ON \mathcal{L}-FUZZY IDEALS OF MULTILATTICES

DAQUIN CEDRIC AWOUAFACK*, PIERRE CAROLE KENGNE
AND CLESTIN LELE

Abstract

For a given multilattice \mathcal{M}, the set $\mathfrak{I}_{\mathcal{M}}$ of all ideals of \mathcal{M} is a complete lattice and for a given complete lattice \mathcal{L}, the set $\mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L})$ of all \mathcal{L}-fuzzy ideals of \mathcal{M} is also a complete lattice. The aim of this paper is to characterize \mathcal{L}-fuzzy ideals of multilattice and highlight some of their properties based on the Duality Principle. We establish that $\mathcal{F I}(\mathcal{M}, \mathcal{L})$ is isomorphic to $\operatorname{Hom}\left(\mathcal{L}^{\partial}, \mathfrak{I}_{\mathcal{M}}\right)$ where \mathcal{L}^{∂} is the dual of \mathcal{L}. Since multilattices generalize lattices, the results remain true for \mathcal{L}-fuzzy ideals of lattices.

Key Words: Duality principle, \mathcal{L}-fuzzy subsets, ideals, lattice homomorphisms. 2020 Mathematics Subject Classification: Primary: 06D72; Secondary: 06A11, 06B75.

1. Introduction

Since the introduction of the notion of fuzzy sets in 1965 by L. A. Zadeh [12], many works have been done on fuzzy structures. Most of them deal with the original notion of fuzzy subset. The notion of $\mathcal{L}-$ fuzzy ideal is not new. Following the works of Zadeh [12] several authors have invested on its conceptualization including Lehmke [6], Malik [8], Swamy and Viswanadha Raju [11], Koguep et al. [5] who studied fuzzy ideals of lattices and semilattices.

The concepts of ordered and algebraic multilattices were introduced by Benado in [1]. A multilattice is an algebraic structure in which the restrictions imposed on a lattice, namely the "existence of least upper

[^0]bounds and greatest lower bounds" are relaxed to the "existence of minimal upper bounds and maximal lower bounds" [3, 9, 10]. Many authors have investigated the notion of ideals of multilattice. In 2014, I.P. Cabrera et al. [3] proposed a definition of a multilattice ideal which is suitable for homomorphisms and congruences. Then, they proved the set of all ideals of a multilattice is a lattice with respect to inclusion.

We propose a description of \mathcal{L}-fuzzy ideals of multilattices by lattice homomorphisms and highlight some properties based on the duality principle.

This paper is organized as follows: in Section 2, we recall some preliminary results to understand the paper. Section 3 , we study the main properties of \mathcal{L}-fuzzy ideals of multilattice. Section 4 , we investigate some characterizations of \mathcal{L}-fuzzy ideals by lattice homorphisms. Let us recall some definitions and results on lattices and multilattices.

2. Preliminaries and notations

Let $\mathcal{P}=(P, \leq)$ be an ordered set and let $\emptyset \neq S \subseteq P$. An element $x \in P$ is an upper bound of S if $s \leq x$ for all $s \in S$. A lower bound is defined dually. The set of all upper bounds of S is denoted by S^{u} and the set of all lower bounds S^{l} :

$$
S^{u}=\{x \in P \mid(\forall s \in S) s \leq x\} \text { and } S^{l}=\{x \in P \mid(\forall s \in S) x \leq s\} .
$$

A minimal element of S^{u} is called a multisupremum of S and we denote by Multisup(S) the set of all multisuprema of S; a maximal element of S^{l} is a multinfimum of S and we denote by $\operatorname{Multinf}(\mathrm{S})$ the set of all multinfima of S. If Multisup(S) (resp. Multinf(S)) has exactly on element, it is called $\sup (S)($ resp. $\inf (S))$.

Definition 2.1. [4] A lattice is a triple $\mathcal{L}=(L, \vee, \wedge)$ with the following properties called axioms of lattices.
AL-1 For all $x \in L, x \vee x=x, x \wedge x=x$;
AL-2 For all $x, y \in L, x \vee y=y \vee x, x \wedge y=y \wedge x$;
AL-3 For all $x, y, z \in L,(x \vee y) \vee z=x \vee(y \vee z),(x \wedge y) \wedge z=x \wedge(y \wedge z)$;
AL-4 For all $x, y \in L, x \vee(x \wedge y)=x \wedge(x \vee y)=x$;
AL-5 For all $x, y \in L, x \leq y \Leftrightarrow x \vee y=y \Leftrightarrow x \wedge y=x$.
\mathcal{L} is said to be a complete lattice if any non-empty subset S of \mathcal{L} has an infimum and a supremum respectively denoted $\bigwedge S$ and $\bigvee S$.

Definition 2.2. [4] Let \mathcal{L} and \mathcal{K} be two lattices. A map $f: \mathcal{L} \rightarrow \mathcal{K}$ is a said to be a homomorphism if f is meet-preserving and join-preserving,
that is :

$$
\text { for all } x, y \in L, f(x \wedge y)=f(x) \wedge f(y) \text { and } f(x \vee y)=f(x) \vee f(y) .
$$

A bijective homomorphism is a lattice isomorphism.
We denote by $\operatorname{Hom}(\mathcal{L}, \mathcal{K})$ the set of all homomorphisms from \mathcal{L} to \mathcal{K}. It is not difficult to see that if \mathcal{K} is a complete lattice, so is $\operatorname{Hom}(\mathcal{L}, \mathcal{K})$.
Proposition 2.3. [2] Let E be a non-empty set and let $\mathcal{L}^{E}=\{h$: $E \rightarrow \mathcal{L} \mid h$ is a mapping\}. Then, \mathcal{L}^{E} is a complete lattice when the operations are defined pointwise: $(f \vee g)(x)=f(x) \vee g(x)$ and $(f \wedge g)(x)=$ $f(x) \wedge g(x)$.
Proposition 2.4. The lattice \mathcal{L}^{E} satisfies exactly the same equations as \mathcal{L}.

Proposition 2.5. [4]
(1) \mathcal{L}^{E} is bounded iff \mathcal{L} is bounded.
(2) \mathcal{L}^{E} is distributive iff \mathcal{L} is distributive.

Given any ordered set $\mathcal{P}=(P, \leq)$ we can form a new ordered set $\mathcal{P}^{\boldsymbol{\partial}}=\left(P, \leq^{\boldsymbol{\delta}}\right)$ (the dual of $\left.\mathcal{P}\right)$ by defining:

- For all $x, x \in \mathcal{P}^{\partial}$ iff $x \in \mathcal{P}$;
- For all $x, y \in P, x \leq y$ iff $y \leq^{\partial} x$.

According to Davey [4], to each statement about \mathcal{P} there corresponds a statement about \mathcal{P}^{∂}. In general, given any statement Φ about ordered sets, we obtain the dual statement Φ^{∂} by replacing each occurrence of \leq by \geq and vice versa. Thus ordered set concepts and results hunt in pairs. The formal basis of this observation is the Duality Principle stated below.

Theorem 2.6. [4] Given a statement Φ about ordered sets which is true in all ordered sets, then the dual statement Φ^{∂} is true in all ordered sets.

Definition 2.7. [3] Let $\mathcal{M}=(M, \leq)$ be a non-empty poset.
(i) \mathcal{M} is said to be a multilattice if for all $a, b, x \in M$ with $a \leq x$ and $b \leq x$, there exists $z \in \operatorname{Multisup}(a, b)$, such that $z \leq x$; and, similarly, for all $a, b, x \in M$ with $a \geq x$ and $b \geq x$, there exists $z \in \operatorname{Multinf}(a, b)$, such that $z \geq x$.
(ii) If Multisup(a, b) and $\operatorname{Multinf}(\mathrm{a}, \mathrm{b})$ are non-empty for all $a, b \in M$, then M is said to be a full multilattice.

