GENERALIZATIONS OF PRIME SUBMODULES OVER NON-COMMUTATIVE RINGS

EMEL ASLANKARAYIGIT UGURLU

Abstract

Throughout this paper, R is an associative ring (not necessarily commutative) with identity and M is a right R-module with unitary. In this paper, we introduce a new concept of ϕ prime submodule over an associative ring with identity. Thus we define the concept as following: Assume that $S(M)$ is the set of all submodules of M and $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ is a function. For every $Y \in S(M)$ and ideal I of R, a proper submodule X of M is called ϕ-prime, if $Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$, then $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. Then we examine the properties of ϕ-prime submodules and characterize it when M is a multiplication module.

Key Words: ϕ-prime Submodule, Non-commutative Ring, Multiplication Module. 2010 Mathematics Subject Classification: Primary: 16P40; Secondary: 13A15, 16D60.

1. Introduction

Throughout this paper, R is an associative ring (unless otherwise stated, not necessarily commutative) with identity and M is a right R module with unitary. Suppose that M is an R-module, $S(M)$ and $S(R)$ are the set of all submodules of M, the set of all ideals of R, respectively. For an ideal A of R, we denote the set $\{t \in M: t A \subseteq X\}$ as $\left(X:{ }_{M} A\right)$. One clearly proves that $\left(X:_{M} A\right) \in S(M)$ and $X \subseteq\left(X:_{M} A\right)$. Also, for two subsets X and Y of M, the subset $\{r \in R: X r \subseteq Y\}$ of R is denoted by $\left(Y:_{R} X\right)$. If Y is a submodule of M, then it is obviously

[^0]proved that for any subset X of M, the set $\left(Y:_{R} X\right)$ is a right ideal of R. It is obtained $\left(Y:_{R} X\right)$ is an ideal of R for $X, Y \in S(M)$, see [15]. Thus, clearly one can see that $\left(X:_{R} M\right)$ is an ideal of R, for all $X \in S(M)$.

A proper ideal A of a commutative ring R is prime if whenever $a_{1}, a_{2} \in$ R with $a_{1} a_{2} \in A$, then $a_{1} \in A$ or $a_{2} \in A$, [7]. In 2003, the authors [3] said that if whenever $a_{1}, a_{2} \in R$ with $0_{R} \neq a_{1} a_{2} \in A$, then $a_{1} \in A$ or $a_{2} \in A$, a proper ideal A of a commutative ring R is weakly prime. In [9], Bhatwadekar and Sharma defined a proper ideal A of an integral domain R as almost prime (resp. n-almost prime) if for $a_{1}, a_{2} \in R$ with $a_{1} a_{2} \in A-A^{2}$, (resp. $a_{1} a_{2} \in A-A^{n}, n \geq 3$) then $a_{1} \in A$ or $a_{2} \in A$. This definition can be made for any commutative ring R. Later, Anderson and Batanieh [2] introduced a concept which covers all the previous definitions in a commutative ring R as following: Let $\phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function. A proper ideal A of a commutative ring R is called ϕ-prime if for $a_{1}, a_{2} \in R$ with $a_{1} a_{2} \in A-\phi(A)$, then $a_{1} \in A$ or $a_{2} \in A$.

The notion of the prime ideal in a commutative ring R is extended to modules by several studies, $[10,12,13]$. For a commutative ring R, a proper $X \in S(M)$ is said to be prime [1], if $m a \in X$, then $m \in X$ or $a \in\left(X:_{R} M\right)$, for $a \in R$ and $m \in M$. In [6], the authors introduced weakly prime submodules over a commutative ring R as following: A proper submodule X of M is called weakly prime if for $r \in R$ and $m \in M$ with $0_{M} \neq m r \in X$, then $m \in X$ or $r \in\left(X:_{R} M\right)$. Then, N. Zamani [16] introduced the concept of ϕ-prime submodules over a commutative ring R as following: Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function. A proper submodule X of an R-module M is said to be ϕ-prime if $r \in R$, $m \in M$ with $m r \in X-\phi(X)$, then $m \in X$ or $r \in\left(X:_{R} M\right)$. He defined the $\operatorname{map} \phi_{\alpha}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ as follows:
(1) $\phi_{\emptyset}: \phi(X)=\emptyset$ defines prime submodules.
(2) $\phi_{0}: \phi(X)=\left\{0_{M}\right\}$ defines weakly prime submodules.
(3) $\phi_{2}: \phi(X)=X\left(X:_{R} M\right)$ defines almost prime submodules.
(4) $\phi_{n}: \phi(X)=X\left(X:_{R} M\right)^{n-1}$ defines n-almost prime submodules $(n \geq 2)$.
(5) $\phi_{\omega}: \phi(X)=\cap_{n=1}^{\infty} X\left(X:_{R} M\right)^{n}$ defines ω-prime submodules.
(6) $\phi_{1}: \phi(X)=X$ defines any submodule.

On the other hand, in [8], P. Karimi Beiranvand and R. Beyranvand introduced the almost prime and weakly prime submodules over R (not necessarily commutative) as following: A proper submodule X of an
R-module M is called almost prime, for any ideal I of R and any submodule Y of M, if $Y I \subseteq X$ and $Y I \nsubseteq X\left(X:_{R} M\right)$, then $Y \subseteq X$ or $I \subseteq(X: R M)$. Also, X is called weakly prime, for any ideal I of R and any submodule X of M, if $0_{M} \neq Y I \subseteq X$, then $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. In the mentioned study, they obtain some important results on the two submodules over R.

In any non-commutative ring, T. Y. Lam [11] proved that an ideal A of R is a prime ideal (i.e., for two ideals I_{1}, I_{2} of $R, I_{1} I_{2} \subseteq A$ implies $I_{1} \subseteq A$ or $\left.I_{2} \subseteq A\right) \Longleftrightarrow$ for $a_{1}, a_{2} \in R, a_{1} a_{2} \in A$ implies $a_{1} \in A$ or $a_{2} \in A$. Similarly, for any module over any non-commutative ring, J. Dauns [10] showed that for M over R, a proper $X \in S(M)$ is prime (i.e., if $m R a \subseteq X$, then $m \in X$ or $a \in\left(X:_{R} M\right)$, for $a \in R$ and $\left.m \in M\right)$ \Longleftrightarrow for an ideal A of R and for a submodule Y of $M, Y A \subseteq X$ implies $Y \subseteq X$ or $A \subseteq\left(X:_{R} M\right)$.

Moreover, note that in commutative ring theory, we know that there is a relation between prime ideals and multiplicatively closed sets. Similarly, in non-commutative ring theory, there is a relation between prime ideals and m-system sets. In [11], one can see that if for all $x, y \in S$, there exists $a \in R$ with xay $\in S$, then $\emptyset \neq S \subseteq R$ is called an m-system. Also, T. Y. Lam [11] defined the radical of an ideal A of R as: $\sqrt{A}=\{s \in R$: every m-system containing s meets $A\} \subseteq\left\{s \in R: s^{n} \in A\right.$ for some $n \geq 1\}$. Then he proved that \sqrt{A} equals the intersection of all prime ideals containing A and \sqrt{A} is an ideal, see, (10.7) Theorem in [11].

Our aim in this paper, similar to [8], to introduce the concept of ϕ prime submodule over an associative ring (not necessarily commutative) with identity. For this purpose, we define a ϕ-prime submodules over R. In Section 2, after the introducing of ϕ-prime submodules over R, in Theorem 2.5 , we characterize a ϕ-prime submodule. Then with Theorem 2.6, we give another equivalent definitions for ϕ-prime submodule. Also, in the section some properties of the submodules are examined. In Theorem 2.17, another characterization of ϕ-prime submodule is obtained. In Section 3, after a reminder about multiplication module, it is shown that X is ϕ-prime $\Longleftrightarrow Y_{1} Y_{2} \subseteq X$ and $Y_{1} Y_{2} \nsubseteq \phi(X)$ implies $Y_{1} \subseteq X$ or $Y_{2} \subseteq X$, for $Y_{1}, Y_{2} \in S(M)$, see Corollary 3.2. Moreover, in Theorem 3.3, for a multiplication module, under some conditions we prove that X is ϕ-prime in $M \Longleftrightarrow\left(X:_{R} M\right)$ is a ψ-prime ideal in R. In Section 4, with Definition 4.1, we introduce a new concept which is called $\phi-m$-system. Then we show that in Proposition 4.2, for $X \in S(M), X$ is ϕ-prime $\Longleftrightarrow S=M-X$ is a ϕ - m-system. Also, we examine some
properties of the ϕ-m-system. Finally, with Definition 4.6, we introduce the radical of Y as $\sqrt{Y}:=\{x \in M$: every ϕ - m-system S containing x such that $\phi(Y)=\phi\left(<S^{c}>\right)$ meets $\left.Y\right\}$, otherwise $\sqrt{Y}:=M$, where $S^{c}=M-S$. As a final result, for the set $\Omega:=\left\{X_{i} \in S(M): X_{i}\right.$ is ϕ-prime with $Y \subseteq X_{i}$ and $\phi(Y)=\phi\left(X_{i}\right)$, for $\left.i \in \Lambda\right\}$, it is obtained that $\sqrt{Y}=\bigcap_{X_{i} \in \Omega} X_{i}$, see Theorem 4.7.

