
√

(X :R M) =
(X :R M).

Corollary 2.10. Let X be a φ-prime submodule of M . Then

(1) Either (X :R M) ⊆
√

(φ(X) :R M) or
√

(φ(X) :R M) ⊆ (X :R
M).

(2) If (X :R M) (
√

(φ(X) :R M), X is not prime.

(3) If
√

(φ(X) :R M) ( (X :R M), X is prime.
(4) If φ(X) is a radical submodule, then either (X :R M) = (φ(X) :R

M) or X is prime.
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Proof. Suppose X is φ-prime.

(1) Assume that X is prime. Then (X :R M) is a prime ideal of
R, see [10]. As φ(X) ⊆ X, we see (φ(X) :R M) ⊆ (X :R M),

so
√

(φ(X) :R M) ⊆
√

(X :R M) = (X :R M). Now assume
that X is not prime. By Theorem 2.7, one see X(X :R M) ⊆
φ(X). This implies that

√
(X :R M)2 ⊆

√
(X(X :R M) :R M) ⊆√

(φ(X) :R M).Hence (X :R M) ⊆
√

(X :R M) =
√

(X :R M)2 ⊆√
(φ(X) :R M).

(2) Suppose (X :R M) (
√

(φ(X) :R M). IfX is prime,
√

(φ(X) :R M) ⊆√
(X :R M) = (X :R M), i.e., a contradiction. So, X is not

prime.
(3) Let

√
(φ(X) :R M) ( (X :R M). If X is not prime, by the

help of Theorem 2.7, we get X(X :R M) ⊆ φ(X). Then one see√
(X :R M)2 ⊆

√
(X(X :R M) :R M) ⊆

√
(φ(X) :R M). Hence,

since
√

(X :R M)2 =
√

(X :R M), (X :R M) ⊆
√

(φ(X) :R M),
i.e., a contradiction.

(4) Let φ(X) be a radical submodule. Suppose that X is not prime.

By the argument in the proof of (1), (X :R M) ⊆
√

(φ(X) :R M).
Then since φ(X) is a radical submodule, we see that (X :R M) ⊆√

(φ(X) :R M) = (φ(X) :R M). As the other containment is al-
ways hold, (X :R M) = (φ(X) :R M).

�

Remark 2.11. Assume that X ∈ S(M).

(1) If X is φ-prime but not prime such that φ(X) ⊆ X(X :R M),
then φ(X) = X(X :R M). In particular, if X is not prime and
X is weakly prime, then X(X :R M) = 0M .

(2) If X is φ-prime but not prime such that φ(X) ⊆ X(X :R M)2,
then φ(X) = X(X :R M)2. In particular, if X is not prime and
X is φ2-prime, then X(X :R M) = X(X :R M)2.

Now, for Y ∈ S(M), let us define φY : S(M/Y ) → S(M/Y ) ∪ {∅}
by φY (X/Y ) = (φ(X) + Y )/Y, for every X ∈ S(M) with Y ⊆ X (and
φY (X/Y ) = ∅ if φ(X) = ∅).

Theorem 2.12. Let X,Y ∈ S(M) be proper with Y ⊆ X. Then we have

(1) If X is a φ-prime submodule of M, then X/Y is a φY -prime
submodule of M/Y .
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(2) If Y ⊆ φ(X) and X/Y is a φY -prime submodule of M/Y, then
X is a φ-prime submodule of M .

(3) If φ(X) ⊆ Y and X is φ-prime, then X/Y is weakly prime.
(4) If φ(Y ) ⊆ φ(X), Y is φ-prime and X/Y is weakly prime, then

X is φ-prime.