Clearly every finite poset is a multilattice but the converse is not true.
When $S=\{a, b\}$, we denote respectively by $a \sqcap b$ and $a \sqcup b$ instead of $\operatorname{Multinf}(\{a, b\})$ and $\operatorname{Multisup}(\{a, b\})$. This gives two hyperoperations from M^{2} to $\mathcal{P}^{*}(M)$. Therefore a multilattice can also be defined as a triple (M, \sqcup, \sqcap) with some required properties called axioms of multilattices [9]. In [10] many characterizations are proposed.
AM-1 For all $x \in M, x \sqcup x=\{x\}, x \sqcap x=\{x\}$;
AM-2 For all $x, y \in M, x \sqcup y=y \sqcup x, x \sqcap y=y \sqcap x$;
AM-3 For all $x, y, z \in M, x \leq y \Rightarrow(x \sqcup y) \sqcup z \subseteq x \sqcup(y \sqcup z),(x \sqcap y) \sqcap z \subseteq$ $x \sqcap(y \sqcap z) ;$
AM-4 For all $x, y \in M, x \sqcup(x \sqcap y)=x \sqcap(x \sqcup y)=\{x\} ;$
AM-5 For all $x, y \in M, x \leq y \Leftrightarrow x \sqcup y=\{y\} \Leftrightarrow x \sqcap y=\{x\}$.
We simply write (M, \sqcup, \sqcap) instead of $(M, \sqcup, \sqcap, \leq)$.
Thus we obtain the following result as a direct consequence of the Duality Principle.

Proposition 2.8. $\mathcal{M}=(M, \sqcup, \sqcap)$ iff $\mathcal{M}^{\partial}=(M, \sqcap, \sqcup)$.
Example 2.9. Consider the poset $M_{1}=\left\{a_{i}, i=1,2, \ldots, 8\right\} \cup\{\perp, \top\}$ described by the following diagram.

M
$\mathcal{M}=\left(M_{1}, \sqcup, \sqcap\right)$ is a full multilattice given by the following antichains: $\left\{a_{i}, i=1,2,3\right\},\left\{a_{j}: j=4,5,6\right\}$ and $\left\{a_{k}, k=7,8\right\}$.

- $a_{i} \sqcup a_{j}=\left\{a_{k} \mid k=4,5,6\right\}$ for all $i, j \in\{1,2,3\}, i \neq j$;
- $a_{i} \sqcup a_{j}=\left\{a_{k} \mid k=7,8\right\}$ for all $i, j \in\{4,5,6\}, i \neq j$;
- $a_{i} \sqcap a_{j}=\left\{a_{k} \mid k=1,2,3\right\}$ for all $i, j \in\{4,5,6\}, i \neq j$;
- $a_{7} \sqcap a_{8}=\left\{a_{k} \mid k=4,5,6\right\}$.

In the rest of this paper, $\mathcal{M}=(M, \sqcup, \sqcap)$ denotes any multilattce.
We will also use the following standard notations and definitions.
For $a \in M, \downarrow a=\{x \in M \mid x \leq a\}$ and $\uparrow a=\{x \in M \mid a \leq x\}$.
For $A \subseteq M, \downarrow A=\cup_{a \in A} \downarrow a$ and $\uparrow A=\cup_{a \in A} \uparrow a$.
For $A, B \subseteq M, A \sqcup B=\cup_{(a, b) \in A \times B} a \sqcup b$ and $A \sqcap B=\cup_{(a, b) \in A \times B} a \sqcap b$. In the rest of this paper, we will refer to multilattices with bottom \perp. Lack of bottom can be easily remedied by adding one as usual. Given a multilattice \mathcal{M} (with or without bottom), we form $\mathcal{M}_{\perp}($ called \mathcal{M} lifted) as follows: Take an element $\perp \notin M$ and define \leq on $M \cup\{\perp\}$ by $x \leq y$ iff $x=\perp$ or $x \leq y$ in M (some basic operations on posets are presented in [4]).
Definition 2.10. [3] Let I be a subset of $M . I$ is said to be an ideal of \mathcal{M} if it satisfies the following conditions:
I.1: For all $a \in M$ and for all $x \in I, a \sqcap x \subseteq I$;
I.2: For all $x, y \in I, x \sqcup y \subseteq I$;
1.3: For all $a, b \in M$, if $(a \sqcap b) \cap I \neq \emptyset$ then $a \sqcap b \subseteq I$.

The notions of filter and ideal are dual : F is a filter of \mathcal{M} iff F is an ideal of \mathcal{M}^{∂}. Hence, from the properties of ideals given here, one could deduce those of filters. We assume that the empty set is both an ideal and a filter of \mathcal{M}.
Remark 2.11. Every ideal of a finite multilattice is a downset but the converse is not true.

In example $2.9, \downarrow a_{5}=\left\{\perp, a_{1}, a_{2}, a_{3}, a_{5}\right\}$ is a downset but not an ideal. One could observe that $\left\{a_{1}, a_{2}\right\} \subseteq \downarrow a_{5}$ but $a_{1} \sqcup a_{2}=\left\{a_{4}, a_{5}, a_{5}\right\} \nsubseteq \downarrow a_{5}$.
Definition 2.12. Let A be a non-empty subset of M. Then, the smallest ideal of \mathcal{M} containing A is called the ideal generated by A and is denoted by $\langle A\rangle$. If $A=\{x\}$ it is simply denoted by $\langle x\rangle$.

The set of all ideals of \mathcal{M} will be denote by $\mathfrak{I}_{\mathcal{M}}$.
Theorem 2.13. [3] ($\left.\mathcal{I}_{\mathcal{M}}, \subseteq\right)$ is a complete lattice.
The meet of two ideals I and J is the intersection, $I \wedge J=I \cap J$, and the join is the ideal generated by $I \cup J, I \vee J=\langle I \cup J\rangle$.
Remark 2.14. Let $x, y, z, z^{\prime} \in M$. Then, the following assumptions hold:
(1) $z \in x \sqcup y$ implies $\langle z\rangle=\langle x\rangle \vee\langle y\rangle$;
(2) $z \in x \sqcap y$ implies $\langle z\rangle \subseteq\langle x\rangle \wedge\langle y\rangle$;
(3) $z, z^{\prime} \in x \sqcap y$ implies $\langle z\rangle=\left\langle z^{\prime}\right\rangle$.

The inclusion of (2) will be in general strict: in Example 2.9 we have that $a_{1} \sqcap a_{2}=\{\perp\}$ but $\left\langle a_{1}\right\rangle=\left\langle a_{2}\right\rangle=M$.

3. \mathcal{L}-fuzzy ideals of a multilattice

We first review some definitions and properties of \mathcal{L}-fuzzy subsets.
Definition 3.1. [7] An \mathcal{L}-fuzzy subset of E is a mapping $\mu: E \rightarrow \mathcal{L}$.
If $\mathcal{L}=(I$, max, $\min)$ where I is the unit interval $[0 ; 1]$ of real numbers then these are the usual fuzzy subsets of E (see [12]).

In the rest of this paper, $\mathcal{L}=(L, \vee, \wedge, 0,1)$ stands for any complete and bounded lattice.

Definition 3.2. Let μ be an \mathcal{L}-fuzzy subset of E. Then, for any $\alpha \in L$, the set

$$
\mu_{\alpha}=\{x \in E \mid \mu(x) \geq \alpha\}
$$

is called the α-level subset of μ or α-cut set of μ and the set

$$
\operatorname{Im} \mu=\{\mu(x) \mid x \in E\}
$$

is called the image of μ.
In other words, $\mu_{\alpha}=\mu^{-1}([\alpha, \rightarrow[)$ where $[\alpha, \rightarrow[=\{l \in L \mid \alpha \leq l\}=\uparrow$ $\alpha \subseteq L$.