2. Properties of ϕ-Prime submodules

Throughout our study, assume that $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ is a function.

Definition 2.1. For every $Y \in S(M)$ and $I \in S(R)$, a proper $X \in S(M)$ is said to be ϕ-prime, if $Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$, then $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. We defined the map $\phi_{\alpha}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ as follows:
(1) $\phi_{\emptyset}: \phi(X)=\emptyset$ defines prime submodules.
(2) $\phi_{0}: \phi(X)=\left\{0_{M}\right\}$ defines weakly prime submodules.
(3) $\phi_{2}: \phi(X)=X\left(X:_{R} M\right)$ defines almost prime submodules.
(4) $\phi_{n}: \phi(X)=X\left(X:_{R} M\right)^{n-1}$ defines n-almost prime submodules $(n \geq$ 2).
(5) $\phi_{\omega}: \phi(X)=\cap_{n=1}^{\infty} X\left(X:_{R} M\right)^{n}$ defines ω-prime submodules.
(6) $\phi_{1}: \phi(X)=X$ defines any submodule.

In the above definition, if we consider $\phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$, we obtain the concept of ϕ-prime ideal in an associative ring (not necessarily commutative) with identity as following: For every $I, J \in S(R)$, a proper $A \in S(R)$ is said to be ϕ-prime, if $I J \subseteq A$ and $I J \nsubseteq \phi(A)$, then $I \subseteq A$ or $J \subseteq A$. For commutative case, this definition is equivalent to the definition of ϕ-prime ideal in a commutative ring, see the Theorem 13 in [2].

Notice that since $X-\phi(X)=X-(X \cap \phi(X))$, for any submodule X of M, without loss of generality, suppose $\phi(X) \subseteq X$. Let ψ_{1}, ψ_{2} : $S(M) \rightarrow S(M) \cup\{\emptyset\}$ be two functions, if $\psi_{1}(X) \subseteq \psi_{2}(X)$ for each $X \in S(M)$, we denote $\psi_{1} \leq \psi_{2}$. Thus clearly, we have the following order: $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \ldots \leq \phi_{n+1} \leq \phi_{n} \leq \ldots \leq \phi_{2} \leq \phi_{1}$. Whenever $\psi_{1} \leq \psi_{2}$, any ψ_{1}-prime submodule is ψ_{2}-prime.

Example 2.2. Let p and q be two prime numbers. Consider \mathbb{Z}-module $\mathbb{Z}_{p q}$. The zero submodule is ϕ_{0}-prime, but it is not ϕ_{\emptyset}-prime. Moreover, in \mathbb{Z}-module $\mathbb{Z}_{p q^{2}}$, the submodule $q^{2} \mathbb{Z}_{p q^{2}}$ is ϕ_{2}-prime. However, since $q^{2} \mathbb{Z}_{p q^{2}}\left(q^{2} \mathbb{Z}_{p q^{2}}: \mathbb{Z} \mathbb{Z}_{p q^{2}}\right)=q^{2} \mathbb{Z}_{p q^{2}}$, it is not $\phi_{0}-$ prime.
Example 2.3. Let M be an R-module.
(1) The zero submodule of R is both ϕ_{0}-prime submodule and ϕ_{2}-prime submodule, on the other hand it may not be ϕ_{\emptyset}-prime.
(2) If M is a prime R-module and N be a proper submodule of M. Then N is ϕ_{\emptyset}-prime if and only if ϕ_{0}-prime.
(3) Let M be a homogeneous semisimple R-module and N be a proper submodule of M. Then since every proper submodule is prime, hence N is prime, so is ϕ-prime.

Example 2.4. (Example 2.2 (f) in [8])Let $M=S_{1} \oplus S_{2}$, which S_{1}, S_{2} are simple R-module such that $S_{1} \nexists S_{2}$ and N be a proper submodule of M. Then since every non-zero proper submodule is prime, then N is prime, so is ϕ-prime. Indeed, assume that $0_{M} \neq X \in S(M)$ is proper and $Y I \subseteq X$ where $Y \in S(M)$ and $I \in S(R)$. By Proposition 9.4 in [5], we have $M / X \cong S_{1}$ or $M / X \cong S_{2}$. Then $((Y+X) / X) I=0_{M}$ and as $(Y+X) / X \in S(M / X)$ and M / X is simple, we get $(Y+X) / X=0_{M}$ or $\operatorname{Ann}((Y+X) / X)=\operatorname{Ann}(M / X)$. This means that $Y+X=X$ or $(M / X) I=0_{M}$. Consequently, $Y \subseteq X$ or $M I \subseteq X$.

Note that for an element a of R, the ideal generated by a in R is denoted by $R a R$. Similarly, the right and left ideal generated by a in R are denoted by $a R, R a$, respectively. Also, we denote the ideal generated by A as $\langle A\rangle$, for a subset A of R. For an element x of M, the submodule generated by x in M is denoted by $x R$. Finally, for a subset X of M, we denote the submodule generated by X in M as $<X>$.

In the following Theorem, we obtain a characterization of a ϕ-prime submodule of M.

Theorem 2.5. For a proper submodule X of M, the followings are equivalent:
(1) X is a ϕ-prime submodule of M.
(2) For all $m \in M-X$,

$$
\left(X:_{R} m R\right)=\left(X:_{R} M\right) \cup\left(\phi(X):_{R} m R\right) .
$$

(3) For all $m \in M-X$,

$$
\left(X:_{R} m R\right)=\left(X:_{R} M\right) \text { or }\left(X:_{R} m R\right)=\left(\phi(X):_{R} m R\right) .
$$

Proof. (1) $\Longrightarrow(2):$ Let X be a ϕ-prime submodule of M. For all $m \in$ $M-X$, choose $a \in\left(X:_{R} m R\right)-\left(\phi(X):_{R} m R\right)$. Then $(m R)(R a R) \subseteq X$ and $(m R)(R a R) \nsubseteq \phi(X)$. As X is ϕ-prime, one can see $m R \subseteq X$ or $R a R \subseteq\left(X:_{R} M\right)$. The first option gives us a contradiction. Thus $a \in\left(X:_{R} M\right)$. Moreover, as $\phi(X) \subseteq X$, we always have $\left(\phi(X):_{R}\right.$ $m R) \subseteq\left(X:_{R} m R\right)$.
$(2) \Longrightarrow(3)$: If an ideal is a union of two ideals, it equals to one of them.
$(3) \Longrightarrow(1):$ Choose $Y \in S(M)$ and an ideal I in R which $Y I \subseteq X$ and $I \nsubseteq\left(X:_{R} M\right), Y \nsubseteq X$. Let us prove $Y I \subseteq \phi(X)$. For all $r \in I$ and $m \in Y$, we have $m r \in Y I \subseteq X$.

Now, take $m \in Y-X$. Then we have 2 cases:
Case 1: $r \notin\left(X:_{R} M\right)$. Since $m r \in Y I \subseteq X$, one can see $(m R) r \subseteq$ $Y I \subseteq X$, i.e., $r \in\left(X:_{R} m R\right)$. Thus $\left(X:_{R} m R\right)=\left(\phi(X):_{R} m R\right)$ by our hypothesis (3). This means $r \in\left(\phi(X):_{R} m R\right)$, so, $m r \in \phi(X)$.

Case 2: $r \in\left(X:_{R} M\right)$. Thus $r \in I \cap\left(X:_{R} M\right)$. Choose $s \in I-\left(X:_{R}\right.$ $M)$. Thus $r+s \in I-\left(X:_{R} M\right)$. Similar to Case 1 , since $s \notin\left(X:_{R} M\right)$, one can see $m s \in \phi(X)$. By the same reason, as $r+s \notin\left(X:_{R} M\right)$, $m(r+s) \in \phi(X)$. Since $m s \in \phi(X)$, we obtain $m r \in \phi(X)$.

Now, let $m \in Y \cap X$. Since $Y \nsubseteq X$, there exists $m^{*} \in Y-X$. By the above observations, $m^{*} r \in \phi(X)$ and $\left(m+m^{*}\right) r \in \phi(X)$ (since $\left.m+m^{*} \in Y-X\right)$. This implies that $m r \in \phi(X)$.

