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ALGEBRAIC CHARACTERISATION OF HYPERSPACE

CORRESPONDING TO TOPOLOGICAL VECTOR

SPACE

JAYEETA SAHA AND SANDIP JANA

Abstract. Let X be a Hausdorff topological vector space over the
field of real or complex numbers. When Vietoris topology is given,
the hyperspace C(X ) of all nonempty compact subsets of X forms a
topological exponential vector space over the same field. Exponen-
tial vector space [shortly, evs] is an algebraic ordered extension of
vector space in the sense that every evs contains a vector space, and
conversely, every vector space can be embedded into such a struc-
ture. A semigroup structure, a scalar multiplication and a partial
order with some compatible topology comprise the topological evs
structure. In this study, we have shown that besides C(X ), there
are other hyperspaces namely P(X ), PBal(X ) PCV (X ), PNθ (X ),
PS(X ), Pθ(X ) which have the same structure. To characterise the
hyperspaces P(X ), C(X ) in light of evs, we have introduced some
properties of evs which remain invariant under order-isomorphism.
We have also introduced the concept of primitive function of an
evs, which plays an important role in such characterisation. Lastly,
with the help of these properties, we have characterised C(X ) as
well as P(X ) as exponential vector spaces.
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1. Introduction

The family of some subsets of a topological space equipped with Vi-
etories Topology[1] is commonly known as hyperspace. In this paper we
will discuss about the hyperspace consisting of all nonempty compact
subsets of a Hausdorff topological vector space X over the field K of real
or complex numbers and denote the hyperspace by C(X ).

If we define addition and scalar multiplication on C(X ) in the follow-
ing manner then C(X ) is closed under these operations. ∀A,B ∈ C(X )
and α ∈ K, A+ B := {a+ b : a ∈ A, b ∈ B}, αA := {αa : a ∈ A} We
can notice that C(X ) is not a group under the aforesaid addition, rather
it is a commutative semigroup with an identity {θ}, θ being the additive
identity of X . Any element A ∈ C (X ) is invertible if and only if A is
a singleton set [as {x} − {x} = {θ}]. Also for any two scalars α, β and
any set A ∈ C(X ) other than singleton, (α + β)A 6= αA + βA, in fact,
(α+β)A ⊂ αA+βA. For example, let us take the set A = {0, 1} ∈ C(R)
then 3A = {0, 3} and 4A = {0, 4}. Now (3 + 4)A = 7A = {0, 7} but
3A + 4A = {0, 3, 4, 7}. So 7A ⊂ 3A + 4A. Therefore C(X ) does not
carry a vector space structure; rather it forms a new algebraic structure
named as ‘exponential vector space’.

Let us begin by defining an exponential vector space.

Definition 1.1. [3] Let (X,≤) be a partially ordered set, ‘+’ be a binary
operation on X [called addition] and ‘·’ : K × X −→ X be another
composition [called scalar multiplication, K being a field]. If ‘≤’, ‘+’
and ‘·’ satisfy the following axioms, we call (X,+ , ·,≤) an exponential
vector space (in short, evs) over K [This structure was initiated with
the name quasi-vector space or qvs by S. Ganguly et al. in [4]].

A1 : (X,+) is a commutative semigroup with identity θ.

A2 : x ≤ y (x, y ∈ X)⇒ x+ z ≤ y + z and α · x ≤ α · y, ∀z ∈ X,∀α ∈ K
A3 : (i) α · (x+ y) = α · x+ α · y

(ii) α · (β · x) = (α · β) · x
(iii) (α+ β) · x ≤ α · x+ β · x
(iv) 1 · x = x, where ‘1’ is the multiplicative identity in K,

∀x, y ∈ X, ∀α, β ∈ K
A4 : α · x = θ iff α = 0 or x = θ

A5 : x+ (−1) · x = θ iff x ∈ X0 :=
{
z ∈ X : y 6≤ z, ∀y ∈ X r {z}

}
A6 : For each x ∈ X, ∃ y ∈ X0 such that y ≤ x.
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We can see from A5 that the elements of the set X0 are basically
the minimal elements of X with respect to its partial order ‘≤’; these
elements are called ‘primitive elements’ of X [3]. These primitive el-
ements are the only invertible elements of X, the inverse of x (∈ X0)
being −x. Also X0 forms a maximal vector space over the same field as
that of X [[4]] and this vector space X0 is called the ‘primitive space’ or
‘zero space’ of X [3]. As a result we can say that every exponential vec-
tor space contains a vector space. Conversely, as the following example
shows, every vector space can be embedded into an exponential vector
space.

Example 1.2. [3] Let V be a vector space over some field K. Let E(V ) :=
R+×V , where R+ denotes the set of all non-negative real numbers. The
addition, scalar multiplication and partial order are defined as follows :
For (λ1, x1), (λ2, x2), (λ, x) ∈ R+ × V and α ∈ K
(i) (λ1, x1) + (λ2, x2) := (λ1 + λ2, x1 + x2).
(ii) α(λ, x) := (λ, αx), if α 6= 0 and 0(λ, x) := (0, θ), θ being the identity
in V .
(iii) (λ1, x1) ≤ (λ2, x2) iff λ1 ≤ λ2 and x1 = x2.
Then (X,+, ·,≤) is an evs over K, where the set of all primitive elements
of X is given by X0 =

{
(0, x) : x ∈ V

}
which can be identified with V

through the identification (0, x) 7−→ x.

