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ON L−FUZZY IDEALS OF MULTILATTICES

DAQUIN CEDRIC AWOUAFACK∗, PIERRE CAROLE KENGNE
AND CLESTIN LELE

Abstract. For a given multilattice M, the set IM of all ideals of
M is a complete lattice and for a given complete lattice L, the set
FI(M,L) of all L-fuzzy ideals ofM is also a complete lattice. The
aim of this paper is to characterize L−fuzzy ideals of multilattice
and highlight some of their properties based on the Duality Prin-
ciple. We establish that FI(M,L) is isomorphic to Hom(L∂ , IM)
where L∂ is the dual of L. Since multilattices generalize lattices,
the results remain true for L-fuzzy ideals of lattices.
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1. Introduction

Since the introduction of the notion of fuzzy sets in 1965 by L. A.
Zadeh [12], many works have been done on fuzzy structures. Most of
them deal with the original notion of fuzzy subset. The notion of L−
fuzzy ideal is not new. Following the works of Zadeh [12] several authors
have invested on its conceptualization including Lehmke [6], Malik [8],
Swamy and Viswanadha Raju [11], Koguep et al. [5] who studied fuzzy
ideals of lattices and semilattices.

The concepts of ordered and algebraic multilattices were introduced
by Benado in [1]. A multilattice is an algebraic structure in which the
restrictions imposed on a lattice, namely the ”existence of least upper
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bounds and greatest lower bounds” are relaxed to the ”existence of min-
imal upper bounds and maximal lower bounds” [3, 9, 10]. Many authors
have investigated the notion of ideals of multilattice. In 2014, I.P. Cabr-
era et al. [3] proposed a definition of a multilattice ideal which is suitable
for homomorphisms and congruences. Then, they proved the set of all
ideals of a multilattice is a lattice with respect to inclusion.

We propose a description of L−fuzzy ideals of multilattices by lat-
tice homomorphisms and highlight some properties based on the duality
principle.

This paper is organized as follows: in Section 2, we recall some pre-
liminary results to understand the paper. Section 3, we study the main
properties of L−fuzzy ideals of multilattice. Section 4, we investigate
some characterizations of L−fuzzy ideals by lattice homorphisms. Let
us recall some definitions and results on lattices and multilattices.

2. Preliminaries and notations

Let P = (P,≤) be an ordered set and let ∅ 6= S ⊆ P . An element
x ∈ P is an upper bound of S if s ≤ x for all s ∈ S. A lower bound is
defined dually. The set of all upper bounds of S is denoted by Su and
the set of all lower bounds Sl:

Su = {x ∈ P | (∀s ∈ S) s ≤ x} and Sl = {x ∈ P | (∀s ∈ S) x ≤ s}.
A minimal element of Su is called a multisupremum of S and we
denote by Multisup(S) the set of all multisuprema of S; a maximal
element of Sl is a multinfimum of S and we denote by Multinf(S) the
set of all multinfima of S. If Multisup(S) (resp. Multinf(S)) has exactly
on element, it is called sup(S) (resp. inf(S)).

Definition 2.1. [4] A lattice is a triple L = (L,∨,∧) with the following
properties called axioms of lattices.

AL-1 For all x ∈ L, x ∨ x = x, x ∧ x = x;
AL-2 For all x, y ∈ L, x ∨ y = y ∨ x, x ∧ y = y ∧ x;
AL-3 For all x, y, z ∈ L, (x∨y)∨z = x∨(y∨z), (x∧y)∧z = x∧(y∧z);
AL-4 For all x, y ∈ L, x ∨ (x ∧ y) = x ∧ (x ∨ y) = x;
AL-5 For all x, y ∈ L, x ≤ y ⇔ x ∨ y = y ⇔ x ∧ y = x.

L is said to be a complete lattice if any non-empty subset S of L has an
infimum and a supremum respectively denoted

∧
S and

∨
S.

Definition 2.2. [4] Let L and K be two lattices. A map f : L → K is a
said to be a homomorphism if f is meet-preserving and join-preserving,
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that is :

for all x, y ∈ L, f(x ∧ y) = f(x) ∧ f(y) and f(x ∨ y) = f(x) ∨ f(y).

A bijective homomorphism is a lattice isomorphism.

We denote by Hom(L,K) the set of all homomorphisms from L to K.
It is not difficult to see that if K is a complete lattice, so is Hom(L,K).

Proposition 2.3. [2] Let E be a non-empty set and let LE = {h :
E → L | h is a mapping}. Then, LE is a complete lattice when the
operations are defined pointwise: (f∨g)(x) = f(x)∨g(x) and (f∧g)(x) =
f(x) ∧ g(x).

Proposition 2.4. The lattice LE satisfies exactly the same equations
as L.