Proposition 3.3. [5] Let μ be an \mathcal{L}-fuzzy subset of E. Then, the following assertions hold:
(1) For any $x \in E$, the set $I_{x}=\left\{\alpha \in L \mid x \in \mu_{\alpha}\right\}$ is an ideal of \mathcal{L}.
(2) For all $x \in E, \mu(x)=\bigvee\left\{\alpha \in L \mid x \in \mu_{\alpha}\right\}$
(3) $\alpha, \beta \in \operatorname{Im} \mu$ implies $\mu_{\alpha}=\mu_{\beta}$ iff $\alpha=\beta$.

Definition 3.4. An \mathcal{L}-fuzzy subset μ of \mathcal{M} is said to be an \mathcal{L}-fuzzy ideal of \mathcal{M} if μ_{α} is an ideal of \mathcal{M} for all $\alpha \in L$.

Example 3.5. Consider the multilattice of Example 2.9. Then, the \mathcal{L}-fuzzy subset of \mathcal{M} defined by $\mu(\perp)=1, \mu(\mathrm{~T})=0$ and $\mu\left(a_{i}\right)=0$, $i=1,2, \ldots, 8$ is a 2 -fuzzy ideal of \mathcal{M}, where $2:=(\{0,1\}, \max , \min)$.

Remark 3.6. We will denote by $\mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L})$ (resp. $\mathcal{F F}(\mathcal{M}, \mathcal{L}))$ the set of all \mathcal{L}-fuzzy ideals (resp. \mathcal{L}-fuzzy filters) of \mathcal{M}.

The set $\mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L})$ is ordered as follows :

$$
\mu \preccurlyeq \nu \text { if and only if } \mu_{\alpha} \subseteq \nu_{\alpha} \text { for all } \alpha \in L
$$

It is a complete lattice where the following assumptions hold :
(1) $[\mu \wedge \nu](x) \geq \alpha$ if and only if $\mu(x) \geq \alpha$ and $\nu(x) \geq \alpha$
(2) $[\mu \vee \nu](x) \leq \alpha$ if and only if $\mu(x) \leq \alpha$ and $\nu(x) \leq \alpha$

A charactrization of \mathcal{L}-fuzzy ideals is given by Theorem 3.7.
Theorem 3.7. Let μ be an \mathcal{L}-fuzzy subset of \mathcal{M}. Then, $\mu \in \mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L})$ iff the following conditions hold:

FI1: For all $x, y \in M, z \in x \sqcap y \Rightarrow \mu(z) \geq \mu(x) \vee \mu(y)$.
FI2: For all $x, y \in M, z \in x \sqcup y \Rightarrow \mu(z) \geq \mu(x) \wedge \mu(y)$.
FI3: For all $x, y \in M, z_{1}, z_{2} \in x \sqcap y \Rightarrow \mu\left(z_{1}\right)=\mu\left(z_{2}\right)$.
Proof. Let $\mu: \mathcal{M} \rightarrow \mathcal{L}$ and $\alpha \in \operatorname{Im}(\mu)$.
Suppose that $x \in \mu_{\alpha}$ and $z \in a \sqcap x$ such that FI1, FI2 and FI3 hold, then $\mu(z) \geq \mu(x) \vee \mu(a) \geq \mu(x)$. Hence, $\mu(z) \geq \alpha$ implies $z \in \mu_{\alpha}$ that is $a \sqcap x \subseteq \mu_{\alpha}$.

Also, if $x, y \in \mu_{\alpha}$ and $z \in x \sqcup y$ then $\mu(z) \geq \mu(x) \wedge \mu(y) \geq \alpha \wedge \alpha=\alpha$, hence $x \sqcup y \subseteq \mu_{\alpha}$.

Finally, if $z, z^{\prime} \in x \sqcap y$ and $z \in \mu_{\alpha}$, then $\mu(z)=\mu\left(z^{\prime}\right) \geq \alpha$, hence $z^{\prime} \in \mu_{\alpha}$. Therefore μ_{α} is an ideal of \mathcal{M}.

Conversely, suppose that $\mu_{\alpha} \in \Im_{\mathcal{M}}$ for all $\alpha \in \mathcal{L}$. Let $x, y \in M$.
For $\alpha=\mu(y)$, we have $\mu_{\alpha} \neq \emptyset$. Therefore, for any $z \in x \sqcap y, \mu(z) \geq$ $\mu(x) \vee \mu(y)$.

For $\alpha=\mu(x) \wedge \mu(y)$, we have $\{x, y\} \subseteq \mu_{\alpha}$ which is an ideal of \mathcal{M}. Thus $x \sqcup y \subseteq \mu_{\alpha}$. This implies $\mu(z) \geq \mu(x) \wedge \mu(y)$ for all $z \in x \sqcup y$. If $z, z^{\prime} \in x \sqcap y$, then for $\alpha=\mu(z)$ and $\beta=\mu\left(z^{\prime}\right)$, we have $z \in(x \sqcap y) \cap \mu_{\alpha}$ and $z^{\prime} \in(x \sqcap y) \cap \mu_{\beta}$. It follows that $x \sqcap y \subseteq \mu_{\alpha} \cap \mu_{\beta}$ since μ_{α} and μ_{β} are both ideals of \mathcal{M}. Hence $z^{\prime} \in \mu_{\alpha}$ and $z \in \mu_{\beta}$. This implies $\mu\left(z^{\prime}\right) \geq \alpha=\mu(z)$ and $\mu(z) \geq \beta=\mu\left(z^{\prime}\right)$ that is $\mu(z)=\mu\left(z^{\prime}\right)$.

Theorem 3.7 gains in interest if we realize the following remarks.
Lemma 3.8. (1) FI1 is equivalent to: $\forall x, y \in M, x \leq y \Rightarrow \mu(x) \geq$ $\mu(y)$.
(2) The inequality of FI2 can be replaced by the equality. In fact $z \in x \sqcup y$ implies $x \leq z$ and $y \leq z$. Thus by FI1, we have $\mu(z) \leq \mu(x) \wedge \mu(y)$.
(3) If $x \in M$ then, $x \in A^{l}$ implies $\mu(x) \geq \bigvee\{\mu(a) \mid a \in A\}$ and $x \in A^{u}$ implies $\mu(x) \leq \bigwedge\{\mu(a) \mid a \in A\}$ for all non-empty subset A of M.

Proof. For (1), let $x, y \in M$ such that $x \leq y$ then $x \in x \sqcap y$ (Axiom AM-5 of multilattices) hence, by FI1, $\mu(x) \geq \mu(x) \vee \mu(y)$ which means $\mu(x) \geq \mu(y)$. Conversely, let $z \in x \sqcap y$ then $z \leq x$ and $z \leq y$. Hence
$\mu(z) \geq \mu(x)$ and $\mu(z) \geq \mu(y)$ which gives $\mu(z) \geq \mu(x) \vee \mu(y)$ that is FI1 is satisfied.

For (2), it suffices to prove that $\mu(z) \leq \mu(x) \wedge \mu(y)$ for all $z \in x \sqcup y$. If $z \in x \sqcup y$ then $x \leq z$ and $y \leq z$ (Axiom AM-5), thus, by FI1 we have $\mu(z) \leq \mu(x)$ and $\mu(z) \leq \mu(y)$. It follows that $\mu(z) \leq \mu(x) \wedge \mu(y)$

The inequalities of (3) are direct consequences of FI1.

Proposition 3.9. Let μ be an $\mathcal{L}-$ fuzzy ideal of \mathcal{M}. Then, the following assertions hold
(1) If δ is a filter of \mathcal{L} then, $\delta_{\mu}=\{x \in M \mid \mu(x) \in \delta\}$ is an ideal of \mathcal{M}.
(2) If A is a subset of M then, $A^{\mu}=\left\{\alpha \in L \mid A \subseteq \mu_{\alpha}\right\}$ is an ideal of \mathcal{L}.