Proof. Let X,Y ∈ S(M) be proper with Y ⊆ X.
(1) : Assume I ∈ S(R) and Z/Y is a submodule of M/Y with

(Z/Y )I ⊆ X/Y and (Z/Y )I * φY (X/Y ). Then clearly, (Z/Y )I =
ZI + Y/Y and ZI ⊆ ZI + Y ⊆ X. Moreover ZI * φ(X). Indeed, if
ZI ⊆ φ(X), then one can see (ZI+Y )/Y ⊆ (φ(X)+Y )/Y = φY (X/Y ),
so (Z/Y )I ⊆ φY (X/Y ), i.e., a contradiction. Since X is φ-prime, we see
I ⊆ (X :R M) or Z ⊆ X. Then one obtains I ⊆ (X :R M) = (X/Y :R
M/Y ) or Z/Y ⊆ X/Y.

(2) : Suppose that I is an ideal of R and Z is a submodule of M
such that ZI ⊆ X and ZI * φ(X). Then ZI + Y/Y = (Z/Y )I ⊆
X/Y. Moreover, (Z/Y )I * φY (X/Y ). Indeed, if (Z/Y )I ⊆ φY (X/Y ) =
(φ(X) + Y )/Y, as Y ⊆ φ(X) we have ZI + Y/Y ⊆ φ(X)/Y, i.e., ZI ⊆
φ(X), a contradiction. Since X/Y is a φY -prime submodule of M/Y,
one can see I ⊆ (X/Y :R M/Y ) or Z/Y ⊆ X/Y. This implies that
I ⊆ (X :R M) or Z ⊆ X.

(3) : Assume that I ∈ S(R) and Z/Y is a submodule of M/Y with
0M/Y 6= (Z/Y )I ⊆ X/Y. Clearly, we have Y ⊂ ZI ⊆ X. Then since

φ(X) ⊆ Y, we see ZI * φ(X). As X is φ-prime, I ⊆ (X :R M) or
Z ⊆ X. This implies I ⊆ (X/Y :R M/Y ) or Z/Y ⊆ X/Y.

(4) : Suppose that φ(Y ) ⊆ φ(X), Y is φ-prime and X/Y is weakly
prime. Choose Z ∈ S(M) and an ideal I of R which ZI ⊆ X, ZI *
φ(X). Then since φ(Y ) ⊆ φ(X) and ZI * φ(X), we have ZI * φ(Y ).
Then one can see 2 cases :

Case 1 : ZI ⊆ Y. As Y is φ-prime, I ⊆ (Y :R M) or Z ⊆ Y. Since
Y ⊆ X, we have I ⊆ (X :R M) or Z ⊆ X, so it is done.

Case 2 : ZI * Y. Then 0M/Y 6= ZI + Y/Y = (Z/Y )I ⊆ X/Y. Since
X/Y is weakly prime, I ⊆ (X/Y :R M/Y ) or Z/Y ⊆ X/Y. Thus, we
obtain I ⊆ (X :R M) or Z ⊆ X. �

Corollary 2.13. For a proper X ∈ S(M), X is φ-prime in M ⇐⇒
X/φ(X) is weakly prime in M/φ(X).

Proof. =⇒: By (3) of Theorem 2.12.
⇐=: By (2) of Theorem 2.12. �
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Note that we say M is a torsion-free module if (0M :R m) = 0R, for
all 0M 6= m ∈M.

Theorem 2.14. Let M be torsion-free and 0M 6= m ∈M . Then mR is
prime ⇐⇒ mR is almost prime.

Proof. =⇒: Obvious.
⇐=: Assume that mR is not prime. Then there are a ∈ R, x ∈

M with a /∈ (mR :R M), x /∈ mR, also xRa ⊆ mR. Then we have
(xR)(RaR) ⊆ mR and the following 2 cases:

Case 1 : (xR)(RaR) * mR(mR :R M) = φ2(mR). Since a /∈ (mR :R
M), x /∈ mR, one gets (RaR) * (mR :R M) and (xR) * mR. Thus we
obtain that mR is not almost prime.