Proposition 2.5. [4]

(1) LE is bounded iff L is bounded.
(2) LE is distributive iff L is distributive.

Given any ordered set P = (P,≤) we can form a new ordered set
P∂ = (P,≤∂) (the dual of P) by defining:

• For all x, x ∈ P∂ iff x ∈ P;
• For all x, y ∈ P , x ≤ y iff y ≤∂ x.

According to Davey [4], to each statement about P there corresponds a
statement about P∂ . In general, given any statement Φ about ordered
sets, we obtain the dual statement Φ∂ by replacing each occurrence of
≤ by ≥ and vice versa. Thus ordered set concepts and results hunt
in pairs. The formal basis of this observation is the Duality Principle
stated below.

Theorem 2.6. [4] Given a statement Φ about ordered sets which is true
in all ordered sets, then the dual statement Φ∂ is true in all ordered sets.

Definition 2.7. [3] Let M = (M,≤) be a non-empty poset.

(i) M is said to be a multilattice if for all a, b, x ∈ M with a ≤ x
and b ≤ x, there exists z ∈Multisup(a, b), such that z ≤ x; and,
similarly, for all a, b, x ∈ M with a ≥ x and b ≥ x, there exists
z ∈Multinf(a, b), such that z ≥ x.

(ii) If Multisup(a,b) and Multinf(a,b) are non-empty for all a, b ∈M ,
then M is said to be a full multilattice.
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Clearly every finite poset is a multilattice but the converse is not true.
When S = {a, b}, we denote respectively by a u b and a t b instead

of Multinf({a, b}) and Multisup({a, b}). This gives two hyperoperations
from M2 to P∗(M). Therefore a multilattice can also be defined as a
triple (M,t,u) with some required properties called axioms of multilat-
tices [9]. In [10] many characterizations are proposed.

AM-1 For all x ∈M , x t x = {x}, x u x = {x};
AM-2 For all x, y ∈M , x t y = y t x, x u y = y u x;
AM-3 For all x, y, z ∈M , x ≤ y ⇒ (xty)tz ⊆ xt(ytz), (xuy)uz ⊆

x u (y u z);
AM-4 For all x, y ∈M , x t (x u y) = x u (x t y) = {x};
AM-5 For all x, y ∈M , x ≤ y ⇔ x t y = {y} ⇔ x u y = {x}.

We simply write (M,t,u) instead of (M,t,u,≤).
Thus we obtain the following result as a direct consequence of the

Duality Principle.

Proposition 2.8. M = (M,t,u) iff M∂ = (M,u,t).

Example 2.9. Consider the poset M1 = {ai, i = 1, 2, ..., 8} ∪ {⊥,>}
described by the following diagram.

>

a7 a8

a4 a5 a6

a1 a2 a3

⊥

M
M = (M1,t,u) is a full multilattice given by the following antichains:
{ai, i = 1, 2, 3}, {aj : j = 4, 5, 6} and {ak, k = 7, 8}.

• ai t aj = {ak | k = 4, 5, 6} for all i, j ∈ {1, 2, 3}, i 6= j;
• ai t aj = {ak | k = 7, 8} for all i, j ∈ {4, 5, 6}, i 6= j;
• ai u aj = {ak | k = 1, 2, 3} for all i, j ∈ {4, 5, 6}, i 6= j;
• a7 u a8 = {ak | k = 4, 5, 6}.
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In the rest of this paper, M = (M,t,u) denotes any multilattce.
We will also use the following standard notations and definitions.

For a ∈M , ↓ a = {x ∈M | x ≤ a} and ↑ a = {x ∈M | a ≤ x}.
For A ⊆M , ↓ A = ∪a∈A ↓ a and ↑ A = ∪a∈A ↑ a.
For A,B ⊆ M , A t B = ∪(a,b)∈A×Ba t b and A u B = ∪(a,b)∈A×Ba u b.
In the rest of this paper, we will refer to multilattices with bottom ⊥.
Lack of bottom can be easily remedied by adding one as usual. Given
a multilattice M (with or without bottom), we form M⊥ (called M
lifted) as follows: Take an element ⊥ /∈ M and define ≤ on M ∪ {⊥}
by x ≤ y iff x = ⊥ or x ≤ y in M (some basic operations on posets are
presented in [4]).

Definition 2.10. [3] Let I be a subset of M . I is said to be an ideal of
M if it satisfies the following conditions:

I.1: For all a ∈M and for all x ∈ I, a u x ⊆ I;
I.2: For all x, y ∈ I, x t y ⊆ I;
I.3: For all a, b ∈M , if (a u b) ∩ I 6= ∅ then a u b ⊆ I.