Consequently, for every case we get $Y I \subseteq \phi(X)$.
Theorem 2.6. For $X \in S(M)$, the items are equivalent:
(1) X is ϕ-prime.
(2) For \forall right ideal I in R and $Y \in S(M)$,
$Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$ implies that $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$.
(3) For \forall left ideal I of R and $Y \in S(M)$,
$Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$ implies that $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$.
(4) For $\forall a \in R$ and $Y \in S(M)$,
$Y(R a R) \subseteq X$ and $Y(R a R) \nsubseteq \phi(X)$ implies that $Y \subseteq X$ or $a \in\left(X:_{R} M\right)$.
(5) For $\forall a \in R$ and $Y \in S(M)$,
$Y(a R) \subseteq X$ and $Y(a R) \nsubseteq \phi(X)$ implies that $Y \subseteq X$ or $a \in\left(X:_{R} M\right)$.
(6) For $\forall a \in R$ and $Y \in S(M)$,
$Y(R a) \subseteq X$ and $Y(R a) \nsubseteq \phi(X)$ implies that $Y \subseteq X$ or $a \in\left(X:_{R} M\right)$.

Proof. (1) $\Rightarrow(2)$: Suppose that X is ϕ-prime. Choose a right ideal I and $Y \in S(M)$ with $Y I \subseteq X, Y I \nsubseteq \phi(X)$. Let $<I>:=\left\{\sum r_{i} a_{i} s_{i}: r_{i}, s_{i} \in R\right.$ and $\left.a_{i} \in I\right\}$ be the ideal generated by I. Then as I is a right ideal, one easily has that $Y<I>\subseteq Y I \subseteq X$. Moreover, $Y<I>\nsubseteq \phi(X)$. Indeed, if $Y<I>\subseteq \phi(X)$, then $Y I \subseteq Y<I>\subseteq \phi(X)$, a contradiction. Thus, since X is ϕ-prime, $Y<I>\subseteq X$ and $Y<I>\nsubseteq \phi(X)$, we have $Y \subseteq X$ or $<I>\subseteq\left(X:_{R} M\right)$, so $I \subseteq\left(X:_{R} M\right)$.
$(2) \Rightarrow(3):$ Choose a left ideal I and $Y \in S(M)$ with $Y I \subseteq X$, $Y I \nsubseteq \phi(X)$. Let consider again the ideal $\langle I\rangle$ of R. Then since $Y I \subseteq$ X and I is a left ideal, one can see that $Y<I>\subseteq X$. Moreover, let us prove $Y<I>\nsubseteq \phi(X)$. Asumme that $Y<I>\subseteq \phi(X)$, then $Y I \subseteq Y<I>\subseteq \phi(X)$, a contradiction. Thus, since $\langle I\rangle$ is an ideal (so right ideal) by (2), we obtain $Y \subseteq X$ or $<I>\subseteq\left(X:_{R} M\right)$, so $I \subseteq\left(X:_{R} M\right)$.
(3) \Rightarrow (4) : Let $a \in R$ and Y be a submodule of M such that $Y(R a R) \subseteq X$ and $Y(R a R) \nsubseteq \phi(X)$. Since $Y=Y R, Y(R a R)=Y R(a R)=$ $Y(R a) \subseteq X$ and $Y(R a) \nsubseteq \phi(X)$. Since $R a$ is a left ideal, by (3), one can see $Y \subseteq X$ or $R a \subseteq\left(X:_{R} M\right)$. Thus $Y \subseteq X$ or $a \in\left(X:_{R} M\right)$.
(4) \Rightarrow (5) : Assume $a \in R$ and $Y \in S(M)$ with $Y(a R) \subseteq X$ and $Y(a R) \nsubseteq \phi(X)$. Then we see $Y(a R)=Y R(a R) \subseteq X$ and $Y R(a R) \nsubseteq$ $\phi(X)$. By (4), one obtains $Y \subseteq X$ or $a \in\left(X:_{R} M\right)$.
$(5) \Rightarrow(6):$ Let $a \in R$ and $Y \in S(M)$ with $Y(R a) \subseteq X, Y(R a) \nsubseteq$ $\phi(X)$. Thus $Y a \subseteq X$ and $Y a \nsubseteq \phi(X)$. Then we see $Y(a R) \subseteq X$ and $Y(a R) \nsubseteq \phi(X)$. Thus by (5), $Y \subseteq X$ or $a \in\left(X:_{R} M\right)$.
$(6) \Rightarrow(1)$: Suppose that (6) satisfies. By the help of $(1) \Leftrightarrow(2)$ in Theorem 2.5, let us prove that for all $m \in M-X$, one has $\left(X:_{R} m R\right)=$ $\left(X:_{R} M\right) \cup\left(\phi(X):_{R} m R\right)$. Let $a \in\left(X:_{R} m R\right)$. Then we see $m R a \subseteq X$. If $m R a \subseteq \phi(X)$, one gets $a \in\left(\phi(X):_{R} m R\right)$. If $m R a \nsubseteq \phi(X)$, this implies that $(m R)(R a) \nsubseteq \phi(X)$. Thus we have $m R a=(m R)(R a) \subseteq X$ and $(m R)(R a) \nsubseteq \phi(X)$. Then by $(6), m R \subseteq X$ or $a \in\left(X:_{R} M\right)$. The first option gives us a contradiction with $m \in M-X$. Then $a \in$ $\left(X:_{R} M\right)$. Thus $\left(X:_{R} m R\right) \subseteq\left(X:_{R} M\right) \cup\left(\phi(X):_{R} m R\right)$. Since the other containment always satisfies, we have $\left(X:_{R} m R\right)=\left(X:_{R}\right.$ $M) \cup\left(\phi(X):_{R} m R\right)$. Therefore, X is a ϕ-prime submodule of M.

Theorem 2.7. If X is a ϕ-prime submodule such that $X\left(X:_{R} M\right) \nsubseteq$ $\phi(X)$, then X is prime.

Proof. Assume that I is an ideal of R and Y is a submodule of M such that $Y I \subseteq X$. Then we have 2 cases:

Case 1: $Y I \nsubseteq \phi(X)$. As X is ϕ-prime, we get $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. So, it is done.

Case 2: $Y I \subseteq \phi(X)$. In this case, we may assume $X I \subseteq \phi(X) \cdots \cdots(1)$. Indeed, if $X I \nsubseteq \phi(X)$, then there is an $m \in X$ such that $m I \nsubseteq \phi(X)$. Then we obtain $(Y+m R) I \subseteq X-\phi(X)$. As X is ϕ-prime, $Y+m R \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. So, $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. Moreover, we may suppose $Y\left(X:_{R} M\right) \subseteq \phi(X) \cdots \cdots(2)$. Indeed, if $Y\left(X:_{R} M\right) \nsubseteq \phi(X)$, there exists an $a \in\left(X:_{R} M\right)$ with $Y a \nsubseteq \phi(X)$. Then we have $Y(I+R a R) \subseteq X$ and $Y(I+R a R) \nsubseteq \phi(X)$. Since X is ϕ-prime, $Y \subseteq X$ or $I+R a R \subseteq\left(X:_{R} M\right)$. Therefore, $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$.

As $X\left(X:_{R} M\right) \nsubseteq \phi(X)$, one can see that there are $b \in\left(X:_{R} M\right)$ and $x \in X$ such that $x b \notin \phi(X)$. Then by (1) and (2), we obtain $(Y+x R)(I+R b R) \subseteq X$ and $(Y+x R)(I+R b R) \nsubseteq \phi(X)$. By the help of the hypothesis, $Y+x R \subseteq X$ or $I+R b R \subseteq\left(X:_{R} M\right)$. Then one obtains $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$.
Corollary 2.8. If X is a weakly prime submodule with $X\left(X:_{R} M\right) \neq$ 0_{M}, then X is prime.

Proof. In Theorem 2.7, set $\phi=\phi_{0}$.
Corollary 2.9. If X is a ϕ-prime submodule such that $\phi(X) \subseteq X\left(X:_{R}\right.$ $M)^{2}$, then X is ϕ_{ω}-prime.
Proof. Assume that $Y I \subseteq X$ and $Y I \nsubseteq \cap_{i=1}^{\infty} X\left(X:_{R} M\right)^{i}$, for some $Y \in$ $S(M)$ and ideal I of R. If X is prime, we are done. So, suppose X is not prime. Then Theorem 2.7 implies $X\left(X:_{R} M\right) \subseteq \phi(X) \subseteq X\left(X:_{R} M\right)^{2}$ $\subseteq X\left(X:_{R} M\right)$, i.e., $X\left(X:_{R} M\right)=\phi(X)=X\left(X:_{R} M\right)^{2}$. Thus, we obtain $\phi(X)=\cap_{i=1}^{\infty} X\left(X:_{R} M\right)^{i}$, for every $i \geq 1$. As X is ϕ-prime, $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. Consequently, we obtain X is ϕ_{ω}-prime.