Case 2 : (xR)(RaR) ⊆ mR(mR :R M) = φ2(mR). Then we have
xa ∈ mR(mR :R M). Moreover, as xRa ⊆ mR, we have (x+m)a ∈ mR
and x+m /∈ mR. Then (xR+mR)(RaR) ⊆ mR. If (xR+mR)(RaR) *
mR(mR :R M), as a /∈ (mR :R M) and x + m /∈ mR, one can see
mR is not almost prime. If (xR + mR)(RaR) ⊆ mR(mR :R M), then
(x+m)a ∈ mR(mR :R M). Then, by the assumption in Case 2, we have
xa ∈ mR(mR :R M), so, ma ∈ mR(mR :R M). Hence there exist an
element b ∈ (mR :R M) and r ∈ R such that ma = (mr)b. This implies
that a− rb ∈ (0M :R m) = 0R, i.e., a = rb ∈ (mR :R M). So, we obtain
a contradiction with a /∈ (mR :R M). Consequently, in every case mR
is not almost prime. �

Theorem 2.15. Let 0R 6= a ∈ R such that (0M :M a) ⊆ Ma and
a(Ma :R M) = (Ma :R M)a. Thus Ma is prime ⇐⇒ Ma is almost
prime.

Proof. =⇒: It is obvious.
⇐=: Suppose that Ma is almost prime. Let b ∈ R, m ∈ M with

mRb ⊆ Ma. We prove that m ∈ Ma or b ∈ (Ma :R M). Then one can
see clearly, (mR)(RbR) ⊆Ma. Now, we get 2 cases:

Case 1 : (mR)(RbR) * Ma(Ma :R M) = φ2(Ma). Since Ma is
almost prime, we have mR ⊆ Ma or RbR ⊆ (Ma :R M). So, m ∈ Ma
or b ∈ (Ma :R M).

Case 2 : (mR)(RbR) ⊆Ma(Ma :R M) = φ2(Ma). As mb ∈Ma, one
gets m(b + a) ∈ Ma. Then (mR)(RbR + RaR) ⊆ Ma. If (mR)(RbR +
RaR) * Ma(Ma :R M), as Ma is almost prime, mR ⊆ Ma or RbR +
RaR ⊆ (Ma :R M). Thus, one can see mR ⊆ Ma or RbR ⊆ (Ma :R
M). Therefore, it is done. If (mR)(RbR + RaR) ⊆ Ma(Ma :R M),
then (mR)(RaR) ⊆ Ma(Ma :R M) = M(Ma :R M)a. Thus ma ∈
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M(Ma :R M)a. Then, one has n ∈M(Ma :R M) with ma = na. Hence
m − n ∈ (0M :M a) ⊆ Ma. This implies m ∈ M(Ma :R M) + (0M :M
a) ⊆Ma. �

Corollary 2.16. Let M be torsion-free and a ∈ R such that a(Ma :R
M) = (Ma :R M)a. Thus Ma is prime ⇐⇒ Ma is almost prime.

Proof. By Theorem 2.15, it is clear. �

Theorem 2.17. Let X be a proper submodule ofM . Then the followings
are equivalent:

(1) X is a φ-prime submodule of M.
(2) For all ideal I of R with I * (X :R M), then

(X :M I) = X ∪ (φ(X) :M I).
(3) For all ideal I of R with I * (X :R M), then

(X :M I) = X or (X :M I) = (φ(X) :M I).

Proof. Choose X ∈ S(M).
(1) =⇒ (2) : Assume X is φ-prime. Choose an ideal I which I * (X :R

M). Then one can see X ⊆ (X :M I) and (φ(X) :M I) ⊆ (X :M I),
so X ∪ (φ(X) :M I) ⊆ (X :M I). For the other containment, since
(X :M I)I ⊆ X, and one gets 2 cases:

Case 1: (X :M I)I * φ(X). Then since (X :M I)I ⊆ X and X is
φ-prime, I ⊆ (X :R M) or (X :M I) ⊆ X. As the first option gives us a
contradiction, it must be (X :M I) ⊆ X.

Case 2: (X :M I)I ⊆ φ(X). Then we obtain (X :M I) ⊆ (φ(X) :M I),
so it is done.