Proof. For (1), let $x, y \in M$. If $y \in \delta_{\mu}$ and $x \leq y$ then $\mu(y) \in \delta$ and $\mu(x) \geq \mu(y)$, since δ is a filter of \mathcal{L}, we have $\mu(x) \in \delta$, thus $x \in \delta_{\mu}$.

If $x, y \in \delta_{\mu}$ and $z \in x \sqcup y$ then $\mu(z) \geq \mu(x) \wedge \mu(y)$ and $\mu(x) \in \delta, \mu(y) \in$ δ hence $\mu(x) \wedge \mu(y) \in \delta$ and then $\mu(z) \in \delta$ that is $z \in \delta_{\mu}$.

If $\left\{z, z^{\prime}\right\} \subseteq x \sqcap y$ with $\mu(z) \in \delta$ then $\mu\left(z^{\prime}\right)=\mu(z) \in \delta$, thus $z^{\prime} \in \delta_{\mu}$. Therefore δ_{μ} is an ideal of \mathcal{M}.

For (2), let $\alpha, \beta \in L$. If $\beta \in A^{\mu}$ and $\alpha \leq \beta$ then $A \subseteq \mu_{\beta}$ and $\mu_{\beta} \subseteq \mu_{\alpha}$. Thus, $A \subseteq \mu_{\alpha}$ that is $\alpha \in A^{\mu}$.

If $\alpha \in A^{\mu}, \beta \in A^{\mu}$ then for all $x \in A$, we have $\mu(x) \geq \alpha$ and $\mu(x) \geq \beta$ that is $\mu(x) \geq \alpha \vee \beta$. Thus $A \subseteq \mu_{\alpha \vee \beta}$. Therefore A^{μ} is an ideal of \mathcal{L}.

For every subset $A \subseteq M$, set

$$
A^{*}:=\cup\{a \sqcap b:(a \sqcap b) \cap(\downarrow A) \neq \emptyset, a, b \in M\} .
$$

define the sequence $A^{(n)}, n \in \mathbb{N}$, recursively as follows:

$$
A^{(0)}=A, \quad A^{(1)}=A^{*} \quad \text { and } \quad \forall n \geq 1, \quad A^{(n+1)}=\left(A^{(n)} \sqcup A^{(n)}\right)^{*} .
$$

Lemma 3.10. Let μ be an \mathcal{L}-fuzzy subset of \mathcal{M}. Then, μ is an \mathcal{L}-fuzzy ideal of \mathcal{M} iff for all finte subset $A_{n}=\left\{a_{i}\right\}_{i=1}^{n} \subseteq M, n \in \mathbb{N}$ and for all $k \in \mathbb{N}^{*}, x \in A_{n}^{(k)} \Rightarrow \mu(x) \geq \bigwedge\left\{\mu\left(a_{i}\right), 1 \leq i \leq n\right\}$.

Proof. Firstly, we assume that μ is an \mathcal{L}-fuzzy ideal of \mathcal{M}. We proceed by inference. Let $x \in A_{n}^{(1)}=A_{n}^{*}$ then there is $(a, b) \in M^{2}$ such that $x \in$ $(a \sqcap b) \cap(\downarrow A)$. Therefore, there exists $p \in\{1,2, . ., n\}$ such that $\mu(x) \geq$ $\mu\left(a_{p}\right)$, but $\mu\left(a_{p}\right) \geq \bigwedge\left\{\mu\left(a_{i}\right), 1 \leq i \leq n\right\}$. Hence $\mu(x) \geq \bigwedge\left\{\mu\left(a_{i}\right), 1 \leq\right.$ $i \leq n\}$ for all $x \in A_{n}^{(1)}$. Suppose that it is true for all $x \in A_{n}^{(k)}$. Let
$y \in A_{n}^{(k+1)}=\left(A_{n}^{(k)} \sqcup A_{n}^{(k)}\right)^{*}$, then there exists $c \in A_{n}^{(k)}, d \in A_{n}^{(k)}$ and $(a, b) \in \mathcal{M}^{2}$ such that $y \in a \sqcap b$ and $(a \sqcap b) \cap[\downarrow(c \sqcup d)] \neq \emptyset$. Let $y^{\prime} \in(a \sqcap b) \cap[\downarrow(c \sqcup d)]$ then $\mu(y)=\mu\left(y^{\prime}\right) \geq \mu(c) \wedge \mu(d)$ but $\mu(c), \mu(d) \geq$ $\bigwedge\left\{\mu\left(a_{i}\right), 1 \leq i \leq n\right\}$. Hence $\mu(y) \geq \bigwedge\left\{\mu\left(a_{i}\right), 1 \leq i \leq n\right\}$. It follows that for all $n \in \mathbb{N}$ and for all $k \in \mathbb{N}^{*}, x \in A_{n}^{(k)} \Rightarrow \mu(x) \geq \bigwedge\left\{\mu\left(a_{i}\right), 1 \leq i \leq n\right\}$.

Conversely, suppose that $\mu(x) \geq \bigwedge\left\{\mu\left(a_{i}\right), 1 \leq i \leq n\right\}$ for all $x \in A_{n}^{(k)}$, $n \in \mathbb{N}^{*}$ and $k \in \mathbb{N}^{*}$. Let $x \in \mathcal{M}$ and $y \in \mathcal{M}$. If $z \in x \sqcap y$ then we have $z \in\{x\}^{(1)} \cap\{y\}^{(1)}$. Thus $\mu(z) \geq \mu(x) \vee \mu(y)$.

If $z \in x \sqcup y$, then $z \in\{x, y\}^{(2)}$ which implies $\mu(z) \geq \mu(x) \wedge \mu(y)$.
If $z, z^{\prime} \in a \sqcap b$ for some $a, b \in \mathcal{M}$, then $z \in\left\{z^{\prime}\right\}^{(1)}$ and $z \in\left\{z^{\prime}\right\}^{(1)}$. Hence $\mu(z) \geq \mu\left(z^{\prime}\right)$ and $\mu\left(z^{\prime}\right) \geq \mu(z)$ that is $\mu(z)=\mu\left(z^{\prime}\right)$. Therefore μ is an \mathcal{L}-fuzzy ideal of \mathcal{M}.

Since \mathcal{L} is a complete lattice, Lemma 3.10 can be extended to any non-empty subset of M.

Theorem 3.11. Let μ be an \mathcal{L}-fuzzy ideal of \mathcal{M} and let $\alpha \in L$. If $A=\{x \in M \mid \mu(x)=\alpha\}$ then, $\mu_{\alpha}=\langle A\rangle$.

Proof. As μ_{α} is an ideal of \mathcal{M} containing A we claim that $\langle A\rangle \subseteq \mu_{\alpha}$. The reverse inclusion holds from Lemma 3.10.

Let χ_{A} be the characteristic function of a subset A of \mathcal{M}.
Corollary 3.12. Let I be a non-empty subset of M. Then, I is an ideal of \mathcal{M} iff χ_{I} is a $2-$ fuzzy ideal of \mathcal{M}.
Theorem 3.13. $\mathfrak{I}_{\mathcal{M}}$ is isomorphic to the lattice of $2-$ fuzzy ideals of \mathcal{M}.

Proof. Consider the following mapping $\chi: I \mapsto \chi_{I}$. It is not difficult to observe that $\chi_{\emptyset}(x)=0$ and $\chi_{M}(x)=1$ for all $x \in M$. The Corollary 3.12 proves that it is well defined.
$\chi_{I \vee J}(x)=1$ implies $x \in I \vee J$. Thus there exists $(n, k) \in \mathbb{N}^{* 2}$ and $A_{n}=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq I \cup J$ such that $x \in A_{n}^{(k)}$. We have that $\left(\chi_{I} \vee\right.$ $\left.\chi_{J}\right)\left(a_{i}\right)=1$ for all $i=1, \ldots, n$. According to Lemma 3.10, $\left(\chi_{I} \vee \chi_{J}\right)(x)=$ 1. Hence $\chi_{I \vee J} \leq \chi_{I} \vee \chi_{J}$; the reverse inequality is natural. It is obvious that $\chi_{I \cap J}=\chi_{I} \wedge \chi_{J}$ and $I=J$ iff $\chi_{I}=\chi_{J}$. If μ is a 2 -fuzzy ideal of $\mathcal{M}, \mu \neq 0$ then $I=\mu^{-1}(1)$ is an ideal of \mathcal{M} satisfying $\chi_{I}=\mu$. Hence φ is bijective and the proof is completed.