Note that a submodule X of M is called radical if $\sqrt{\left(X:_{R} M\right)}=$ $\left(X:_{R} M\right)$.
Corollary 2.10. Let X be a ϕ-prime submodule of M. Then
(1) Either $\left(X:_{R} M\right) \subseteq \sqrt{\left(\phi(X):_{R} M\right)}$ or $\sqrt{\left(\phi(X):_{R} M\right)} \subseteq\left(X:_{R}\right.$ $M)$.
(2) If $\left(X:_{R} M\right) \subsetneq \sqrt{\left(\phi(X):_{R} M\right)}, X$ is not prime.
(3) If $\sqrt{\left(\phi(X):_{R} M\right)} \subsetneq\left(X:_{R} M\right), X$ is prime.
(4) If $\phi(X)$ is a radical submodule, then either $\left(X:_{R} M\right)=\left(\phi(X):_{R}\right.$ $M)$ or X is prime.

Proof. Suppose X is ϕ-prime.
(1) Assume that X is prime. Then $\left(X:_{R} M\right)$ is a prime ideal of R, see [10]. As $\phi(X) \subseteq X$, we see $\left(\phi(X):_{R} M\right) \subseteq\left(X:_{R} M\right)$, so $\sqrt{\left(\phi(X):_{R} M\right)} \subseteq \sqrt{\left(X:_{R} M\right)}=\left(X:_{R} M\right)$. Now assume that X is not prime. By Theorem 2.7, one see $X\left(X:_{R} M\right) \subseteq$ $\phi(X)$. This implies that $\sqrt{\left(X:_{R} M\right)^{2}} \subseteq \sqrt{\left(X\left(X:_{R} M\right):_{R} M\right)} \subseteq$ $\sqrt{\left(\phi(X):_{R} M\right)}$. Hence $\left(X:_{R} M\right) \subseteq \sqrt{\left(X:_{R} M\right)}=\sqrt{\left(X:_{R} M\right)^{2}} \subseteq$ $\sqrt{\left(\phi(X):_{R} M\right)}$.
(2) $\operatorname{Suppose}\left(X:_{R} M\right) \subsetneq \sqrt{\left(\phi(X):_{R} M\right)}$. If X is prime, $\sqrt{\left(\phi(X):_{R} M\right)} \subseteq$ $\sqrt{\left(X:_{R} M\right)}=\left(X:_{R} M\right)$, i.e., a contradiction. So, X is not prime.
(3) Let $\sqrt{\left(\phi(X):_{R} M\right)} \subsetneq\left(X:_{R} M\right)$. If X is not prime, by the help of Theorem 2.7, we get $X\left(X:_{R} M\right) \subseteq \phi(X)$. Then one see $\sqrt{\left(X:_{R} M\right)^{2}} \subseteq \sqrt{\left(X\left(X:_{R} M\right):_{R} M\right)} \subseteq \sqrt{\left(\phi(X):_{R} M\right)}$. Hence, since $\sqrt{\left(X:_{R} M\right)^{2}}=\sqrt{\left(X:_{R} M\right)},\left(X:_{R} M\right) \subseteq \sqrt{\left(\phi(X):_{R} M\right)}$, i.e., a contradiction.
(4) Let $\phi(X)$ be a radical submodule. Suppose that X is not prime. By the argument in the proof of $(1),\left(X:_{R} M\right) \subseteq \sqrt{\left(\phi(X):_{R} M\right)}$. Then since $\phi(X)$ is a radical submodule, we see that $\left(X:_{R} M\right) \subseteq$ $\sqrt{\left(\phi(X):_{R} M\right)}=\left(\phi(X):_{R} M\right)$. As the other containment is always hold, $\left(X:_{R} M\right)=\left(\phi(X):_{R} M\right)$.

Remark 2.11. Assume that $X \in S(M)$.
(1) If X is ϕ-prime but not prime such that $\phi(X) \subseteq X\left(X:_{R} M\right)$, then $\phi(X)=X\left(X:_{R} M\right)$. In particular, if X is not prime and X is weakly prime, then $X\left(X:_{R} M\right)=0_{M}$.
(2) If X is ϕ-prime but not prime such that $\phi(X) \subseteq X\left(X:_{R} M\right)^{2}$, then $\phi(X)=X\left(X:_{R} M\right)^{2}$. In particular, if X is not prime and X is ϕ_{2}-prime, then $X\left(X:_{R} M\right)=X\left(X:_{R} M\right)^{2}$.

Now, for $Y \in S(M)$, let us define $\phi_{Y}: S(M / Y) \rightarrow S(M / Y) \cup\{\emptyset\}$ by $\phi_{Y}(X / Y)=(\phi(X)+Y) / Y$, for every $X \in S(M)$ with $Y \subseteq X$ (and $\phi_{Y}(X / Y)=\emptyset$ if $\left.\phi(X)=\emptyset\right)$.

Theorem 2.12. Let $X, Y \in S(M)$ be proper with $Y \subseteq X$. Then we have
(1) If X is a ϕ-prime submodule of M, then X / Y is a ϕ_{Y}-prime submodule of M / Y.
(2) If $Y \subseteq \phi(X)$ and X / Y is a ϕ_{Y}-prime submodule of M / Y, then X is a ϕ-prime submodule of M.
(3) If $\phi(X) \subseteq Y$ and X is ϕ-prime, then X / Y is weakly prime.
(4) If $\phi(Y) \subseteq \phi(X), Y$ is ϕ-prime and X / Y is weakly prime, then X is ϕ-prime.

Proof. Let $X, Y \in S(M)$ be proper with $Y \subseteq X$.
(1) : Assume $I \in S(R)$ and Z / Y is a submodule of M / Y with $(Z / Y) I \subseteq X / Y$ and $(Z / Y) I \nsubseteq \phi_{Y}(X / Y)$. Then clearly, $(Z / Y) I=$ $Z I+Y / Y$ and $Z I \subseteq Z I+Y \subseteq X$. Moreover $Z I \nsubseteq \phi(X)$. Indeed, if $Z I \subseteq \phi(X)$, then one can see $(Z I+Y) / Y \subseteq(\phi(X)+Y) / Y=\phi_{Y}(X / Y)$, so $(Z / Y) I \subseteq \phi_{Y}(X / Y)$, i.e., a contradiction. Since X is ϕ-prime, we see $I \subseteq\left(X:_{R} M\right)$ or $Z \subseteq X$. Then one obtains $I \subseteq\left(X:_{R} M\right)=\left(X / Y:_{R}\right.$ $M / Y)$ or $Z / Y \subseteq X / Y$.
(2) : Suppose that I is an ideal of R and Z is a submodule of M such that $Z I \subseteq X$ and $Z I \nsubseteq \phi(X)$. Then $Z I+Y / Y=(Z / Y) I \subseteq$ X / Y. Moreover, $(Z / Y) I \nsubseteq \phi_{Y}(X / Y)$. Indeed, if $(Z / Y) I \subseteq \phi_{Y}(X / Y)=$ $(\phi(X)+Y) / Y$, as $Y \subseteq \phi(X)$ we have $Z I+Y / Y \subseteq \phi(X) / Y$, i.e., $Z I \subseteq$ $\phi(X)$, a contradiction. Since X / Y is a ϕ_{Y}-prime submodule of M / Y, one can see $I \subseteq\left(X / Y:_{R} M / Y\right)$ or $Z / Y \subseteq X / Y$. This implies that $I \subseteq\left(X:_{R} M\right)$ or $Z \subseteq X$.
(3) : Assume that $I \in S(R)$ and Z / Y is a submodule of M / Y with $0_{M / Y} \neq(Z / Y) I \subseteq X / Y$. Clearly, we have $Y \subset Z I \subseteq X$. Then since $\phi(X) \subseteq Y$, we see $Z I \nsubseteq \phi(X)$. As X is ϕ-prime, $I \subseteq\left(X:_{R} M\right)$ or $Z \subseteq X$. This implies $I \subseteq\left(X / Y:_{R} M / Y\right)$ or $Z / Y \subseteq X / Y$.
(4) : Suppose that $\phi(Y) \subseteq \phi(X), Y$ is ϕ-prime and X / Y is weakly prime. Choose $Z \in S(M)$ and an ideal I of R which $Z I \subseteq X, Z I \nsubseteq$ $\phi(X)$. Then since $\phi(Y) \subseteq \phi(X)$ and $Z I \nsubseteq \phi(X)$, we have $Z I \nsubseteq \phi(Y)$. Then one can see 2 cases :

Case 1:ZI $\subseteq Y$. As Y is ϕ-prime, $I \subseteq\left(Y:_{R} M\right)$ or $Z \subseteq Y$. Since $Y \subseteq X$, we have $I \subseteq\left(X:_{R} M\right)$ or $Z \subseteq X$, so it is done.