(2) =⇒ (3) : If a submodule is a union of two submodules, it equals
to one of them.

(3) =⇒ (1) : Choose an ideal I in R, Y ∈ S(M) with Y I ⊆ X,
Y I * φ(X). If I ⊆ (X :R M), it is done. Suppose I * (X :R M).
Then by (3), one can see (X :M I) = X or (X :M I) = (φ(X) :M I).
If (X :M I) = X, since Y I ⊆ X, we have Y ⊆ (X :M I) = X. So,
we are done. If (X :M I) = (φ(X) :M I), as Y I * φ(X), we have
Y * (φ(X) :M I) = (X :M I), a contradiction with Y I ⊆ X. �

Proposition 2.18. Let X be a proper submodule of M and I be an
ideal of R such that MI 6= XI and XI 6= X. Then Y = XI is a φ-
prime submodule of M if and only if Y = φ(Y ).

Proof. ⇐=: Let Y = φ(Y ). Then obviously Y is φ-prime.
=⇒: Suppose that Y = XI is a φ-prime submodule. Let us consider

Theorem 2.17. Now, we have 2 cases:
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Case 1 : I * (Y :R M). By Theorem 2.17, one obtains (Y :M I) = Y
or (Y :M I) = (φ(Y ) :M I). If (Y :M I) = Y, we have X ⊆ (Y :M I) =
(XI :M I) = Y = XI, i.e., X = XI, a contradiction. If (Y :M I) =
(φ(Y ) :M I), as X ⊆ (Y :M I), we see Y = XI ⊆ (Y :M I)I = (φ(Y ) :M
I)I ⊆ φ(Y ), so Y ⊆ φ(Y ). Then one obtains φ(Y ) = Y. So it is done.

Case 2 : I ⊆ (Y :R M). Then MI ⊆ Y = XI, so MI = XI, a
contradiction. �

Corollary 2.19. Let X be a proper submodule of M and I be an ideal
of R such that MIn 6= MIn−1 for some n > 1. Then Y = MIn is a
φ-prime submodule of M if and only if Y = φ(Y ).

Proof. Let consider X = MIn−1. Then XI = MIn ( MIn−1 ⊆ MI,
i.e., XI 6= MI. Moreover, Y = XI = MIn 6= MIn−1 = X, i.e., XI 6= X.
Thus, by Proposition 2.18, it is done. �

Proposition 2.20. Let I be a maximal ideal in R. Then MI = M or
MI is φ-prime in M.

Proof. Let MI 6= M. By the proof of Proposition 2.12 in [8], one can
see that MI is a prime submodule of M. Thus, MI is φ-prime. �

Theorem 2.21. Let X be a proper submodule of M. Suppose that ψ :
S(R)→ S(R) ∪ {∅} be a function. If X is φ-prime, then (X :R Y ) is a
ψ-prime ideal of R, for all Y ∈ S(M) with Y * X and (φ(X) :R Y ) ⊆
ψ((X :R Y )).

Proof. Suppose that X is a φ-prime submodule of M and Y is a sub-
module of M such that Y * X and (φ(X) :R Y ) ⊆ ψ((X :R Y )). Let
IJ ⊆ (X :R Y ) and IJ * ψ((X :R Y )) for two ideals I, J of R. Then
(Y I)J ⊆ X and (Y I)J * φ(X), since (φ(X) :R Y ) ⊆ ψ((X :R Y )).
By our hypothesis, J ⊆ (X :R M) or Y I ⊆ X. If Y I ⊆ X, i.e.,
I ⊆ (X :R Y ), it is done. If J ⊆ (X :R M), since (X :R M) ⊆ (X :R Y ),
we see J ⊆ (X :R Y ). Consequently, (X :R Y ) is a ψ-prime ideal of
R. �

Corollary 2.22. Let X be a proper submodule of M. Suppose that ψ :
S(R)→ S(R) ∪ {∅} be a function with (φ(X) :R M) ⊆ ψ((X :R M)). If
X is a φ-prime submodule of M, then (X :R M) is a ψ-prime ideal of
R.