Thus given any vector space V over some field K, an evs X can
be constructed such that V is isomorphic to X0. Therefore we might
conclude that the concept of exponential vector space is a generalisation
of the concept of vector space.

Example 1.3. [4] The hyperspace C(X ) consisting of all nonempty com-
pact subsets of a Hausdorff topological vector space X (over the field K
of real or complex numbers) forms an exponential vector space over K
with respect to the following operations and usual set-inclusion as the
partial order : ∀A,B ∈ C(X ) and α ∈ K,

A+B := {a+ b : a ∈ A, b ∈ B}, αA := {αa : a ∈ A}

Here the primitive space is given by [C(X )]0 =
{
{x} : x ∈ X

}
which can

be identified with X through the identification {x} 7→ x.

We are going to topologize an exponential vector space right now. We
will need the following concept for this.
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Definition 1.4. [2] Let ‘≤’ be a preorder in a topological space Z; the
preorder is said to be closed if its graph G≤(Z) :=

{
(x, y) ∈ Z×Z : x ≤

y
}

is closed in Z × Z (endowed with the product topology).

Theorem 1.5. [2] A partial order ‘≤’ in a topological space Z will be a
closed order iff for any x, y ∈ Z with x 6≤ y, ∃ open neighbourhoods U, V
of x, y respectively in Z such that (↑ U) ∩ (↓ V ) = ∅, where ↑ U := {z ∈
Z : z ≥ u for some u ∈ U} and ↓ V := {z ∈ Z : z ≤ v for some v ∈ V }.

Definition 1.6. [3] An exponential vector space X over the field K of
real or complex numbers is said to be a topological exponential vector
space if there exists a topology on X with respect to which the addition
and the scalar multiplication are continuous and the partial order ‘≤’ is
closed (Here K is equipped with the usual topology).

Since restriction of a continuous function is continuous, the primitive
space X0 of a topological exponential vector space X also becomes a
topological vector space. Furthermore, the closedness of the partial order
in a topological exponential vector space X readily implies (by means of
Theorem 1.5) that X is Hausdorff and hence primitive space becomes a
Hausdorff topological vector space. Moreover X0 is closed in X. In fact,
if (pi)i is a net in X0 converging to x ∈ X then x−x = lim

i
pi− lim

i
pi =

lim
i

(pi − pi) = θ ⇒ x ∈ X0.

Example 1.7. [5] Let E be a vector space over the field K of real or
complex numbers. Let X := R+ × E, where R+ denotes the set of all
non-negative real numbers. The operations addition and scalar multi-
plication are defined as follows :
For (λ1, x1), (λ2, x2), (λ, x) ∈ R+ × E and α ∈ K
(i) (λ1, x1) + (λ2, x2) := (λ1 + λ2, x1 + x2).
(ii) α(λ, x) := (|α|λ, αx).
The partial order ‘≤’ is defined as : (λ1, x1) ≤ (λ2, x2) iff λ1 ≤ λ2 and
x1 = x2.
Then (X,+, ·,≤) is an evs over K, where the primitive space of X is
given by X0 =

{
(0, x) : x ∈ E

}
which can be identified with E through

the identification (0, x) 7−→ x.
If further E is a Hausdorff topological vector space and R+ is equipped

with the subspace topology from the real line R, then under the product
topology, R+ × E becomes a topological evs.
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Again if we replace the general vector space E by the null vector space
{θ} then the resulting evs R+ × {θ} can be identified with the non-
negative part of the real line i.e. [0,∞), where 0 is the only primitive
element of [0,∞). This is a topological evs as well with respect to the
subspace topology inherited from the real line R.

Example 1.8. [4] The hyperspace C(X ), described in Example 1.3, be-
comes a topological exponential vector space with respect to the Vietoris
topology [1]. For convenience we describe this topology here briefly.

Let us define

S :=
{
W+ : W is open in X

}⋃{
W− : W is open in X

}
,

where

W+ :=
{
E ∈ C(X ) : E ⊆W

}
and W− :=

{
E ∈ C(X ) : E ∩W 6= ∅

}
Then S is a subbase for some topology on C(X ), known as the Vietoris
topology or finite topology. It is easy to check that, V +

1 ∩ · · · ∩ V +
n =

(V1 ∩ · · · ∩ Vn)+ and hence a basic open set in this topology takes the
form V −1 ∩ · · ·∩V −n ∩V

+
0 , [V0, V1, . . . , Vn being open in X ]. We may also

choose that Vi ⊆ V0, i = 1, 2, . . . , n in such a basic open set. It is now
evident to note that the aforesaid identification x 7−→ {x} is actually a
homeomorphism from X into C(X ).

To characterise various hyperspaces we first need the following con-
cepts.