Case $2: Z I \nsubseteq Y$. Then $0_{M / Y} \neq Z I+Y / Y=(Z / Y) I \subseteq X / Y$. Since X / Y is weakly prime, $I \subseteq\left(X / Y:_{R} M / Y\right)$ or $Z / Y \subseteq X / Y$. Thus, we obtain $I \subseteq\left(X:_{R} M\right)$ or $Z \subseteq X$.

Corollary 2.13. For a proper $X \in S(M), X$ is ϕ-prime in $M \Longleftrightarrow$ $X / \phi(X)$ is weakly prime in $M / \phi(X)$.

Proof. \Longrightarrow : By (3) of Theorem 2.12.
\Longleftarrow : By (2) of Theorem 2.12.

Note that we say M is a torsion-free module if $\left(0_{M}:_{R} m\right)=0_{R}$, for all $0_{M} \neq m \in M$.
Theorem 2.14. Let M be torsion-free and $0_{M} \neq m \in M$. Then $m R$ is prime $\Longleftrightarrow m R$ is almost prime.
Proof. \Longrightarrow : Obvious.
\Longleftarrow : Assume that $m R$ is not prime. Then there are $a \in R, x \in$ M with $a \notin\left(m R:_{R} M\right), x \notin m R$, also $x R a \subseteq m R$. Then we have $(x R)(R a R) \subseteq m R$ and the following 2 cases:

Case 1: $(x R)(R a R) \nsubseteq m R\left(m R:_{R} M\right)=\phi_{2}(m R)$. Since $a \notin\left(m R:_{R}\right.$ $M), x \notin m R$, one gets $(R a R) \nsubseteq\left(m R:_{R} M\right)$ and $(x R) \nsubseteq m R$. Thus we obtain that $m R$ is not almost prime.

Case $2:(x R)(R a R) \subseteq m R\left(m R:_{R} M\right)=\phi_{2}(m R)$. Then we have $x a \in m R\left(m R:_{R} M\right)$. Moreover, as $x R a \subseteq m R$, we have $(x+m) a \in m R$ and $x+m \notin m R$. Then $(x R+m R)(R a R) \subseteq m R$. If $(x R+m R)(R a R) \nsubseteq$ $m R\left(m R:_{R} M\right)$, as $a \notin\left(m R:_{R} M\right)$ and $x+m \notin m R$, one can see $m R$ is not almost prime. If $(x R+m R)(R a R) \subseteq m R\left(m R:_{R} M\right)$, then $(x+m) a \in m R\left(m R:_{R} M\right)$. Then, by the assumption in Case 2, we have $x a \in m R\left(m R:_{R} M\right)$, so, $m a \in m R\left(m R:_{R} M\right)$. Hence there exist an element $b \in\left(m R:_{R} M\right)$ and $r \in R$ such that $m a=(m r) b$. This implies that $a-r b \in\left(0_{M}:_{R} m\right)=0_{R}$, i.e., $a=r b \in\left(m R:_{R} M\right)$. So, we obtain a contradiction with $a \notin\left(m R:_{R} M\right)$. Consequently, in every case $m R$ is not almost prime.
Theorem 2.15. Let $0_{R} \neq a \in R$ such that $\left(0_{M}:_{M} a\right) \subseteq M a$ and $a\left(M a:_{R} M\right)=\left(M a:_{R} M\right) a$. Thus $M a$ is prime $\Longleftrightarrow M a$ is almost prime.
Proof. \Longrightarrow : It is obvious.
\Longleftarrow : Suppose that $M a$ is almost prime. Let $b \in R, m \in M$ with $m R b \subseteq M a$. We prove that $m \in M a$ or $b \in\left(M a:_{R} M\right)$. Then one can see clearly, $(m R)(R b R) \subseteq M a$. Now, we get 2 cases:

Case 1: $(m R)(R b R) \nsubseteq M a\left(M a:_{R} M\right)=\phi_{2}(M a)$. Since $M a$ is almost prime, we have $m R \subseteq M a$ or $R b R \subseteq\left(M a:_{R} M\right)$. So, $m \in M a$ or $b \in\left(M a:_{R} M\right)$.

Case 2: $(m R)(R b R) \subseteq M a\left(M a:_{R} M\right)=\phi_{2}(M a)$. As $m b \in M a$, one gets $m(b+a) \in M a$. Then $(m R)(R b R+R a R) \subseteq M a$. If $(m R)(R b R+$ $R a R) \nsubseteq M a\left(M a:_{R} M\right)$, as $M a$ is almost prime, $m R \subseteq M a$ or $R b R+$ $R a R \subseteq\left(M a:_{R} M\right)$. Thus, one can see $m R \subseteq M a$ or $R b R \subseteq\left(M a:_{R}\right.$ $M)$. Therefore, it is done. If $(m R)(R b R+R a R) \subseteq M a\left(M a:_{R} M\right)$, then $(m R)(R a R) \subseteq M a\left(M a:_{R} M\right)=M\left(M a:_{R} M\right) a$. Thus $m a \in$
$M\left(M a:_{R} M\right) a$. Then, one has $n \in M\left(M a:_{R} M\right)$ with $m a=n a$. Hence $m-n \in\left(0_{M}:_{M} a\right) \subseteq M a$. This implies $m \in M\left(M a:_{R} M\right)+\left(0_{M}:_{M}\right.$ $a) \subseteq M a$.
Corollary 2.16. Let M be torsion-free and $a \in R$ such that $a\left(M a:_{R}\right.$ $M)=\left(M a:_{R} M\right) a$. Thus $M a$ is prime $\Longleftrightarrow M a$ is almost prime.
Proof. By Theorem 2.15, it is clear.
Theorem 2.17. Let X be a proper submodule of M. Then the followings are equivalent:
(1) X is a ϕ-prime submodule of M.
(2) For all ideal I of R with $I \nsubseteq\left(X:_{R} M\right)$, then

$$
\left(X:_{M} I\right)=X \cup\left(\phi(X):_{M} I\right) .
$$

(3) For all ideal I of R with $I \nsubseteq\left(X:_{R} M\right)$, then $\left(X:_{M} I\right)=X$ or $\left(X:_{M} I\right)=\left(\phi(X):_{M} I\right)$.
Proof. Choose $X \in S(M)$.
$(1) \Longrightarrow(2)$: Assume X is ϕ-prime. Choose an ideal I which $I \nsubseteq\left(X:_{R}\right.$ $M)$. Then one can see $X \subseteq\left(X:_{M} I\right)$ and $\left(\phi(X):_{M} I\right) \subseteq\left(X:_{M} I\right)$, so $X \cup\left(\phi(X):_{M} I\right) \subseteq\left(X:_{M} I\right)$. For the other containment, since $\left(X:_{M} I\right) I \subseteq X$, and one gets 2 cases:

Case 1: $\left(X:_{M} I\right) I \nsubseteq \phi(X)$. Then since $\left(X:_{M} I\right) I \subseteq X$ and X is ϕ-prime, $I \subseteq\left(X:_{R} M\right)$ or $\left(X:_{M} I\right) \subseteq X$. As the first option gives us a contradiction, it must be $\left(X:_{M} I\right) \subseteq X$.

Case 2: $\left(X:_{M} I\right) I \subseteq \phi(X)$. Then we obtain $\left(X:_{M} I\right) \subseteq\left(\phi(X):_{M} I\right)$, so it is done.
$(2) \Longrightarrow(3)$: If a submodule is a union of two submodules, it equals to one of them.
$(3) \Longrightarrow(1):$ Choose an ideal I in $R, Y \in S(M)$ with $Y I \subseteq X$, $Y I \nsubseteq \phi(X)$. If $I \subseteq\left(X:_{R} M\right)$, it is done. Suppose $I \nsubseteq\left(X:_{R} M\right)$. Then by (3), one can see $\left(X:_{M} I\right)=X$ or $\left(X:_{M} I\right)=\left(\phi(X):_{M} I\right)$. If $\left(X:_{M} I\right)=X$, since $Y I \subseteq X$, we have $Y \subseteq\left(X:_{M} I\right)=X$. So, we are done. If $\left(X:_{M} I\right)=\left(\phi(X):_{M} I\right)$, as $Y I \nsubseteq \phi(X)$, we have $Y \nsubseteq\left(\phi(X):_{M} I\right)=\left(X:_{M} I\right)$, a contradiction with $Y I \subseteq X$.
Proposition 2.18. Let X be a proper submodule of M and I be an ideal of R such that $M I \neq X I$ and $X I \neq X$. Then $Y=X I$ is a ϕ prime submodule of M if and only if $Y=\phi(Y)$.
Proof. \Longleftarrow : Let $Y=\phi(Y)$. Then obviously Y is ϕ-prime.
\Longrightarrow : Suppose that $Y=X I$ is a ϕ-prime submodule. Let us consider Theorem 2.17. Now, we have 2 cases:

Case 1:I $\nsubseteq\left(Y:_{R} M\right)$. By Theorem 2.17, one obtains $\left(Y:_{M} I\right)=Y$ or $\left(Y:_{M} I\right)=\left(\phi(Y):_{M} I\right)$. If $\left(Y:_{M} I\right)=Y$, we have $X \subseteq\left(Y:_{M} I\right)=$ $\left(X I:_{M} I\right)=Y=X I$, i.e., $X=X I$, a contradiction. If $\left(Y:_{M} I\right)=$ $\left(\phi(Y):_{M} I\right)$, as $X \subseteq\left(Y:_{M} I\right)$, we see $Y=X I \subseteq\left(Y:_{M} I\right) I=\left(\phi(Y):_{M}\right.$ $I) I \subseteq \phi(Y)$, so $Y \subseteq \phi(Y)$. Then one obtains $\phi(Y)=Y$. So it is done.