The following is the construction of \mathcal{L}-fuzzy ideals from a chain of ideals of \mathcal{M}.

Theorem 3.14. Let $(\Omega, \leq, 0,1)$ be a bounded totally ordered set. If $\left\{I_{\alpha}\right\}_{\alpha \in \Omega}$ is a chain of ideals of \mathcal{M} such that $\alpha \lesseqgtr \beta \Longrightarrow I_{\alpha} \subsetneq I_{\beta}$, $I_{0}=\{\perp\}$ and $I_{1}=M$. Then, for all antitone mapping $\varphi: \Omega \rightarrow \mathcal{L}$, the function $\mu: \mathcal{M} \rightarrow \mathcal{L}$ defined by induction as follows:

$$
\mu(x)=\left\{\begin{array}{l}
\varphi(0) \text { if } x=\perp ; \\
\varphi(\alpha) \text { if } x \in I_{\alpha} \backslash \bigcup_{\beta<\alpha} I_{\beta}
\end{array}\right.
$$

is an \mathcal{L}-fuzzy ideal of \mathcal{M}.

Proof. Define $J_{\alpha}=I_{\alpha} \backslash \bigcup_{\beta<\alpha} I_{\beta}$ then $\left\{J_{\alpha}\right\}_{\alpha \in \Omega}$ is a partition of M. Let $x, y \in M$ then there is $\left(\alpha, \alpha^{\prime}\right) \in \Omega^{2}$ such that $x \in J_{\alpha}$ and $y \in J_{\alpha^{\prime}}$.

If $x \leq y$ then $\alpha \leq \alpha^{\prime}$. Hence, $\varphi(\alpha) \geq \varphi\left(\alpha^{\prime}\right)$ and it follows that $\mu(x) \geq \mu(y)$. If $z \in x \sqcup y$ then for $\beta=\max \left(\alpha, \alpha^{\prime}\right)$ we have $x, y \in I_{\beta}$ and so $z \in J_{\beta}$. Thus, $\mu(z)=\varphi(\beta) \geq \varphi(\alpha) \wedge \varphi\left(\alpha^{\prime}\right)=\mu(x) \wedge \mu(y)$.

If $z, z^{\prime} \in x \sqcap y$ then for all $\alpha \in \Omega, z \in I_{\alpha}$ iff $z^{\prime} \in I_{\alpha}$. Hence $\mu(z)=\mu\left(z^{\prime}\right)$. Therefore μ is an \mathcal{L}-fuzzy ideal of \mathcal{M}.

From Theorem 3.14 we have the following corollary:

Corollary 3.15. Let $\left\{I_{k}\right\}_{k=0}^{n}$ be a family of $(n+1)$ ideals of \mathcal{M} such that $\{\perp\}=I_{0} \subsetneq I_{1} \subsetneq \ldots \subsetneq I_{n-1} \subsetneq I_{n}=M$. Let $a_{0} \leq a_{1} \leq \ldots \leq a_{n-1} \leq a_{n}$ be a finite sequence of \mathcal{L}. Then, the mapping μ defined by :

$$
\mu(x)=\left\{\begin{array}{l}
a_{n} \text { if } x=\perp \\
a_{n-i} \text { if } x \in I_{i} \backslash I_{i-1}, i \geq 1
\end{array}\right.
$$

is an \mathcal{L}-fuzzy ideal of \mathcal{M}.

Proof. By taking $\Omega=\{0,1, \ldots, n\}$ with respect to the natural order and $\varphi(i)=a_{n-i}$ we apply Theorem 3.14.

Example 3.16. Let us consider the posets $M_{2}=\left\{\perp, x_{1}, \ldots, x_{9}, \top\right\}$ and $L=\left\{0, a_{1}, \ldots, a_{6}, 1\right\}$ depicted in the following diagrams.

L
M_{2}
The multilattice $\mathcal{M}=\left(M_{2}, \sqcup, \sqcap\right)$ has five ideals $I_{0}=\{\perp\}, I_{1}=\left\{\perp, x_{1}\right\}$, $I_{2}=\left\{\perp, x_{2}\right\}, I_{7}=\left\{\perp, x_{1}, x_{7}\right\}, I_{9}=\left\{\perp, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{9}\right\}$ and M. With $I_{0} \subsetneq I_{1} \subsetneq I_{7} \subsetneq M$ and $I_{0} \subsetneq I_{2} \subsetneq I_{9} \subsetneq M$. The following mappings are \mathcal{L}-fuzzy ideals of \mathcal{M}.
(1) $\mu(\perp)=1, \mu\left(x_{1}\right)=a_{5}, \mu\left(x_{7}\right)=a_{1}$, and $\mu(x)=0$ for all $x \in$ $M \backslash I_{7}$.
(2) $\nu(\perp)=1, \nu\left(x_{2}\right)=a_{6}, \nu\left(x_{i}\right)=a_{2}, i=3,4,5,6,9$ and $\nu(x)=0$ for all $x \in M \backslash I_{9}$.

From Corollary 3.15, we deduce the following result:
Corollary 3.17. The following assertions are equivalent
(1) I is an ideal of \mathcal{M}.
(2) For all $\alpha, \beta \in L$ such that $\alpha<\beta$, the \mathcal{L}-fuzzy subset I_{α}^{β} defined by

$$
I_{\alpha}^{\beta}(x)= \begin{cases}\alpha & \text { if } x \in I ; \\ \beta & \text { if } x \notin I .\end{cases}
$$

is an \mathcal{L}-fuzzy ideal of \mathcal{M}.
Proof. We apply Corollary 3.15 to the chain $\{I, M\}$ with $\Omega=\{\alpha, \beta\}$.
From Corollary 3.17, it follows that:
Corollary 3.18. Let I be a proper subset of M and let $\alpha, \beta \in L$. Then, I is an ideal iff I_{α}^{β} is an \mathcal{L}-fuzzy ideal of \mathcal{M}.

Proof. It suffices to observe that $I=\left(I_{\alpha}^{\beta}\right)^{-1}(\uparrow \alpha)$.
From Corollary 3.18, we obtain the following characterization:
Corollary 3.19. For any fixed $\alpha, \beta \in L$, the set $\left\{I_{\alpha}^{\beta} \mid I \in \mathfrak{J}_{\mathcal{M}}\right\}$ is a sublattice of $\mathcal{F I}(\mathcal{M}, \mathcal{L})$ which is isomorphic to $\mathfrak{J}_{\mathcal{M}}$.

Proof. We observe that $I_{\alpha}^{\beta}=\left(\alpha \wedge \chi_{I}\right) \vee\left(\beta \wedge \chi_{I}\right)$. Hence, we use the arguments of Theorem 3.13.

4. Charaterization of \mathcal{L}-fuzzy ideals by lattice homomorphisms

This section investigates the connection between the lattice $\mathcal{F I}(\mathcal{M}, \mathcal{L})$ of all \mathcal{L}-fuzzy ideals of \mathcal{M} and the lattice $\Im_{\mathcal{M}}$ of all ideals of \mathcal{M}.
Lemma 4.1. Let μ be an \mathcal{L}-fuzzy ideal of \mathcal{M} and let $\alpha, \beta \in L$. Then, the following conditions hold.
(1) $\mu_{\alpha \wedge \beta}=\left\langle\mu_{\alpha} \cup \mu_{\beta}\right\rangle=\mu_{\alpha} \vee \mu_{\beta}$.
(2) $\mu_{\alpha \vee \beta}=\mu_{\alpha} \cap \mu_{\beta}=\mu_{\alpha} \wedge \mu_{\beta}$.