Proof. Set Y = M in Theorem 2.21. �
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3. φ−Prime submodules in multiplication modules

Note that, an R-module M is called a multiplication module if there is
an ideal I of R such that X = MI, for all X ∈ S(M), see [15]. Also, in a
multiplication module, one can see X = M(X :R M), for all X ∈ S(M),
see [15].

Let X and Y be two submodules of a multiplication R-module M
with X = M(X :R M) and Y = M(Y :R M). The product of X and Y
is denoted by XY and it is defined by XY = M(X :R M)(Y :R M). It
is clear that the product is well-defined.

Proposition 3.1. Let M be multiplication and X ∈ S(M). Then if X
is φ-prime, then for Y1, Y2 ∈ S(M), Y1Y2 ⊆ X and Y1Y2 * φ(X) implies
that Y1 ⊆ X or Y2 ⊆ X.

Proof. Let Y1, Y2 be any submodule in M with Y1Y2 ⊆ X and Y1Y2 *
φ(X). As M is multiplication, we know that Y1 = M(Y1 :R M) and
Y2 = M(Y2 :R M). Then Y1Y2 = M(Y1 :R M)(Y2 :R M) ⊆ X and
Y1Y2 * φ(X). Since X is φ-prime, one can see M(Y1 :R M) ⊆ X or
(Y2 :R M) ⊆ (X :R M). This implies that Y1 ⊆ X or Y2 = M(Y2 :R
M) ⊆M(X :R M) = X. �

Note that we say M is a cancellation module if MI = MJ implies
that I = J for two ideals I, J of R. For the definition of a cancellation
module over commutative ring, see [4].

Corollary 3.2. Let M be multiplication and cancellation. For X ∈
S(M), the statements are equivalent:

(1) X is φ-prime.
(2) For Y1, Y2 ∈ S(M), if Y1Y2 ⊆ X and Y1Y2 * φ(X), then Y1 ⊆ X

or Y2 ⊆ X.

Proof. (1) =⇒ (2) : By Proposition 3.1.
(2) =⇒ (1) : Choose an ideal I ∈ S(R), Y ∈ S(M) with Y I ⊆ X and

Y I * φ(X). Since M is multiplication, Y = M(Y :R M). Then we have
M(Y :R M)I = Y I ⊆ X and Y I * φ(X). Also, as M is multiplication,
MI = M(MI :R M). Then this implies that I = (MI :R M), since M
is cancellation. Hence Y (MI) = M(Y :R M)(MI :R M) = M(Y :R
M)I = Y I. So, we have Y (MI) ⊆ X and Y (MI) * φ(X). Then by (2),
one see Y ⊆ X or MI ⊆ X. This means that Y ⊆ X or I ⊆ (X :R
M). �
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Theorem 3.3. Let M be a multiplication R-module and X be a proper
submodule of M. Suppose that ψ : S(R)→ S(R)∪{∅} be a function with
(φ(X) :R M) = ψ((X :R M)). Then the followings are equivalent:

(1) X is φ-prime in M.
(2) (X :R M) is a ψ-prime ideal in R.

Proof. (1) =⇒ (2) : By Corollary 2.22.
(2) =⇒ (1) : Assume that (X :R M) is ψ-prime. Choose an ideal

I of R and a submodule Y of M with Y I ⊆ X and Y I * φ(X). As
M is multiplication, Y = M(Y :R M). Hence M(Y :R M)I ⊆ X and
M(Y :R M)I * φ(X). Then one gets (Y :R M)I ⊆ (X :R M) and
(Y :R M)I * (φ(X) :R M). Since (φ(X) :R M) = ψ((X :R M)), (Y :R
M)I * ψ((X :R M)). By our hypothesis, I ⊆ (X :R M) or (Y :R M) ⊆
(X :R M). If I ⊆ (X :R M), it is done. If (Y :R M) ⊆ (X :R M), as
M is multiplication, one can see Y = M(Y :R M) ⊆ M(X :R M) = X.
Therefore, X is φ-prime. �

Recall that if there exists an element s ∈ R with r = rsr, for all r ∈ R,
R is called von-Neumann regular, see [15]. Also, the center of a ring R
is denoted by Center(R).