Definition 1.9. [5] A mapping f : X −→ Y (X,Y being two exponen-
tial vector spaces over the field K) is called an order-morphism if
(i) f(x+ y) = f(x) + f(y), ∀x, y ∈ X
(ii) f(αx) = αf(x), ∀α ∈ K, ∀x ∈ X
(iii) x ≤ y (x, y ∈ X)⇒ f(x) ≤ f(y)
(iv) p ≤ q

(
p, q ∈ f(X)

)
⇒ f−1(p) ⊆↓ f−1(q) and f−1(q) ⊆↑ f−1(p).

A bijective (injective, surjective) order-morphism is called an order-
isomorphism (order-monomorphism, order-epimorphism respectively).

If X,Y are two topological evs over K then an order-isomorphism
f : X −→ Y is said to be a topological order-isomorphism if f is a
homeomorphism.

Clearly, if f : X → Y is an order-isomorphism then x ≤ y (x, y ∈ X)
iff f(x) ≤ f(y).

Definition 1.10. [3]A property of an evs is called an evs property if it
remains invariant under order-isomorphism.
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This order-isomorphism concept is able to extract the structural beauty
of an evs by judging the invariance of its many features. Since the iden-
tity map, the inverse of an order-isomorphism, and the composition of
two order-isomorphisms are all order-isomorphisms, the concept creates
a partition on the collection of all evs over some common field, allowing
two evs belonging to two separate classes to be distinguished.

Definition 1.11. [6] A subset Y of an exponential vector space X is
said to be a sub exponential vector space (subevs in short) if Y itself is
an exponential vector space with respect to the compositions of X being
restricted to Y .

Note 1.12. [6] A subset Y of an exponential vector space X over a field
K is a sub exponential vector space iff Y satisfies the following :
(i) αx+ y ∈ Y, ∀α ∈ K, ∀x, y ∈ Y .
(ii) Y0 ⊆ X0

⋂
Y , where Y0 :=

{
z ∈ Y : y � z,∀ y ∈ Y r {z}

}
(iii) For any y ∈ Y , ∃ p ∈ Y0 such that p ≤ y.

If Y is a subevs of X then actually Y0 = X0∩Y , since for any Y ⊆ X
we have X0 ∩ Y ⊆ Y0.

If moreover X is a topological evs then a subevs Y of X will be a
topological subevs. This is true since, restriction of a continuous function
being continuous, the addition and scalar multiplication in Y are also
continuous. Again G≤(Y ) := {(x, y) ∈ Y × Y : x ≤ y} = G≤(X)∩ (Y ×
Y ) and hence G≤(X) being closed in X × X it follows that G≤(Y ) is
closed in Y × Y . Thus the partial order restricted to Y is closed.

In the present paper, in the very next section we have discussed var-
ious hyperspaces, originated from a vector space, in the light of expo-
nential vector space.

In section 3, we have investigated some properties of evs which remain
invariant under order-isomorphism.

In the last section we have characterised the hyperspaces C(X ) and
P(X ) by means of the invariant properties developed in section 3.

2. Some hyperspaces corresponding to various vector spaces

This section describes some more hyperspaces of a vector space in the
light of evs.

Example 2.1. Let X be a vector space over the field K of real or complex
numbers and P(X ) be the collection of all nonempty subsets of X . In
P(X ) we define the operations and partial order same as in C(X ). Then
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P(X ) becomes an evs over the field K with respect to these operations
and partial order. Although the justification is similar to that of C(X ),
we present below the justification for convenience.
Justification :
A1 : Clearly (P(X ),+) is a commutative semigroup with identity {θ},
θ being the additive identity of X .
A2 : A ≤ B

(
A,B ∈ P(X )

)
⇒ A ⊆ B ⇒ A + C ⊆ B + C for any

C ∈P(X ) ⇒ A+ C ≤ B + C for any C ∈P(X ). Also for any α ∈ K,
αA ⊆ αB ⇒ αA ≤ αB.
A3(i) : α(A+B) = αA+ αB, for any α ∈ K and any A,B ∈P(X )
(ii) : α(βA) = (αβ)A, for any α, β ∈ K and any A ∈P(X )
(iii) : (α + β)A ⊆ αA + βA ⇒ (α + β)A ≤ αA + βA, for any α, β ∈ K
and A ∈P(X )
(iv) : 1 ·A = A where A is any element of P(X ) and 1 is the multiplica-
tive identity of K (≡ R or C).
A4 : If αA = {θ} and α 6= 0 then obviously A = {θ}. Thus αA = {θ}
⇒ either α = 0 or A = {θ}. Converse is obvious.
A5 : A + (−1)A = {θ} (A ∈ P(X )) ⇔ A is a singleton set. Also
[P(X )]0 =

{
{x} : x ∈ X

}
. Therefore A+(−1)A = {θ} iff A ∈ [P(X )]0.

A6 : For any A ∈ P(X ), A 6= ∅ ⇒ ∃ a ∈ A ⇒ {a} ≤ A, where
{a} ∈ [P(X )]0.

In this example one can notice that the set [P(X )]0 =
{
{x} : x ∈ X

}
can be identified with X through the identification {x} 7−→ x which is
a vector space isomorphism.