Proof. For (1), we have $\alpha \geq \alpha \wedge \beta$ and $\beta \geq \alpha \wedge \beta$. Thus $\mu_{\alpha} \subseteq \mu_{\alpha \wedge \beta}$ and $\mu_{\beta} \subseteq \mu_{\alpha \wedge \beta}$. It follows that $\mu_{\alpha} \vee \mu_{\beta} \subseteq \mu_{\alpha \wedge \beta}$. For the reverse inclusion, we assume that $\alpha, \beta \in \operatorname{Im} \mu$ that is there exists $x, y \in M$ such that $\mu(x)=\alpha$ and $\mu(y)=\beta$. Hence, for any $z \in x \sqcup y$, we have that $z \in \mu_{\alpha} \vee \mu_{\beta}$ with $\mu(z)=\mu(x) \wedge \mu(y)=\alpha \wedge \beta$. Therefore $\mu_{\alpha \wedge \beta} \subseteq \mu_{\alpha} \vee \mu_{\beta}$. If $\mu_{\alpha}=\emptyset$ or $\mu_{\beta}=\emptyset$ then there is nothing to prove.

For (2), we have $\alpha \leq \alpha \vee \beta$ and $\beta \leq \alpha \vee \beta$. Thus $\mu_{\alpha} \supseteq \mu_{\alpha \vee \beta}$ and $\mu_{\beta} \supseteq \mu_{\alpha \vee \beta}$, hence $\mu_{\alpha} \wedge \mu_{\beta} \supseteq \mu_{\alpha \vee \beta}$. Let $x \in \mu_{\alpha} \wedge \mu_{\beta}$ then $x \in \mu_{\alpha}$ and $x \in \mu_{\beta}$. Thus $\mu(x) \geq \alpha$ and $\mu(x) \geq \beta$ which imply $\mu(x) \geq \alpha \vee \beta$, that is $x \in \mu_{\alpha \vee \beta}$. Therefore $\mu_{\alpha} \wedge \mu_{\beta} \subseteq \mu_{\alpha \vee \beta}$ and we obtain the desired equality.

Corollary 4.2. Let μ be an $\mathcal{L}-f u z z y$ ideal of \mathcal{M}. Then, Im μ is sublattice of \mathcal{L}.

Lemma 4.3. Let μ, μ^{\prime} be two \mathcal{L}-fuzzy ideals of \mathcal{M}. Then, for all $\alpha \in L$,
(1) $\left(\mu \wedge \mu^{\prime}\right)_{\alpha}=\mu_{\alpha} \cap \mu_{\alpha}^{\prime}=\mu_{\alpha} \wedge \mu_{\alpha}^{\prime}$.
(2) $\left(\mu \vee \mu^{\prime}\right)_{\alpha}=\left\langle\mu_{\alpha} \cup \mu_{\alpha}^{\prime}\right\rangle=\mu_{\alpha} \vee \mu_{\alpha}^{\prime}$.

Proof. For (1), let $x \in M, x \in\left(\mu \wedge \mu^{\prime}\right)_{\alpha}$ means that $\mu(x) \wedge \mu^{\prime}(x) \geq \alpha$ which is equivalent to $\mu(x) \geq \alpha$ and $\mu^{\prime}(x) \geq \alpha$ that is $x \in \mu_{\alpha} \cap \mu_{\alpha}^{\prime}$. Thus, $\left(\mu \wedge \mu^{\prime}\right)_{\alpha} \subseteq \mu_{\alpha} \cap \mu_{\alpha}^{\prime}$. The reverse inclusion is straightforward.

For (2), on one hand, we have $\mu \leq \mu \vee \mu^{\prime}$ and $\mu^{\prime} \leq \mu \vee \mu^{\prime}$ which give $\mu_{\alpha} \subseteq\left(\mu \vee \mu^{\prime}\right)_{\alpha}$ and $\mu_{\alpha}^{\prime} \subseteq\left(\mu \vee \mu^{\prime}\right)_{\alpha}$. Thus $\mu_{\alpha} \vee \mu_{\alpha}^{\prime} \subseteq\left(\mu \vee \mu^{\prime}\right)_{\alpha}$.

On the other hand, let $x \in\left(\mu \vee \mu^{\prime}\right)_{\alpha}$ then $\mu(x) \vee \mu^{\prime}(x) \geq \alpha$. Fix $\beta_{1}=\mu^{\prime}(x)$ and $\beta_{2}=\mu(x)$. Then, the previous inequality becomes $\left(\beta_{1} \vee \beta_{2}\right) \geq \alpha$ which induces the following inequalities: $\beta_{1} \geq \beta_{2} \wedge \alpha$ and $\beta_{2} \geq \beta_{1} \wedge \alpha$. That is $\mu(x) \geq \beta_{1} \wedge \alpha$ and $\mu^{\prime}(x) \geq \beta_{2} \wedge \alpha$. Thus, according to Lemma 4.1 we have $x \in \mu_{\beta_{1} \wedge \alpha}=\mu_{\beta_{1}} \vee \mu_{\alpha}$ and $x \in \mu_{\beta_{2} \wedge \alpha}^{\prime}=\mu_{\beta_{2}}^{\prime} \vee \mu_{\alpha}^{\prime}$. It follows that $x \in\left(\mu_{\beta_{1}} \vee \mu_{\alpha}\right) \cap\left(\mu_{\beta_{2}}^{\prime} \vee \mu_{\alpha}^{\prime}\right) \subseteq \mu_{\alpha} \vee \mu_{\alpha}^{\prime}$

According to Lemma 4.1 and Lemma 4.3 we have the following description:

Corollary 4.4. The following assertions hold:
(1) For any $\alpha \in L, \begin{gathered}\mathcal{F I}(\mathcal{M}, \mathcal{L}) \rightarrow \Im_{\mathcal{M}} \\ \mu \mapsto \mu_{\alpha}\end{gathered}$ is a lattice epimorphism.
(2) For any $\mu \in \mathcal{F I}(\mathcal{M}, \mathcal{L}), \begin{gathered}\mathcal{L}^{\partial} \\ \alpha\end{gathered} \mathfrak{I}_{\mathcal{M}}$ is a lattice homomorphism.

Lemma 4.5. Let μ and μ^{\prime} be two \mathcal{L}-fuzzy ideals of \mathcal{M}. Then, the following conditions hold
(1) If $\mu_{\alpha}=\mu_{\alpha}^{\prime}$ for all $\alpha \in L$ then, $\mu=\mu^{\prime}$.
(2) If $\mu_{\alpha}=\mu_{\beta}$ for all $\mu \in \mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L})$ then, $\alpha=\beta$.

Proof. For (1), let $x \in M$, let $\alpha=\mu(x)$ and $\beta=\mu^{\prime}(x)$. Then $x \in \mu_{\alpha}$ and $x \in \mu_{\beta}^{\prime}$. Since $\mu_{\alpha}^{\prime}=\mu_{\alpha}$ and $\mu_{\beta}=\mu_{\beta}^{\prime}$, we have $x \in \mu_{\alpha}^{\prime}$ and $x \in \mu_{\beta}$. Hence $\mu^{\prime}(x) \geq \mu(x)$ and $\mu(x) \geq \mu^{\prime}(x)$. Therefore $\mu(x)=\mu^{\prime}(x)$ for all $x \in M$.

For (2), we use the notations of Corollary 3.18. Suppose that $\alpha \neq \beta$ and let I be an ideal of $\mathcal{M}, I \neq M$.

If α and β are incomparable, then $\left(I_{\alpha}^{\beta}\right)^{-1}\left(\left[\alpha, \rightarrow[)=\mathcal{M}\right.\right.$ but $\left(I_{\alpha}^{\beta}\right)^{-1}([\beta, \rightarrow$ [)$=I$.