Lemma 3.4. [8] Assume that M is multiplication, R is a von-Neumann
regular ring and J ⊆ Center(R) is an ideal in R. Then X∩MJ = (X :M
J)J, for any submodule X of M .

Lemma 3.5. [8] Assume that M is multiplication, R is a von-Neumann
regular ring and J ⊆ Center(R) is an ideal in R. If for all Y,Z ∈ S(M),
Y J ⊆ ZJ implies that Y ⊆ Z, then (XI :M J) = (X :M J)I for
X ∈ S(MJ) and any ideal I of R.

Theorem 3.6. Let M be a multiplication R-module and R be a von-
Neumann regular ring. Let I ⊆ Center(R) be an ideal of R such that
Y I ⊆ ZI implies that Y ⊆ Z for all Y,Z ∈ S(M). Let φ((X :M I)) =
(φ(X) :M I). Then X ∈ S(MI) is φ-prime ⇐⇒ (X :M I) ∈ S(M) is
φ-prime.

Proof. =⇒: Assume that X ∈ S(MI) is φ-prime. Choose an ideal J
of R, Y ∈ S(M) with Y J ⊆ (X :M I) and Y J * φ((X :M I)). Then
clearly Y JI ⊆ X. We show that Y JI * φ(X). If Y JI ⊆ φ(X), then
Y J ⊆ (φ(X) :M I) = φ((X :M I)), a contradiction. By I ⊆ Center(R),
one can see Y JI = Y IJ. Hence, Y IJ ⊆ X and Y IJ * φ(X) implies
Y I ⊆ X or J ⊆ (X :R MI), since X is φ-prime submodule of MI.
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Moreover, as I ⊆ Center(R), we see (X :R MI) = ((X :M I) :R M). So,
Y I ⊆ X or J ⊆ (X :R MI) implies Y ⊆ (X :M I) or J ⊆ ((X :M I) :R
M).
⇐=: Let (X :M I) be φ-prime in M for X ∈ S(MI). Choose an ideal

J of R, Y ∈ S(MI) with Y J ⊆ X, Y J * φ(X). Then we see that (Y :M
I)J = (Y J :M I) ⊆ (X :M I) by Lemma 3.5. Now, let us prove (Y :M
I)J * φ((X :M I)). Indeed, if (Y :M I)J ⊆ φ((X :M I)) = (φ(X) :M I),
then (Y :M I)JI = (Y :M I)IJ ⊆ (φ(X) :M I)I, as I ⊆ Center(R). By
Lemma 3.4, we get Y J = (Y ∩MI)J = (Y :M I)IJ ⊆ (φ(X) :M I)I =
φ(X) ∩MI = φ(X), a contradiction. Hence, as (X :M I) is φ-prime,
one can see (Y :M I) ⊆ (X :M I) or J ⊆ ((X :M I) :R M). The first
option gives us Y = Y ∩MI = (Y :M I)I ⊆ (X :M I)I = X∩MI = X,
by Lemma 3.4. The second option means that J ⊆ ((X :M I) :R M) =
(X :R MI), as I ⊆ Center(R). Thus we are done. �

4. The radical of a submodule

In the following definition, we shall introduce the concept of φ-m-
system.

Definition 4.1. ∅ 6= S ⊆M is called a φ-m-system if (Y1 +Y2)∩S 6= ∅,
(Y1 + MI) ∩ S 6= ∅ and Y2I * φ(< Sc >), then (Y1 + Y2I) ∩ S 6= ∅ for
∀Y1, Y2 ∈ S(M) and any ideal I of R, where Sc = M − S.