If X is a Hausdorff topological vector space then it follows that C(X ) ⊂
P(X ). It is thus natural to ask whether C(X ) is a subevs of P(X ).
By virtue of Note 1.12, for verifying this it is enough to note that
[C(X )]0 =

{
{x} : x ∈ X

}
= [P(X )]0

⋂
C(X ) and for any A ∈ C(X ),

∃ a ∈ A ⇒ {a} ⊆ A, where {a} ∈ [C(X )]0. If P(X ) is now en-
dowed with the Vietoris topology then C(X ) becomes a dense subevs
of P(X ). In fact, if V +

0 ∩ V
−
1 ∩ · · · ∩ V −n is any basic open set in P(X ),

where Vi ⊆ V0 ∀ i and each Vi is open in X , then the compact set
{a1, . . . , an} ∈ V +

0 ∩ V
−
1 ∩ · · · ∩ V −n if ai ∈ Vi ∀ i. But in next section

we will see that P(X ) is not a topological evs with respect to Vietoris
topology.

We now give some more examples of subevs of the evs P(X ).
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Example 2.2. If we consider the collection of all balanced1 subsets of
a topological vector space X over the field K (≡ R or C), denoted as
PBal(X ), then for any A,B ∈PBal(X ) and for any α, β ∈ K, αA+βB ∈
PBal(X ) [since for any γ ∈ K with |γ| ≤ 1 we have γ(αA+βB) = αγA+
βγB ⊆ αA + βB]. Again [PBal(X )]0 =

{
{θ}
}

= [P(X )]0
⋂

PBal(X )
and {θ} ⊆ A, for any A ∈PBal(X ). Therefore PBal(X ) forms a subevs
of P(X ), by means of Note 1.12.

Example 2.3. If PCV (X ) denotes the collection of all nonempty convex
subsets of a topological vector space X over K, then for any A,B ∈
PCV (X ) and α, β ∈ K we have αA + βB ∈ PCV (X ) [since sum of
two convex sets and scalar multiple of a convex set are convex]. Also
[PCV (X )]0 =

{
{x} : x ∈ X

}
= [P(X )]0

⋂
PCV (X ) [since each singleton

set is a convex set] and for any A ∈ PCV (X ) and any a ∈ A we have
{a} ⊆ A, where {a} ∈ [PCV (X )]0. This shows that PCV (X ) becomes a
subevs of P(X ), by Note 1.12.

Example 2.4. For a topological vector space X over K, let
(i) PNθ(X ) :=

{
{θ}
}⋃

ηθ, where ηθ is the neighbourhood-system of
X at θ. Then for any U, V ∈ PNθ(X ) and any α, β ∈ K we have
αU + βV ∈PNθ(X ) [it follows since translation and dilation in a topo-
logical vector space are homeomorphisms]. Also [PNθ(X )]0 =

{
{θ}
}

=
[P(X )]0

⋂
PNθ(X ) and for any U ∈ PNθ(X ), {θ} ⊆ U where {θ} ∈

[PNθ(X )]0. Thus, by Note 1.12, PNθ(X ) forms a subevs of P(X ).
(ii) Next if we define Pτ (X ) := τ

⋃{
{x} : x ∈ X

}
, τ being the

topology of X , then by similar argument Pτ (X ) is a subevs of P(X );
the only point that should be noted here is that, sum of two open sets,
scalar multiplication of an open set and translation of an open set are
open. Also [Pτ (X )]0 =

{
{x} : x ∈ X

}
= [P(X )]0

⋂
Pτ (X ).

Example 2.5. For a vector space X over K let
(i) PS(X ) := {A ∈P(X ) : A is symmetric and θ ∈ A}
(ii) Pθ(X ) := {A ∈P(X ) : θ ∈ A}
It is then a routine work to verify that PS(X ) and Pθ(X ) are subevs of
P(X ). Here [PS(X )]0 =

{
{θ}
}

= [P(X )]0 ∩PS(X ) and [Pθ(X )]0 ={
{θ}
}

= [P(X )]0 ∩Pθ(X ).

1A subset S in a vector space X over K is called balanced if for any scalar α with
|α| ≤ 1 we have αS ⊆ S. Thus every balanced set contains θ.
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3. Some invariant properties of evs

Our main goal of this paper is to characterise the spaces C(X ) and
P(X ). For this purpose, first we have tried to find out the characteristics
of these spaces that distinguish them from other spaces. Our search for
such properties starts with the following really helpful concept.

Definition 3.1. In an evs X the primitive of x ∈ X is defined as the set

Px := {p ∈ X0 : p ≤ x}
The axiom A6 of the definition 1.1 of an evs ensures that the primitive

of each element of an evs is nonempty. The elements of Px will be called
the primitive elements of x.

The following result is immediate.

Result 3.2. (i) If φ : X −→ Y is an order-isomorphism between two evs
X and Y over the same field K then dimX0 = dimY0, as φ(X0) = Y0
and φ

∣∣
X0

is an isomorphism between the vector spaces X0 and Y0.