Case $2: I \subseteq\left(Y:_{R} M\right)$. Then $M I \subseteq Y=X I$, so $M I=X I$, a contradiction.

Corollary 2.19. Let X be a proper submodule of M and I be an ideal of R such that $M I^{n} \neq M I^{n-1}$ for some $n>1$. Then $Y=M I^{n}$ is a ϕ-prime submodule of M if and only if $Y=\phi(Y)$.

Proof. Let consider $X=M I^{n-1}$. Then $X I=M I^{n} \subsetneq M I^{n-1} \subseteq M I$, i.e., $X I \neq M I$. Moreover, $Y=X I=M I^{n} \neq M I^{n-1}=X$, i.e., $X I \neq X$. Thus, by Proposition 2.18, it is done.

Proposition 2.20. Let I be a maximal ideal in R. Then $M I=M$ or MI is ϕ-prime in M.

Proof. Let $M I \neq M$. By the proof of Proposition 2.12 in [8], one can see that $M I$ is a prime submodule of M. Thus, $M I$ is ϕ-prime.

Theorem 2.21. Let X be a proper submodule of M. Suppose that ψ : $S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function. If X is ϕ-prime, then $\left(X:_{R} Y\right)$ is a ψ-prime ideal of R, for all $Y \in S(M)$ with $Y \nsubseteq X$ and $\left(\phi(X):_{R} Y\right) \subseteq$ $\psi\left(\left(X:_{R} Y\right)\right)$.

Proof. Suppose that X is a ϕ-prime submodule of M and Y is a submodule of M such that $Y \nsubseteq X$ and $\left(\phi(X):_{R} Y\right) \subseteq \psi\left(\left(X:_{R} Y\right)\right)$. Let $I J \subseteq\left(X:_{R} Y\right)$ and $I J \nsubseteq \psi\left(\left(X:_{R} Y\right)\right)$ for two ideals I, J of R. Then $(Y I) J \subseteq X$ and $(Y I) J \nsubseteq \phi(X)$, since $\left(\phi(X):_{R} Y\right) \subseteq \psi\left(\left(X:_{R} Y\right)\right)$. By our hypothesis, $J \subseteq\left(X:_{R} M\right)$ or $Y I \subseteq X$. If $Y I \subseteq X$, i.e., $I \subseteq\left(X:_{R} Y\right)$, it is done. If $J \subseteq\left(X:_{R} M\right)$, since $\left(X:_{R} M\right) \subseteq\left(X:_{R} Y\right)$, we see $J \subseteq\left(X:_{R} Y\right)$. Consequently, $\left(X:_{R} Y\right)$ is a ψ-prime ideal of R.

Corollary 2.22. Let X be a proper submodule of M. Suppose that ψ : $S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function with $\left(\phi(X):_{R} M\right) \subseteq \psi\left(\left(X:_{R} M\right)\right)$. If X is a ϕ-prime submodule of M, then $\left(X:_{R} M\right)$ is a ψ-prime ideal of R.

Proof. Set $Y=M$ in Theorem 2.21.

3. ϕ-Prime submodules in multiplication modules

Note that, an R-module M is called a multiplication module if there is an ideal I of R such that $X=M I$, for all $X \in S(M)$, see [15]. Also, in a multiplication module, one can see $X=M\left(X:_{R} M\right)$, for all $X \in S(M)$, see [15].

Let X and Y be two submodules of a multiplication R-module M with $X=M\left(X:_{R} M\right)$ and $Y=M\left(Y:_{R} M\right)$. The product of X and Y is denoted by $X Y$ and it is defined by $X Y=M\left(X:_{R} M\right)\left(Y:_{R} M\right)$. It is clear that the product is well-defined.

Proposition 3.1. Let M be multiplication and $X \in S(M)$. Then if X is ϕ-prime, then for $Y_{1}, Y_{2} \in S(M), Y_{1} Y_{2} \subseteq X$ and $Y_{1} Y_{2} \nsubseteq \phi(X)$ implies that $Y_{1} \subseteq X$ or $Y_{2} \subseteq X$.

Proof. Let Y_{1}, Y_{2} be any submodule in M with $Y_{1} Y_{2} \subseteq X$ and $Y_{1} Y_{2} \nsubseteq$ $\phi(X)$. As M is multiplication, we know that $Y_{1}=M\left(Y_{1}:_{R} M\right)$ and $Y_{2}=M\left(Y_{2}:_{R} M\right)$. Then $Y_{1} Y_{2}=M\left(Y_{1}:_{R} M\right)\left(Y_{2}:_{R} M\right) \subseteq X$ and $Y_{1} Y_{2} \nsubseteq \phi(X)$. Since X is ϕ-prime, one can see $M\left(Y_{1}:_{R} M\right) \subseteq X$ or $\left(Y_{2}:_{R} M\right) \subseteq\left(X:_{R} M\right)$. This implies that $Y_{1} \subseteq X$ or $Y_{2}=M\left(Y_{2}:_{R}\right.$ $M) \subseteq M\left(X:_{R} M\right)=X$.

Note that we say M is a cancellation module if $M I=M J$ implies that $I=J$ for two ideals I, J of R. For the definition of a cancellation module over commutative ring, see [4].

Corollary 3.2. Let M be multiplication and cancellation. For $X \in$ $S(M)$, the statements are equivalent:
(1) X is ϕ-prime.
(2) For $Y_{1}, Y_{2} \in S(M)$, if $Y_{1} Y_{2} \subseteq X$ and $Y_{1} Y_{2} \nsubseteq \phi(X)$, then $Y_{1} \subseteq X$ or $Y_{2} \subseteq X$.

Proof. $(1) \Longrightarrow(2)$: By Proposition 3.1.
$(2) \Longrightarrow(1):$ Choose an ideal $I \in S(R), Y \in S(M)$ with $Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$. Since M is multiplication, $Y=M\left(Y:_{R} M\right)$. Then we have $M\left(Y:_{R} M\right) I=Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$. Also, as M is multiplication, $M I=M\left(M I:_{R} M\right)$. Then this implies that $I=\left(M I:_{R} M\right)$, since M is cancellation. Hence $Y(M I)=M\left(Y:_{R} M\right)\left(M I:_{R} M\right)=M\left(Y:_{R}\right.$ $M) I=Y I$. So, we have $Y(M I) \subseteq X$ and $Y(M I) \nsubseteq \phi(X)$. Then by (2), one see $Y \subseteq X$ or $M I \subseteq X$. This means that $Y \subseteq X$ or $I \subseteq\left(X:_{R}\right.$ M).

Theorem 3.3. Let M be a multiplication R-module and X be a proper submodule of M. Suppose that $\psi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function with $\left(\phi(X):_{R} M\right)=\psi\left(\left(X:_{R} M\right)\right)$. Then the followings are equivalent:
(1) X is ϕ-prime in M.
(2) $\left(X:_{R} M\right)$ is a ψ-prime ideal in R.

Proof. (1) $\Longrightarrow(2)$: By Corollary 2.22.
$(2) \Longrightarrow(1):$ Assume that $\left(X:_{R} M\right)$ is ψ-prime. Choose an ideal I of R and a submodule Y of M with $Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$. As M is multiplication, $Y=M\left(Y:_{R} M\right)$. Hence $M\left(Y:_{R} M\right) I \subseteq X$ and $M\left(Y:_{R} M\right) I \nsubseteq \phi(X)$. Then one gets $\left(Y:_{R} M\right) I \subseteq\left(X:_{R} M\right)$ and $\left(Y:_{R} M\right) I \nsubseteq\left(\phi(X):_{R} M\right)$. Since $\left(\phi(X):_{R} M\right)=\psi\left(\left(X:_{R} M\right)\right),\left(Y:_{R}\right.$ $M) I \nsubseteq \psi\left(\left(X:_{R} M\right)\right)$. By our hypothesis, $I \subseteq\left(X:_{R} M\right)$ or $\left(Y:_{R} M\right) \subseteq$ $\left(X:_{R} M\right)$. If $I \subseteq\left(X:_{R} M\right)$, it is done. If $\left(Y:_{R} M\right) \subseteq\left(X:_{R} M\right)$, as M is multiplication, one can see $Y=M\left(Y:_{R} M\right) \subseteq M\left(X:_{R} M\right)=X$. Therefore, X is ϕ-prime.