Proposition 4.2. For X ∈ S(M), X is φ-prime ⇐⇒ S = M −X is a
φ-m-system.

Proof. =⇒: Suppose that X is φ-prime. Choose an ideal I of R and two
submodules Y1, Y2 of M with (Y1 + Y2)∩S 6= ∅, (Y1 +MI)∩S 6= ∅ and
Y2I * φ(< Sc >), where Sc = X. We show that (Y1 + Y2I) ∩ S 6= ∅. If
(Y1 +Y2I)∩S = ∅, then (Y1 +Y2I) ⊆ X, since S = M−X. Then one can
see Y2I ⊆ X and Y1 ⊆ X. Also, by our hypothesis, Y2I * φ(< Sc >) =
φ(X). Then as X is φ-prime, we get Y2 ⊆ X or I ⊆ (X :R M). If Y2 ⊆ X,
we see Y1 +Y2 ⊆ X, i.e., (Y1 +Y2)∩S = ∅, a contradiction. If I ⊆ (X :R
M), then MI ⊆ X, so we get Y1 +MI ⊆ X, i.e., (Y1 +MI) ∩ S = ∅, a
contradiction. Thus (Y1 + Y2I) ∩ S 6= ∅.
⇐=: Let S = M − X be a φ-m-system. Let Y be a submodule of

M and I be an ideal of R such that Y I ⊆ X and Y I * φ(X). Suppose
that Y * X and I * (X :R M). Then one can see Y ∩ S 6= ∅ and
MI ∩ S 6= ∅. In the definition of φ-m-system, consider as Y1 = 0M and
Y2 = Y. Then since Y ∩S 6= ∅, MI ∩S 6= ∅ and Y I * φ(X) = φ(Sc), we
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obtain Y I ∩ S = (0M + Y I) ∩ S 6= ∅, by S is a φ-m-system. Therefore,
Y I ∩ S 6= ∅, but this contradicts with Y I ⊆ X. �

Proposition 4.3. For a proper X ∈ S(M), let S := M − X. The
followings are equivalent:

(1) X is a φ-prime submodule.
(2) If (Y1 + Y2) ∩ S 6= ∅, MI ∩ S 6= ∅ and Y2I * φ(Sc), for all

Y1, Y2 ∈ S(M) and any ideal I of R, then (Y1 + Y2I) ∩ S 6= ∅.
(3) If Y2 ∩ S 6= ∅, MI ∩ S 6= ∅ and Y2I * φ(Sc), for all Y2 ∈ S(M)

and any ideal I of R, then Y2I ∩ S 6= ∅.

Proof. (1) =⇒ (2) : Assume that (Y1 + Y2) ∩ S 6= ∅, MI ∩ S 6= ∅ and
Y2I * φ(Sc) for all Y1, Y2 ∈ S(M) and any ideal I of R. Since X is
a φ-prime submodule, by Proposition 4.2, we know S = M − X is a
φ-m-system. Also, since MI ∩ S 6= ∅, (Y1 +MI) ∩ S 6= ∅. Thus, by the
definition of φ-m-system, (Y1 + Y2I) ∩ S 6= ∅.

(2) =⇒ (3) : Set Y1 = 0M .
(3) =⇒ (1) : Suppose that Y ∈ S(M) and I is an ideal of R with

Y I ⊆ X, Y I * φ(X). Let Y * X and I * (X :R M). Since Y * X,
we have Y ∩ S 6= ∅. Also, as I * (X :R M), i.e., MI * X, one can see
MI∩S 6= ∅. Thus, since Y ∩S 6= ∅,MI∩S 6= ∅ and Y I * φ(X) = φ(Sc),
we obtain Y I ∩ S 6= ∅ by (3). This contradicts with Y I ⊆ X. Hence we
are done. �

Definition 4.4. For φ : S(M)→ S(M) ∪ {∅},
(1) The function φ is called containment preserving, if for any two

submodules X1, X2 ∈ S(M), X1 ⊆ X2 implies φ(X1) ⊆ φ(X2).
(2) The function φ is called sum preserving, if φ(

∑
Xi) =

∑
φ(Xi),

for all Xi ∈ S(M).