(ii) If φ : X −→ Y is an order-isomorphism between two evs X and
Y over the same field K, then for any x ∈ X, φ(Px) = Pφ(x). In fact,

y ∈ Pφ(x) ⇔ y ≤ φ(x) and y ∈ Y0 ⇔ φ−1(y) ≤ x and φ−1(y) ∈ X0 ⇔
φ−1(y) ∈ Px ⇔ y ∈ φ(Px).

The following proposition gives an important property of Px for a
topological evs.

Proposition 3.3. In any topological evs X the primitive Px of each
element x ∈ X is closed.

Proof. If (pi)i is a net in Px converging to p ∈ X0 (∵ X0 is closed) then
pi ≤ x, ∀i ⇒ p ≤ x (∵ the partial order of X is closed). �

Remark 3.4. We claim that P(X ) is a non-topological evs. First of all,
for making the hyperspace P(X ) a topological evs we have to consider
some “admissible” topology on P(X ) i.e. a topology which makes the
map x 7−→ {x} from X into P(X ) a homeomorphism [such a require-
ment is reasonable, as is explained by E. Michael in his paper [1]]. Now
let A be a non-closed set in X . Then for this A ∈ P(X ) its primitive
PA =

{
{a} : a ∈ A

}
, which is essentially homeomorphic to A due to

admissibility of the topology of P(X ) and hence is not closed —— this
is not possible in a topological evs [by proposition 3.3]. This justifies
that there is no admissible topology that can make P(X ) a topological
evs.
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We now define the primitive function. Since each Px is closed for any
x in a topological evs X, the following map is well-defined.

P : X −→ 2X0

x 7−→ Px

}
Here 2X0 is the collection of all nonempty closed subsets of the topo-
logical vector space X0. We call this map as primitive function. 2X0 is
a topological space with Vietoris topology. In this regard one may ob-
serve that the hyperspace 2X for some topological vector space X does
not share an evs structure since sum of two nonempty closed sets in a
Hausdorff topological vector space X need not be closed.

Theorem 3.5. The primitive function P : X −→ 2X0 is continuous iff
for any open set U of X0, ↑ U := {x ∈ X : x ≥ u for some u ∈ U} and

Û := {x ∈ X : Px ⊆ U} are open in X.

Proof. Let us suppose P is continuous and U is open in X0. Then
U− and U+ are open in 2X0 . We claim that ↑ U = P−1(U−) and

Û = P−1(U+). In fact, x ∈↑ U ⇔ ∃ u ∈ U such that u ≤ x ⇔
Px ∩ U 6= ∅ ⇔ Px ∈ U− ⇔ P(x) ∈ U−. Again x ∈ Û ⇔ Px ⊆ U ⇔
Px ∈ U+ ⇔ P(x) ∈ U+. Since P is continuous, it then follows that ↑ U
and Û are open in X.

Conversely, suppose for any open set U in X0, ↑ U and Û are open
in X. To show that P is continuous let us consider an arbitrary basic
open set W := V +

0 ∩V
−
1 ∩ · · ·∩V −n in 2X0 , where Vi is open in X0 for all

i = 0, 1, . . . , n and Vi ⊆ V0, ∀ i = 1, 2, . . . , n. Then by similar argument

as above we can show that P−1(W ) =

[
n⋂
i=1

↑ Vi

]⋂
V̂0 which is open in

X by hypothesis. �

Theorem 3.6. Continuity of the primitive function is an evs property.

Proof. LetX,Y be two topologically order-isomorphic evs and φ : X −→
Y be a topological order-isomorphism. We first show that the map

ψ : 2X0 −→ 2Y0

A 7−→ φ(A)

}
is a homeomorphism. First of all, φ

∣∣
X0

being a topological isomorphism

between X0 and Y0 it follows that ψ is well-defined and bijective. To
prove that ψ is a homeomorphism we consider an arbitrary basic open
set V := V +

0 ∩ V
−
1 ∩ · · · ∩ V −n in 2X0 where V0, V1, . . . , Vn are open in
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X0 with Vi ⊆ V0, ∀ i = 1, 2, . . . , n. Then ψ(V ) = φ(V0)
+ ∩ φ(V1)

− ∩
· · · ∩ φ(Vn)− which is open in 2Y0 , since φ being a homeomorphism
φ(Vi)’s are open in Y0. This justifies that ψ is an open map. Again if
W := W+

0 ∩W
−
1 ∩ · · · ∩W−m is an arbitrary basic open set in 2Y0 , where

W0,W1, . . . ,Wm are open in Y0 with Wi ⊆ W0, ∀ i = 1, 2, . . . ,m then
ψ−1(W ) = φ−1(W0)

+ ∩ φ−1(W1)
− ∩ · · · ∩ φ−1(Wm)− which is open in

2X0 , since φ being a homeomorphism φ−1(Wi)’s are open in X0. This
justifies that ψ is continuous.

If PX and PY are the primitive functions of X and Y respectively then
for any x ∈ X we have ψ ◦ PX (x) = ψ(Px) = φ(Px) = Pφ(x) = PY ◦ φ(x)
[by note 3.2] i.e. the following diagram commutes.