If $\alpha<\beta$ then $\left(I_{\alpha}^{\beta}\right)^{-1}\left(\left[\alpha, \rightarrow[)=M\right.\right.$ but $\left(I_{\alpha}^{\beta}\right)^{-1}([\beta, \rightarrow[)=I$.
If $\alpha>\beta$ then $\left(I_{\alpha}^{\beta}\right)^{-1}\left(\left[\alpha, \rightarrow[)=I\right.\right.$ but $\left(I_{\alpha}^{\beta}\right)^{-1}([\beta, \rightarrow[)=M$. Therefore $\alpha \neq \beta$ implies that there exists a $\mu \in \mathcal{F I}(\mathcal{M}, \mathcal{L})$ such that $\mu_{\alpha} \neq \mu_{\beta}$.

Given μ an \mathcal{L}-fuzzy subset of \mathcal{M}, we define the mappings $\mu^{\partial}, \mathcal{L}$-fuzzy subset of \mathcal{M}^{∂} and $\mu_{\partial}, \mathcal{L}^{\partial}$-fuzzy subset of \mathcal{M} as follows:

The following results follows.
Proposition 4.6. Let μ and μ^{\prime} be two \mathcal{L}-fuzzy ideals of \mathcal{M}. Then, the following assertions hold:
(1) $\left(\mu \vee \mu^{\prime}\right)^{\partial}=\mu^{\partial} \vee \mu^{\prime \partial}$
(2) $\left(\mu \wedge \mu^{\prime}\right)^{\partial}=\mu^{\partial} \wedge \mu^{\prime \partial}$
(3) $\left(\mu \vee \mu^{\prime}\right)_{\partial}=\mu_{\partial} \wedge \mu_{\partial}^{\prime}$
(4) $\left(\mu \wedge \mu^{\prime}\right)_{\partial}=\mu_{\partial} \vee \mu_{\partial}^{\prime}$
(3) and (4) of Proposition 4.6 induce the following corollary.

Corollary 4.7. $\left(\mathcal{L}^{\mathcal{M}}\right)^{\partial}$ is cononically isomorphic to $\left(\mathcal{L}^{\partial}\right)^{\mathcal{M}}$.
\mathcal{L}-fuzzy ideals and \mathcal{L}-fuzzy filters are related as given by Theorem 4.8

Theorem 4.8. The following assertions are equivalent:
(i) $\mu: \mathcal{M} \rightarrow \mathcal{L}$ is an $\mathcal{L}-$ fuzzy ideal of \mathcal{M}.
(ii) $\mu^{\partial}: \mathcal{M}^{\partial} \rightarrow \mathcal{L}$ is an \mathcal{L}-fuzzy filter of \mathcal{M}.

Proof. Recall that $\mathcal{M}=(M, \sqcup, \sqcap) \Rightarrow \mathcal{M}^{\partial}=(M, \sqcap, \sqcup)$ and $\mathcal{L}=(L, \vee, \wedge) \Rightarrow$ $\mathcal{L}^{\partial}=(L, \wedge, \vee)$.
$(i) \Rightarrow($ ii $)$ Let $\mu: \mathcal{M} \rightarrow \mathcal{L}$ be an \mathcal{L}-fuzzy ideal of \mathcal{M}. Let $x, y \in M$.
If $z \in x \sqcup^{\partial} y$ then $z \in x \sqcap y$. Hence $\mu(z) \geq \mu(x) \vee \mu(y)$;
If $z \in x \sqcap^{\partial} y$ then $z \in x \sqcup y$. Hence $\mu(z)=\mu(x) \wedge \mu(y)$.
If $z_{1}, z_{2} \in x \sqcup^{\partial} y$ then $z_{1}, z_{2} \in x \sqcap y$. Hence $\mu\left(z_{1}\right)=\mu\left(z_{2}\right)$. Thus μ^{∂} is an \mathcal{L}-fuzzy filter of \mathcal{M}.
(ii) $\Rightarrow\left(\right.$ i Let $\mu^{\partial}: \mathcal{M}^{\partial} \rightarrow \mathcal{L}$ be an \mathcal{L}-fuzzy filter of \mathcal{M}^{∂} and let $x, y \in M$.

If $z \in x \sqcap y$ then $z \in x \sqcup^{\partial} y$. Hence $\mu(z) \geq \mu(x) \vee \mu(y)$.
If $z \in x \sqcup y$ then $z \in x \sqcap^{\partial} y$. Hence $\mu(z)=\mu(x) \wedge \mu(y)$.
If $z_{1}, z_{2} \in x \sqcap y$ then $z_{1}, z_{2} \in x \sqcup^{\partial} y$. Hence $\mu\left(z_{1}\right)=\mu\left(z_{2}\right)$. Therefore μ is an \mathcal{L}-fuzzy filter of \mathcal{M}.

From Proposition 4.6 and Theorem 4.8 we have the following corollary:
Corollary 4.9. $\varphi: \begin{aligned} \mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L}) & \rightarrow \mathcal{F} \mathcal{F}\left(\mathcal{M}^{\partial}, \mathcal{L}\right) \quad \text { is a lattice isomor- } \\ \mu & \mapsto \mu^{\partial}\end{aligned}$ phism.

Theorem 4.10. The following assertions are equivalent:
(i) $\mu: \mathcal{M} \rightarrow \mathcal{L}$ is an \mathcal{L}-fuzzy ideal of \mathcal{M} satisfying $\mu(z) \leq \mu(x) \vee$ $\mu(y)$ for all $z \in x \sqcap y$.
(ii) $\mu_{\partial}: \mathcal{M}^{\partial} \rightarrow \mathcal{L}^{\partial}$ is an \mathcal{L}^{∂} - fuzzy ideal of \mathcal{M}^{∂} satisfying $\mu(z) \leq$ $\mu(x) \vee^{\partial} \mu(y)$ for all $z \in x \sqcap^{\partial} y$;

Proof. (i) \Rightarrow (ii) Suppose that μ is an \mathcal{L}-fuzzy ideal of \mathcal{M}. Let $x, y \in$ \mathcal{M}^{∂}.

If $z \in x \sqcap^{\partial} y$ then $z \in x \sqcup y$. Hence $\mu(z)=\mu(x) \wedge \mu(y)$ (see Lemma 3.8) that is $\mu(z) \leq \mu(x)$ or more precisely that $\mu(z) \geq^{\partial} \mu(x)$.

If $z \in x \sqcup^{\partial} y$ then $z \in x \sqcap y$. Hence $\mu(z) \geq \mu(x)$ and $\mu(z) \geq \mu(y)$ since $z \leq x$ and $z \leq y$. Therefore $\mu(z) \geq \mu(x) \vee \mu(y)=\mu(x) \wedge^{\partial} \mu(y)$, the reverse inequality comes from the assumption.

If $z_{1}, z_{2} \in x \sqcap^{\partial} y$ then $z_{1}, z_{2} \in x \sqcup y$. Hence $\mu\left(z_{1}\right)=\mu(x) \wedge \mu(y)=\mu\left(z_{2}\right)$. Thus μ^{∂} is an \mathcal{L}^{∂}-fuzzy filter of M^{∂}.
(ii) \Rightarrow (i) uses the previous arguments since $\left(\mathcal{L}^{\partial}\right)^{\partial}=\mathcal{L}$ and $\left(\mathcal{M}^{\partial}\right)^{\partial}=$ \mathcal{M}.
Theorem 4.11. Then, $\langle\rangle:. x \mapsto\langle x\rangle$ is an $\left(\mathfrak{I}_{\mathcal{M}}\right)^{2}$-fuzzy ideal of \mathcal{M}.
Proof. Let $x, y \in M$.
If $x \leq y$ then $\langle x\rangle \subseteq\langle y\rangle$ that is $\langle y\rangle \subseteq^{\partial}\langle x\rangle$.
If $z \in x \sqcup y$ then $\langle z\rangle=\langle x\rangle \vee\langle y\rangle$, this implies $\langle z\rangle=\langle x\rangle \wedge^{\partial}\langle y\rangle$.
If $z, z^{\prime} \in x \sqcap y$ then $(x \sqcap y) \cap\langle z\rangle \neq \emptyset$ and $(x \sqcap y) \cap\left\langle z^{\prime}\right\rangle \neq \emptyset$. Hence $z^{\prime} \in\langle z\rangle$ and $z \in\left\langle z^{\prime}\right\rangle$ it follows that $\langle z\rangle=\left\langle z^{\prime}\right\rangle$.