Lemma 4.5. Let φ be containment preserving. Assume that S ⊆M is
a φ-m-system and X ∈ S(M) maximal with respect to X ∩ S = ∅ and
φ(X) = φ(< Sc >). Then X is a φ-prime submodule of M .

Proof. Let I be any ideal of R and Y ∈ S(M) such that Y I ⊆ X
and Y I * φ(X). Let Y * X and I * (X :R M). Then as Y * X,
one can see X ( X + Y. We show that (X + Y ) ∩ S 6= ∅. Indeed, if
(X + Y ) ∩ S = ∅, then X + Y ⊆ Sc, so X + Y ⊆< Sc >. Thus,
φ(< Sc >) = φ(X) ⊆ φ(X + Y ) ⊆ φ(< Sc >), i.e., φ(X + Y ) = φ(<
Sc >). This doesn’t happen because of the properties of X. Also, as
I * (X :R M), i.e., MI * X, we have X ( X + MI. We show that
(X + MI) ∩ S 6= ∅. Indeed, if (X + MI) ∩ S = ∅, then similar the



82 E. A. Ugurlu

above, we obtain φ(X +MI) = φ(< Sc >), a contradiction. Thus, since
Y I * φ(X) = φ(< Sc >), (X + Y ) ∩ S 6= ∅ and (X +MI) ∩ S 6= ∅, one
obtains (X + Y I)∩ S 6= ∅, by S is a φ-m-system. Then as Y I ⊆ X, one
gets X ∩ S 6= ∅. This gives us a contradiction. Consequently, one can
see that Y ⊆ X or I ⊆ (X :R M) �

Definition 4.6. Let Y ∈ S(M). If there is a φ-prime submodule X
contains Y such that φ(Y ) = φ(X), then we define the radical of Y as :√

Y := {x ∈M : every φ-m-system S containing x such that φ(Y ) =

φ(< Sc >) meets Y }, otherwise
√
Y := M.

Theorem 4.7. Let φ be containment and sum preserving. For Y ∈
S(M), let Ω := {Xi ∈ S(M) : Xi is φ-prime with Y ⊆ Xi and φ(Y ) =
φ(Xi), for i ∈ Λ }. Then we have

√
Y =

⋂
Xi∈Ω

Xi.

Proof. Assume that
√
Y 6= M. Choose x ∈

√
Y and Xi ∈ Ω. By Propo-

sition 4.2, we know S = M − Xi is a φ-m-system. As S ∩ Y = ∅ and
x ∈

√
Y , we have x /∈ S. Thus x ∈ Xi and so

√
Y ⊆

⋂
Xi∈Ω

Xi. For the

other containment, choose y /∈
√
Y . Thus, there is a φ -m-system S in

M with y ∈ S, φ(Y ) = φ(< Sc >) and S ∩ Y = ∅. Let us consider, the
following set :

∆ := {Xi ∈ S(M) : Y ⊆ Xi, S ∩Xi = ∅ and φ(Xi) = φ(< Sc >)}

One can see clearly, Y ∈ ∆, so ∆ 6= ∅. Let X1 ⊆ X2 ⊆ ··· ⊆ Xn ⊆ ··· be a
chain in ∆. Then it is easy to see that Y ⊆

⋃
Xi and S∩(

⋃
Xi) = ∅. Also,

since φ is containment and sum preserving with φ(Xi) = φ(< Sc >),
one can see φ(

⋃
Xi) = φ(< Sc >). Thus

⋃
Xi ∈ ∆. Hence, by Zorn‘s

Lemma, ∆ has a maximal element, say Xi1 . Then y /∈ Xi1
, since y ∈ S

and S ∩Xi1
= ∅. Thus y /∈

⋂
Xi∈Ω

Xi, so we obtain
⋂

Xi∈Ω

Xi ⊆
√
Y . �
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