X
φ−−−−→ Y

P
X

y yPY
2X0

ψ−−−−→ 2Y0

Since both φ and ψ are homeomorphisms it follows that PX is continuous
iff PY is continuous. �

Result 3.7. In case of the evs C(X ), primitive function becomes an
inclusion map. Since identity map is continuous, primitive function of
the space C(X ) is also continuous.

We will now discuss some useful results regarding topological evs.

Result 3.8. In any topological evs X, for a scalar α ∈ (0,∞) and a
non zero element x we have αx 6= x, provided α 6= 1.

Proof. It is sufficient to prove that, for any x ∈ X rX0 and any α with
0 < α < 1, αx 6= x [∵ for any x ∈ X0 and α 6= 1, αx 6= x and for α > 1,
α−1 < 1]. If possible let αx = x for some α with 0 < α < 1. Then for
any n ∈ N, αnx = x. Since X is a topological evs, taking limit n → ∞
we get x = θ [∵ αn → 0 for, 0 < α < 1] —— which contradicts that
x ∈ X rX0. �

Remark 3.9. From above result it follows that every topological evs is
uncountable. Thus every finite and countable evs is non-topological.

Remark 3.10. With the help of the above result we can say that for any
topological vector space X , the evs E(X ) which we have discussed in
1.2 can never be topological. Since for a non zero element (λ, θ) ∈ E(X )
with λ 6= 0, α(λ, θ) = (λ, θ), ∀α ∈ (0,∞).
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Theorem 3.11. A topological evs can never be compact.

Proof. Let X be a topological evs and x ∈ X be non zero. Then {nx}n∈N
is a sequence in X. If X be a compact topological evs then this sequence
must have a convergent subsequence. That convergent subsequence must
be of the form {nix}i∈N, where {ni}i∈N is a subsequence of the sequence
{n}n. Let nix → y ⇒ 1

ni
· nix = x → 0 · y = θ [∵ {ni}i∈N being a

subsequence of the sequence {n}n, the sequence 1
ni
→ 0 as i→∞] ——

this contradicts that x 6= θ. So X cannot be compact. �

Remark 3.12. Thus for any Hausdorff topological vector space X , the
space C(X ) is not a compact space.

We will now introduce some more invariant properties of evs, and we
will name evs differently on the basis of these invariant properties.

Theorem 3.13. The following properties are evs properties :
(i) An evs is topological.
(ii) For any x in a topological evs X, Px is a compact subset of X0.
[Compact primitive evs]
(iv) For every subset A of X0, ∃ x ∈ X such that Px = A. [Reversible
primitive evs]
(v) For any x, y in an evs X, Px+y = Px + Py [Additive primitive evs]
(vi) For any x, y in an evs X, Px ⊆ Py ⇒ x ≤ y [Strongly comparable
evs]

Proof. (i) Let X be a topological evs and Y be a evs order-isomorphic
to X, φ : X −→ Y being an order-isomorphism. Since φ is bijective,
∃ a unique topology on Y such that φ is a homeomorphism. Also the
topology of Y is given by τY = {φ(U) : U is open in X}. Now φ being
linear, the following diagrams are commutative i.e. AY ◦(φ×φ) = φ◦AX
and SY ◦ (iK × φ) = φ ◦ SX .

X ×X AX−−−−→ X

φ×φ
y yφ

Y × Y AY−−−−→ Y

K×X SX−−−−→ X

iK×φ
y yφ

K× Y SY−−−−→ Y

where AY : Y × Y −→ Y , AX : X ×X −→ X are addition of Y and X
respectively; whereas SY : K × Y −→ Y , SX : K ×X −→ X are scalar
multiplication of Y and X respectively. Here iK : K −→ K is the identity
map. Since AX , SX are continuous and φ, iK are homeomorphisms (and
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hence both φ × φ and iK × φ are homeomorphisms) it follows that AY
and SY are continuous.

Now let {(yn, y′n)}n be a net in G≤(Y ) converging to (y, y′). Then
φ being an order-isomorphism and yn ≤ y′n, ∀n we have φ−1(yn) ≤
φ−1(y′n), ∀n. Since φ−1 is continuous so, φ−1(yn)→ φ−1(y) and φ−1(y′n)→
φ−1(y′). Therefore G≤(X) being closed we have φ−1(y) ≤ φ−1(y′) ⇒
y ≤ y′. So the order ‘≤’ of Y is closed. This justifies that Y is a topo-
logical evs. Thus the property that “an evs is topological” is an evs
property.

For showing that (ii) and (iii) are evs properties let X,Y be two
topological evs and φ : X −→ Y be a topological order-isomorphism.
Now if X is a compact primitive evs [i.e. possessing property (ii)] then
Y must have this property since, Pφ(x) = φ(Px), ∀x ∈ X and φ is
continuous. To prove that (iii) is a evs property, assume that X has
property (iii) and B is a compact subset of Y0 [As Y is a topological evs]
⇒ φ−1(B) is a compact subset of X0 ⇒ ∃x ∈ X such that φ−1(B) = Px
⇒ B = φ(Px) = Pφ(x). Also by similar argument one can easily check
that property (iv) is also an evs property.