We end this section by establishing that the \mathcal{L}-fuzzy ideals lattice of $\mathcal{M}, \mathcal{F} \mathcal{I}(\mathcal{M}, \mathcal{L})$ is completely described by homomorphisms from \mathcal{L}^{∂} to the ideals lattice of $\mathcal{M}, \Im_{\mathcal{M}}$.
Theorem 4.12. $\mathcal{F I}(\mathcal{M}, \mathcal{L})$ is isomorphic to $\operatorname{Hom}\left(\mathcal{L}^{\partial}, \mathfrak{I}_{\mathcal{M}}\right)$.
Proof. Consider the following mapping:

$$
\Phi: \begin{gathered}
\mathcal{F I}(\mathcal{M}, \mathcal{L}) \rightarrow \underset{\sim}{\operatorname{Hom}\left(\mathcal{L}^{\partial}, \mathfrak{I}_{\mathcal{M}}\right)} \\
\mu \mapsto \Phi(\mu): \underset{\mathcal{L}^{\partial}}{\rightarrow} \mathfrak{I}_{\mathcal{M}} \\
\alpha \mapsto \Phi(\mu)(\alpha)=\mu_{\alpha}
\end{gathered}
$$

Corollary 3.18 proves that Φ is well defined and Lemma 4.3 proves its compatibility with \wedge and \vee.

Let $\mu, \mu^{\prime} \in \mathcal{F I}(\mathcal{M}, \mathcal{L})$. Then, $\Phi(\mu)=\Phi\left(\mu^{\prime}\right)$ implies $\mu_{\alpha}=\mu_{\alpha}^{\prime}$ for all $\alpha \in L$. Hence by Lemma 4.5 we have $\mu=\mu^{\prime}$ which proves that Φ is one to one.

Let $f: \mathcal{L}^{\mathcal{D}} \rightarrow \Im_{\mathcal{M}}$ be a lattice homomorphism. Define

$$
\mu: \mathcal{M} \rightarrow \mathcal{L} \text { by } \mu(x)=\bigvee\{\alpha \in L: x \in f(\alpha)\} .
$$

We will prove that $\mu \in \mathcal{F I}(\mathcal{M}, \mathcal{L})$ and $\Phi(\mu)=f$.
Let $x, y \in M$. If $x \leq y$ then $y \in f(\alpha)$ implies $x \in f(\alpha)$ since $f(\alpha)$ is an ideal of \mathcal{M}. Hence $\{\alpha \in L \mid y \in f(\alpha)\} \subseteq\{\alpha \in L \mid x \in f(\alpha)\}$ and then $\bigvee\{\alpha \in L \mid x \in f(\alpha)\} \geq \bigvee\{\alpha \in L \mid y \in f(\alpha)\}$ that is $\mu(x) \geq \mu(y)$.

If $z, z^{\prime} \in x \sqcap y$ then $z \in f(\alpha)$ iff $z^{\prime} \in f(\alpha)$ since $f(\alpha)$ is either empty or an ideal of \mathcal{M}. Thus $\mu(z)=\mu\left(z^{\prime}\right)$.

It remains to prove that $\mu(z) \geq \mu(x) \wedge \mu(y)$ for all $z \in x \sqcup y$. For this it will suffice to prove that $[x \in f(\alpha)$ and $y \in f(\beta) \Rightarrow z \in f(\alpha \wedge \beta)]$.
$x \in f(\alpha)$ and $y \in f(\beta)$ imply $\{x, y\} \subseteq f(\alpha) \vee f(\beta)$. Hence $x \sqcup y \subseteq$ $f(\alpha) \vee f(\beta)=f(\alpha \wedge \beta)$. Thus $z \in f(\alpha \wedge \beta)$.

This is true since $f(\alpha)$ and $f(\beta)$ are both ideals and $f(\alpha \wedge \beta)=$ $f(\alpha) \vee f(\beta)$.

5. Conclusion and future works

The \mathcal{L}-fuzzy ideals lattice of multilattice has been described. Several characterizations have been proposed and the relationship between ideals and \mathcal{L}-fuzzy ideals has been highlighted. The transition from the \mathcal{L}-fuzzy ideals to the \mathcal{L}-fuzzy filters evidenced by the Duality principle has been shown. We have finally proved that the \mathcal{L}-fuzzy ideals lattice of a multilattice is isomorphic to the lattice of homomorphisms from the dual of \mathcal{L} to the ideals lattice of \mathcal{M}.

We plan in a future to study the prime \mathcal{L}-fuzzy ideals theorem and maximality on \mathcal{L}-fuzzy ideals of multilattices.

Acknowledgments

The authors wish to thank the referee for their valuable and insightful comments, which imrpoved the paper substantially.

References

[1] M. Benado, Les ensembles partiellement ordonns et le Thorme de raffinement de scheier, II.Thorie des multistructures, Czechoslovak Mathematical Journal, 5(80)(1955)308-344.
[2] G. Birkhoff, Lattice Theory, Colloquium Publications, Amer. Math. Soc., 25 (1967).
[3] I. P. Cabrera, P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego, On residuation in multilattices: filters, congruences, and homomorphisms, Fuzzy sets and systems, 234(1) (2014)1-21.
[4] B. A. Davey, Introduction to lattices theory, Cambridge University press, (1990).
[5] B. B. Koguep Njionou, C. Nkuimi, C. Lele, On fuzzy prime ideals of lattice, SAMSA J. Pure Appl. Math., 3 (2008) 1-11.
[6] S. Lehmke, Some properties of fuzzy ideals on a lattice, Fuzzy-IEEE, 97 (1997)813-818.
[7] A. Maheswari, Member, IACSIT, M. Palanivelrajan, Introduction to Intuitionistic \mathcal{L}-fuzzy Semi Filter (ILFSF) of Lattices, International Journal of Machine Learning and Computing, 2 (6) (2012)738-740.
[8] D. S. Malik, Fuzzy maximal, radical, and primary ideals of a ring, Inf. Sci., 53(1991)237-250.
[9] J. Martínez, G. Guetiérrez, I. P. de Guzmán, P. Cordero, Generalization of lattices via non-dterministic operators, Discrete Math., 295(1-3) (2005) 107-141.
[10] O. Klaućová, Characterization of multilattices by a betweeness relation, Math.Slov., 26(2) (1976) 119-129.
[11] U. M. Swamy, D. Viswanadha Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems, 95 (1998)249-253.
[12] L. A. Zadeh, Fuzzy sets, Inf. Control, 8(1965)338-353.

Daquin Cdric Awouafack

Department of Mathematics and Computer Science, University of Dschang, P.O.Box 67, Dschang, Cameroon
Email: dcawouafack@yahoo.com
Pierre Carole kengne
Department of Mathematics and Computer Science, University of Dschang, P.O.Box 67, Dschang, Cameroon
Email: kpierrecarole@yahoo.fr

Clestin Ll

Department of Mathematics and Computer Science, University of Dschang, P.O.Box 67, Dschang, Cameroon
Email: celestinlele@yahoo.com

[^0]: Received: 24 March 2021, Accepted: 22 February 2022. Communicated by Yuming Feng;
 *Address correspondence to Daquin Cdric Awouafack; E-mail: dcawouafack@yahoo.com
 (c) 2022 University of Mohaghegh Ardabili.