Recall that if there exists an element $s \in R$ with $r=r s r$, for all $r \in R$, R is called von-Neumann regular, see [15]. Also, the center of a ring R is denoted by $\operatorname{Center}(R)$.

Lemma 3.4. [8] Assume that M is multiplication, R is a von-Neumann regular ring and $J \subseteq \operatorname{Center}(R)$ is an ideal in R. Then $X \cap M J=\left(X:_{M}\right.$ $J) J$, for any submodule X of M.

Lemma 3.5. [8] Assume that M is multiplication, R is a von-Neumann regular ring and $J \subseteq C$ enter (R) is an ideal in R. If for all $Y, Z \in S(M)$, $Y J \subseteq Z J$ implies that $Y \subseteq Z$, then $\left(X I:_{M} J\right)=\left(X:_{M} J\right) I$ for $X \in S(M J)$ and any ideal I of R.

Theorem 3.6. Let M be a multiplication R-module and R be a vonNeumann regular ring. Let $I \subseteq \operatorname{Center}(R)$ be an ideal of R such that $Y I \subseteq Z I$ implies that $Y \subseteq Z$ for all $Y, Z \in S(M)$. Let $\phi\left(\left(X:_{M} I\right)\right)=$ $\left(\phi(X):_{M} I\right)$. Then $X \in S(M I)$ is ϕ-prime $\Longleftrightarrow\left(X:_{M} I\right) \in S(M)$ is ϕ-prime.
Proof. \Longrightarrow : Assume that $X \in S(M I)$ is ϕ-prime. Choose an ideal J of $R, Y \in S(M)$ with $Y J \subseteq\left(X:_{M} I\right)$ and $Y J \nsubseteq \phi\left(\left(X:_{M} I\right)\right)$. Then clearly $Y J I \subseteq X$. We show that $Y J I \nsubseteq \phi(X)$. If $Y J I \subseteq \phi(X)$, then $Y J \subseteq\left(\phi(X):_{M} I\right)=\phi\left(\left(X:_{M} I\right)\right)$, a contradiction. By $I \subseteq \operatorname{Center}(R)$, one can see $Y J I=Y I J$. Hence, $Y I J \subseteq X$ and $Y I J \nsubseteq \phi(X)$ implies $Y I \subseteq X$ or $J \subseteq\left(X:_{R} M I\right)$, since X is ϕ-prime submodule of $M I$.

Moreover, as $I \subseteq C e n t e r(R)$, we see $\left(X:_{R} M I\right)=\left(\left(X:_{M} I\right):_{R} M\right)$. So, $Y I \subseteq X$ or $J \subseteq\left(X:_{R} M I\right)$ implies $Y \subseteq\left(X:_{M} I\right)$ or $J \subseteq\left(\left(X:_{M} I\right):_{R}\right.$ $M)$.
\Longleftarrow : Let $\left(X:_{M} I\right)$ be ϕ-prime in M for $X \in S(M I)$. Choose an ideal J of $R, Y \in S(M I)$ with $Y J \subseteq X, Y J \nsubseteq \phi(X)$. Then we see that $\left(Y:_{M}\right.$ $I) J=\left(Y J:_{M} I\right) \subseteq\left(X:_{M} I\right)$ by Lemma 3.5. Now, let us prove $\left(Y:_{M}\right.$ $I) J \nsubseteq \phi\left(\left(X:_{M} I\right)\right)$. Indeed, if $\left(Y:_{M} I\right) J \subseteq \phi\left(\left(X:_{M} I\right)\right)=\left(\phi(X):_{M} I\right)$, then $\left(Y:_{M} I\right) J I=\left(Y:_{M} I\right) I J \subseteq\left(\phi(X):_{M} I\right) I$, as $I \subseteq C e n t e r(R)$. By Lemma 3.4, we get $Y J=(Y \cap M I) J=\left(Y:_{M} I\right) I J \subseteq\left(\phi(X):_{M} I\right) I=$ $\phi(X) \cap M I=\phi(X)$, a contradiction. Hence, as $\left(X:_{M} I\right)$ is ϕ-prime, one can see $\left(Y:_{M} I\right) \subseteq\left(X:_{M} I\right)$ or $J \subseteq\left(\left(X:_{M} I\right):_{R} M\right)$. The first option gives us $Y=Y \cap M I=\left(Y:_{M} I\right) I \subseteq\left(X:_{M} I\right) I=X \cap M I=X$, by Lemma 3.4. The second option means that $J \subseteq\left(\left(X:_{M} I\right):_{R} M\right)=$ $\left(X:_{R} M I\right)$, as $I \subseteq C e n t e r(R)$. Thus we are done.

4. The Radical of a submodule

In the following definition, we shall introduce the concept of ϕ - m system.
Definition 4.1. $\emptyset \neq S \subseteq M$ is called a ϕ-m-system if $\left(Y_{1}+Y_{2}\right) \cap S \neq \emptyset$, $\left(Y_{1}+M I\right) \cap S \neq \emptyset$ and $Y_{2} I \nsubseteq \phi\left(<S^{c}>\right)$, then $\left(Y_{1}+Y_{2} I\right) \cap S \neq \emptyset$ for $\forall Y_{1}, Y_{2} \in S(M)$ and any ideal I of R, where $S^{c}=M-S$.
Proposition 4.2. For $X \in S(M), X$ is ϕ-prime $\Longleftrightarrow S=M-X$ is a ϕ-m-system.

Proof. \Longrightarrow : Suppose that X is ϕ-prime. Choose an ideal I of R and two submodules Y_{1}, Y_{2} of M with $\left(Y_{1}+Y_{2}\right) \cap S \neq \emptyset,\left(Y_{1}+M I\right) \cap S \neq \emptyset$ and $Y_{2} I \nsubseteq \phi\left(<S^{c}>\right)$, where $S^{c}=X$. We show that $\left(Y_{1}+Y_{2} I\right) \cap S \neq \emptyset$. If $\left(Y_{1}+Y_{2} I\right) \cap S=\emptyset$, then $\left(Y_{1}+Y_{2} I\right) \subseteq X$, since $S=M-X$. Then one can see $Y_{2} I \subseteq X$ and $Y_{1} \subseteq X$. Also, by our hypothesis, $Y_{2} I \nsubseteq \phi\left(<S^{c}>\right)=$ $\phi(X)$. Then as X is ϕ-prime, we get $Y_{2} \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$. If $Y_{2} \subseteq X$, we see $Y_{1}+Y_{2} \subseteq X$, i.e., $\left(Y_{1}+Y_{2}\right) \cap S=\emptyset$, a contradiction. If $I \subseteq\left(X:_{R}\right.$ $M)$, then $M I \subseteq X$, so we get $Y_{1}+M I \subseteq X$, i.e., $\left(Y_{1}+M I\right) \cap \bar{S}=\emptyset$, a contradiction. Thus $\left(Y_{1}+Y_{2} I\right) \cap S \neq \emptyset$.
\Longleftarrow : Let $S=M-X$ be a ϕ - m-system. Let Y be a submodule of M and I be an ideal of R such that $Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$. Suppose that $Y \nsubseteq X$ and $I \nsubseteq\left(X:_{R} M\right)$. Then one can see $Y \cap S \neq \emptyset$ and $M I \cap S \neq \emptyset$. In the definition of ϕ - m-system, consider as $Y_{1}=0_{M}$ and $Y_{2}=Y$. Then since $Y \cap S \neq \emptyset, M I \cap S \neq \emptyset$ and $Y I \nsubseteq \phi(X)=\phi\left(S^{c}\right)$, we
obtain $Y I \cap S=\left(0_{M}+Y I\right) \cap S \neq \emptyset$, by S is a ϕ-m-system. Therefore, $Y I \cap S \neq \emptyset$, but this contradicts with $Y I \subseteq X$.

Proposition 4.3. For a proper $X \in S(M)$, let $S:=M-X$. The followings are equivalent:
(1) X is a ϕ-prime submodule.
(2) If $\left(Y_{1}+Y_{2}\right) \cap S \neq \emptyset, M I \cap S \neq \emptyset$ and $Y_{2} I \nsubseteq \phi\left(S^{c}\right)$, for all $Y_{1}, Y_{2} \in S(M)$ and any ideal I of R, then $\left(Y_{1}+Y_{2} I\right) \cap S \neq \emptyset$.
(3) If $Y_{2} \cap S \neq \emptyset, M I \cap S \neq \emptyset$ and $Y_{2} I \nsubseteq \phi\left(S^{c}\right)$, for all $Y_{2} \in S(M)$ and any ideal I of R, then $Y_{2} I \cap S \neq \emptyset$.