For showing that (v) and (vi) are evs properties consider two order-
isomorphic evs X,Y with φ : X −→ Y as an order-isomorphism. Also let
X has property (v). Now for any two elements y1, y2 ∈ Y , ∃x1, x2 ∈ X
such that φ(x1) = y1 and φ(x2) = y2. Then Py1+y2 = Pφ(x1)+φ(x2) =
Pφ(x1+x2) = φ(Px1+x2) = φ(Px1 + Px2) = φ(Px1) + φ(Px2) = Pφ(x1) +
Pφ(x2) = Py1 + Py2 . Thus Y also has property (v). Now if X has
property (vi), then for any y1, y2 ∈ Y with Py1 ⊆ Py2 , ∃ x1, x2 ∈ X such
that yi = φ(xi) (i = 1, 2) and hence Pφ(x1) ⊆ Pφ(x2) ⇒ φ(Px1) ⊆ φ(Px2)
⇒ Px1 ⊆ Px2 ⇒ x1 ≤ x2 [by property (vi) of X] ⇒ y1 = φ(x1) ≤
φ(x2) = y2. This justifies that Y also has property (vi). �

Remark 3.14. From the proof of the above theorem we can observe
that full strength of order-isomorphism is necessary to preserve these
properties; additionally continuity of order-isomorphism is necessary to
preserve compact primitivity and reversible compact primitivity.

Example 3.15. (1) For any Hausdorff topological vector space X , the evs
C(X ) is a topological evs but P(X ) is not [See Remark 3.4].

(2) Since in the topological evs C(X ), for any element A, PA =
{
{a} :

a ∈ A
}

is compact as A is compact, it follows that C(X ) is a compact
primitive evs. On the other hand in the topological evs R+×E [Example
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1.7], for any element (x, e) in R+ × E, P(x,e) = {(0, e)} which is clearly

compact. Therefore R+ × E is also a compact primitive evs.
(3) C(X ) is a reversible compact primitive evs. Also any topological

evs X with X0 = {θ} is a reversible compact primitive evs. For that
reason, [0,∞) is a reversible compact primitive evs. Whereas R+ × E
is not. In fact, in R+ × E, if we consider any compact set in E with
more than one point then there cannot be any point in R+ × E whose
primitive is that compact set of E.

(4) P(X ) is reversible primitive but C(X ) is not.
(5) Every evs which we have mentioned in this paper is additive prim-

itive.
(6) C(X ), P(X ), PCV (X ) [Example 2.3] and Pτ (X ) [Example 2.4

(ii)] are strongly comparable evs, since the primitive space of these hy-
perspaces is

{
{x} : x ∈ X

}
which is isomorphic to X . Pθ(X ) [Exam-

ple 2.5], PBal(X ) [Example 2.2] and PNθ(X ) [example 2.4 (i)] are not
strongly comparable evs, since primitive of any element of these spaces
is
{
{θ}
}

and these spaces contain incomparable elements.

In conclusion we can say that for any topological vector space X ,
the evs C(X ), P(X ), R+ × X and E(X ) all are distinct in veiw of evs
structure.

4. Characterisation of C(X ) and P(X )

To characterise the spaces C(X ) and P(X ) for any Hausdorff topo-
logical vector space X , we first need to know the meaning of embedding.

Definition 4.1. A vector space E is said to be embedded into an expo-
nential vector space X if E is isomorphic with X0 as a vector space. Also
a Hausdorff topological vector space E is said to be topologically embed-
ded into a topological exponential vector space X if E is topologically
isomorphic with X0.

This (topological) isomorphism is then called a (topological) embed-
ding map and X is called a (topological) embedding evs of a vector space
E.

Thus every evs X is an embedding evs of a unique vector space (upto
isomorphism), viz. X0. But it is interesting to note that a vector space
can be embedded into various exponential vector spaces i.e embedding
evs of a vector space is not unique. In fact, we have shown that any
topological vector space X can be embedded into different evs such that
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C(X ), P(X ), R+ × X and E(X ), where C(X ), R+ × X are topological
and P(X ), E(X ) are non-topological.

We now prove two theorems which will be useful to prove our main
theorem.

Theorem 4.2. (i) Let X be an additive primitive, reversible primitive
and strongly comparable evs. Then X is order-isomorphic with P(X0).

(ii)If a topological evs X is additive primitive, compact primitive, re-
versible compact primitive, strongly comparable evs and topology of X is
the smallest topology such that the primitive function is continuous then
X is topologically order-isomorphic with C(X0).

Proof. Let us define a map φ as

φ : X −→P(X0)
x 7−→ Px

}
Now φ(x+y) = Px+y = Px+Py [∵X is additive primitive] = φ(x)+φ(y).
Also for any α ∈ K, Pαx = αPx. In fact, for any non-zero scalar α,
p ∈ αPx ⇔ α−1p ∈ Px ⇔ α−1p ≤ x ⇔ p ≤ αx ⇔ p ∈ Pαx. Also if
α = 0, then αPx = {θ} = Pαx. Thus αPx = Pαx, for any α ∈ K. So we
have φ(αx) = αφ(x). Again x ≤ y ⇒ Px ⊆ Py ⇒ φ(x) ≤ φ(y). Also X
being strongly comparable evs, φ(x) ≤ φ(y) ⇒ Px ⊆ Py ⇒ x ≤ y. This
also justifies that x 6= y ⇒ φ(x) 6= φ(y). Thus φ is injective. Also by
reversible primitiveness, φ becomes surjective. Therefore X ∼= P(X0).

If X is a zero primitive evs i.e X0 = {θ} then P(X0) =
{
{θ}
}

. Now
X being zero primitive and strongly comparable evs, for any x, y ∈ X,
Px = {θ} = Py ⇒ x = y i.e X cannot contain more than one element; in
other words, X = {θ}. Thus our theorem is verified in this trivial case
also.

(ii) In a similar manner as above, if we consider the map

ψ : X −→ C(X0)
x 7−→ Px

}
which is well-defined by compact primitiveness of X, we can show that
the map becomes an order-isomorphism between X and C(X0) with the
help of these evs properties. Since X is compact primitive as well as
reversible compact primitive P(X) = C(X0). By the hypothesis P is
continuous from X to 2X0 and P(X) = C(X0). So ψ, which is same as
P, is continuous from X to C(X0). Again since the topology of X is the
smallest topology such that the primitive function P is continuous, it
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follows that any basic open set of X is of the form P−1(V +
0 ∩V

−
1 ∩ · · · ∩

V −n ) where Vi, ∀i = 0, 1, · · · , n are open sets in X0 with Vi ⊆ V0. Then
ψ(P−1(V +

0 ∩ V
−
1 ∩ · · · ∩ V −n )) = (V +

0 ∩ V
−
1 ∩ · · · ∩ V −n )∩C(X0) which is

open in C(X0). This shows that ψ is an open map. Hence X becomes
topologically order-isomorphic with C(X0). �

Theorem 4.3. If X and Y are two topologically isomorphic Hausdorff
topological vector spaces then C(X ) and C(Y) are topologically order-
isomorphic. [Similarly we can show that for any two isomorphic vector
spaces X , Y, P(X ) and P(Y) are order-isomorphic.]

Proof. Let φ be a topological isomorphism from X onto Y. Let us define
a map Φ given by

Φ : C(X ) −→ C(Y)
A 7−→ φ(A)

}
Then Φ is well-defined, since φ is continuous implies φ(A) ∈ C(Y) for
any A ∈ C(X ).

Now for any A,B ∈ C(X ) and α ∈ K (the field of the vector spaces
involved) we have Φ(A+B) = φ(A+B) = φ

(
{a+ b : a ∈ A, b ∈ B}

)
=

{φ(a)+φ(b) : a ∈ A, b ∈ B} = φ(A)+φ(B) = Φ(A)+Φ(B) and Φ(αA) =
φ
(
{αa : a ∈ A}

)
= {αφ(a) : a ∈ A} = αφ(A) = αΦ(A). Again A ⊆ B

(A,B ∈ C(X )) ⇔ φ(A) ⊆ φ(B) ⇔ Φ(A) ≤ Φ(B). This immediately
shows that Φ is injective. Now for any set B ∈ C(Y), Φ(φ−1(B)) = B
⇒ Φ is surjective [Here φ−1 being continuous, φ−1(B) ∈ C(X )]. Thus Φ
becomes an order-isomorphism between C(X ) and C(Y).

We now prove that Φ is a homeomorphism. First of all note that
for any two sets A,B ⊆ X , A ∩ B 6= ∅ ⇔ φ(A) ∩ φ(B) 6= ∅. Thus it
follows that for any basic open set V := V +

0 ∩ V
−
1 ∩ · · · ∩ V −n of C(X ),

where V0, V1, . . . , Vn are open sets of X with Vi ⊆ V0 ∀ i = 1, . . . , n,
Φ(V ) = W where W := φ(V0)

+ ∩ φ(V1)
− ∩ · · · ∩ φ(Vn)−. Now φ being a

homeomorphism it follows that φ(Vi)’s are open sets in Y with φ(Vi) ⊆
φ(V0), ∀ i = 1, . . . , n. Thus W becomes a basic open set in C(Y). The
rest follows from the fact that Φ−1(W ) = V [∵ Φ is bijective].

In view of above we can say that Φ is a topological order-isomorphism.
�

In view of the above two theorems 4.2 and 4.3 we can have the fol-
lowing characterisation theorem.

Theorem 4.4. (i) Let X be a vector space and X be an embedding evs
of X . If X is an additive primitive, reversible primitive and strongly
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comparable evs, then X is order-isomorphic with P(X ).
(ii) Let X be a Hausdorff topological vector space and X be a topological
embedding evs of X . If X is additive primitive, compact primitive, re-
versible compact primitive, strongly comparable topological evs such that
topology of X is the smallest topology with respect to which the primi-
tive function is continuous then X is topologically order-isomorphic with
C(X ).
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