Proof. (1) $\Longrightarrow(2):$ Assume that $\left(Y_{1}+Y_{2}\right) \cap S \neq \emptyset, M I \cap S \neq \emptyset$ and $Y_{2} I \nsubseteq \phi\left(S^{c}\right)$ for all $Y_{1}, Y_{2} \in S(M)$ and any ideal I of R. Since X is a ϕ-prime submodule, by Proposition 4.2 , we know $S=M-X$ is a ϕ-m-system. Also, since $M I \cap S \neq \emptyset,\left(Y_{1}+M I\right) \cap S \neq \emptyset$. Thus, by the definition of ϕ-m-system, $\left(Y_{1}+Y_{2} I\right) \cap S \neq \emptyset$.
$(2) \Longrightarrow(3):$ Set $Y_{1}=0_{M}$.
$(3) \Longrightarrow(1):$ Suppose that $Y \in S(M)$ and I is an ideal of R with $Y I \subseteq X, Y I \nsubseteq \phi(X)$. Let $Y \nsubseteq X$ and $I \nsubseteq\left(X:_{R} M\right)$. Since $Y \nsubseteq X$, we have $Y \cap S \neq \emptyset$. Also, as $I \nsubseteq\left(X:_{R} M\right)$, i.e., $M I \nsubseteq X$, one can see $M I \cap S \neq \emptyset$. Thus, since $Y \cap S \neq \emptyset, M I \cap S \neq \emptyset$ and $Y I \nsubseteq \phi(X)=\phi\left(S^{c}\right)$, we obtain $Y I \cap S \neq \emptyset$ by (3). This contradicts with $Y I \subseteq X$. Hence we are done.

Definition 4.4. For $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$,
(1) The function ϕ is called containment preserving, if for any two submodules $X_{1}, X_{2} \in S(M), X_{1} \subseteq X_{2}$ implies $\phi\left(X_{1}\right) \subseteq \phi\left(X_{2}\right)$.
(2) The function ϕ is called sum preserving, if $\phi\left(\sum X_{i}\right)=\sum \phi\left(X_{i}\right)$, for all $X_{i} \in S(M)$.

Lemma 4.5. Let ϕ be containment preserving. Assume that $S \subseteq M$ is a ϕ-m-system and $X \in S(M)$ maximal with respect to $X \cap S=\emptyset$ and $\phi(X)=\phi\left(<S^{c}>\right)$. Then X is a ϕ-prime submodule of M.
Proof. Let I be any ideal of R and $Y \in S(M)$ such that $Y I \subseteq X$ and $Y I \nsubseteq \phi(X)$. Let $Y \nsubseteq X$ and $I \nsubseteq\left(X:_{R} M\right)$. Then as $Y \nsubseteq X$, one can see $X \subsetneq X+Y$. We show that $(X+Y) \cap S \neq \emptyset$. Indeed, if $(X+Y) \cap S=\emptyset$, then $X+Y \subseteq S^{c}$, so $X+Y \subseteq<S^{c}>$. Thus, $\phi\left(<S^{c}>\right)=\phi(X) \subseteq \phi(X+Y) \subseteq \phi\left(<S^{c}>\right)$, i.e., $\phi(X+Y)=\phi(<$ $\left.S^{c}>\right)$. This doesn't happen because of the properties of X. Also, as $I \nsubseteq\left(X:_{R} M\right)$, i.e., $M I \nsubseteq X$, we have $X \subsetneq X+M I$. We show that $(X+M I) \cap S \neq \emptyset$. Indeed, if $(X+M I) \cap S=\emptyset$, then similar the
above, we obtain $\phi(X+M I)=\phi\left(<S^{c}>\right)$, a contradiction. Thus, since $Y I \nsubseteq \phi(X)=\phi\left(<S^{c}>\right),(X+Y) \cap S \neq \emptyset$ and $(X+M I) \cap S \neq \emptyset$, one obtains $(X+Y I) \cap S \neq \emptyset$, by S is a ϕ - m-system. Then as $Y I \subseteq X$, one gets $X \cap S \neq \emptyset$. This gives us a contradiction. Consequently, one can see that $Y \subseteq X$ or $I \subseteq\left(X:_{R} M\right)$

Definition 4.6. Let $Y \in S(M)$. If there is a ϕ-prime submodule X contains Y such that $\phi(Y)=\phi(X)$, then we define the radical of Y as :
$\sqrt{Y}:=\{x \in M:$ every ϕ - m-system S containing x such that $\phi(Y)=$ $\left.\phi\left(<S^{c}\right\rangle\right)$ meets $\left.Y\right\}$, otherwise $\sqrt{Y}:=M$.

Theorem 4.7. Let ϕ be containment and sum preserving. For $Y \in$ $S(M)$, let $\Omega:=\left\{X_{i} \in S(M): X_{i}\right.$ is ϕ-prime with $Y \subseteq X_{i}$ and $\phi(Y)=$ $\phi\left(X_{i}\right)$, for $\left.i \in \Lambda\right\}$. Then we have

$$
\sqrt{Y}=\bigcap_{X_{i} \in \Omega} X_{i} .
$$

Proof. Assume that $\sqrt{Y} \neq M$. Choose $x \in \sqrt{Y}$ and $X_{i} \in \Omega$. By Proposition 4.2, we know $S=M-X_{i}$ is a ϕ - m-system. As $S \cap Y=\emptyset$ and $x \in \sqrt{Y}$, we have $x \notin S$. Thus $x \in X_{i}$ and so $\sqrt{Y} \subseteq \bigcap_{X_{i} \in \Omega} X_{i}$. For the other containment, choose $y \notin \sqrt{Y}$. Thus, there is a ϕ-m-system S in M with $\left.y \in S, \phi(Y)=\phi\left(<S^{c}\right\rangle\right)$ and $S \cap Y=\emptyset$. Let us consider, the following set :

$$
\Delta:=\left\{X_{i} \in S(M): Y \subseteq X_{i}, S \cap X_{i}=\emptyset \text { and } \phi\left(X_{i}\right)=\phi\left(<S^{c}>\right)\right\}
$$

One can see clearly, $Y \in \Delta$, so $\Delta \neq \emptyset$. Let $X_{1} \subseteq X_{2} \subseteq \cdots \subseteq X_{n} \subseteq \cdots$ be a chain in Δ. Then it is easy to see that $Y \subseteq \bigcup X_{i}$ and $S \cap\left(\bigcup X_{i}\right)=\emptyset$. Also,
since ϕ is containment and sum preserving with $\phi\left(X_{i}\right)=\phi\left(<S^{c}>\right)$, one can see $\phi\left(\bigcup X_{i}\right)=\phi\left(<S^{c}>\right)$. Thus $\bigcup X_{i} \in \Delta$. Hence, by Zorn's Lemma, Δ has a maximal element, say $X_{i_{1}}$. Then $y \notin X_{i_{1}}$, since $y \in S$ and $S \cap X_{i_{1}}=\emptyset$. Thus $y \notin \bigcap_{X_{i} \in \Omega} X_{i}$, so we obtain $\bigcap_{X_{i} \in \Omega} X_{i} \subseteq \sqrt{Y}$.

Acknowledgments

The authors wish to thank the referees for their invaluable comments.

References

[1] R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. Math. Sci., 27 (2003), 1715-1724.
[2] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686-696.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003) 831-840.
[4] D. D. Anderson, Cancellation modules and related modules, Lect. Notes Pure Appl. Math., 220 (2001), 13-25.
[5] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, SpringerVerlag, New York, (1992).
[6] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38 (3) (2007), 247-252.
[7] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, CRC Press (1969).
[8] P. K. Beiranvand and R. Beyranvand, Almost prime and weakly prime submodules, J. Algebra Appl., 18 (7) (2019), 1950129, 14 pp.
[9] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
[10] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
[11] T. Y. Lam, A first course in noncommutative rings, Second Edition, Springer, (1991).
[12] C. P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
[13] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
[14] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy essential-small submodules and Fuzzy small-essential submodules, Journal of Hyperstructures, 9 (2), (2020), 52-67.
[15] A. A. Tuganbaev, Multiplication modules, Journal of Mathematical Sciences, 123 (2) (2004), 3839-3905.
[16] N. Zamani, ϕ-prime submodules, Glasgow Math. J., 52 (2) (2010), 253-259.

Emel Aslankarayigit Ugurlu

Department of Mathematics, Marmara University, P.O.Box 34722, Istanbul, Turkey
Email: emel.aslankarayigit@marmara.edu.tr

[^0]: Received: 27 March 2022, Accepted: 28 April 2022. Communicated by Ahmad Yousefian Darani;
 *Address correspondence to Emel Aslankarayigit Ugurlu E-mail: emelakyugurlu@gmail.com (c) 2022 University of Mohaghegh Ardabili.