The notions of filter and ideal are dual : F is a filter ofM iff F is an
ideal of M∂ . Hence, from the properties of ideals given here, one could
deduce those of filters. We assume that the empty set is both an ideal
and a filter of M.

Remark 2.11. Every ideal of a finite multilattice is a downset but the
converse is not true.

In example 2.9, ↓ a5 = {⊥, a1, a2, a3, a5} is a downset but not an ideal.
One could observe that {a1, a2} ⊆↓ a5 but a1 t a2 = {a4, a5, a5} *↓ a5.

Definition 2.12. LetA be a non-empty subset ofM . Then, the smallest
ideal ofM containing A is called the ideal generated by A and is denoted
by 〈A〉. If A = {x} it is simply denoted by 〈x〉.

The set of all ideals of M will be denote by IM.

Theorem 2.13. [3] (IM,⊆) is a complete lattice.

The meet of two ideals I and J is the intersection, I ∧ J = I ∩ J , and
the join is the ideal generated by I ∪ J , I ∨ J = 〈I ∪ J〉.

Remark 2.14. Let x, y, z, z′ ∈M . Then, the following assumptions hold:

(1) z ∈ x t y implies 〈z〉 = 〈x〉 ∨ 〈y〉;
(2) z ∈ x u y implies 〈z〉 ⊆ 〈x〉 ∧ 〈y〉;
(3) z, z′ ∈ x u y implies 〈z〉 = 〈z′〉.
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The inclusion of (2) will be in general strict: in Example 2.9 we have
that a1 u a2 = {⊥} but 〈a1〉 = 〈a2〉 = M .

3. L−fuzzy ideals of a multilattice

We first review some definitions and properties of L−fuzzy subsets.

Definition 3.1. [7] An L−fuzzy subset of E is a mapping µ : E → L.

If L = (I,max,min) where I is the unit interval [0; 1] of real numbers
then these are the usual fuzzy subsets of E (see [12]).

In the rest of this paper, L = (L,∨,∧, 0, 1) stands for any complete
and bounded lattice.

Definition 3.2. Let µ be an L−fuzzy subset of E. Then, for any α ∈ L,
the set

µα = {x ∈ E | µ(x) ≥ α}
is called the α−level subset of µ or α−cut set of µ and the set

Imµ = {µ(x) | x ∈ E}
is called the image of µ.

In other words, µα = µ−1([α,→ [) where [α,→ [= {l ∈ L | α ≤ l} =↑
α ⊆ L.

Proposition 3.3. [5] Let µ be an L−fuzzy subset of E. Then, the
following assertions hold:

(1) For any x ∈ E, the set Ix = {α ∈ L | x ∈ µα} is an ideal of L.
(2) For all x ∈ E, µ(x) =

∨
{α ∈ L | x ∈ µα}

(3) α, β ∈ Imµ implies µα = µβ iff α = β.

Definition 3.4. An L−fuzzy subset µ of M is said to be an L−fuzzy
ideal of M if µα is an ideal of M for all α ∈ L.

Example 3.5. Consider the multilattice of Example 2.9. Then, the
L−fuzzy subset of M defined by µ(⊥) = 1, µ(>) = 0 and µ(ai) = 0,
i = 1, 2, ..., 8 is a 2−fuzzy ideal of M, where 2 := ({0, 1},max,min).

Remark 3.6. We will denote by FI(M,L) (resp. FF(M,L)) the set of
all L−fuzzy ideals (resp. L−fuzzy filters) of M.

The set FI(M,L) is ordered as follows :

µ 4 ν if and only if µα ⊆ να for all α ∈ L
It is a complete lattice where the following assumptions hold :
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(1) [µ ∧ ν](x) ≥ α if and only if µ(x) ≥ α and ν(x) ≥ α
(2) [µ ∨ ν](x) ≤ α if and only if µ(x) ≤ α and ν(x) ≤ α

A charactrization of L−fuzzy ideals is given by Theorem 3.7.

Theorem 3.7. Let µ be an L−fuzzy subset ofM. Then, µ ∈ FI(M,L)
iff the following conditions hold:

FI1: For all x, y ∈M , z ∈ x u y ⇒ µ(z) ≥ µ(x) ∨ µ(y).
FI2: For all x, y ∈M , z ∈ x t y ⇒ µ(z) ≥ µ(x) ∧ µ(y).
FI3: For all x, y ∈M , z1, z2 ∈ x u y ⇒ µ(z1) = µ(z2).

Proof. Let µ :M→ L and α ∈ Im(µ).
Suppose that x ∈ µα and z ∈ a u x such that FI1, FI2 and FI3 hold,

then µ(z) ≥ µ(x)∨ µ(a) ≥ µ(x). Hence, µ(z) ≥ α implies z ∈ µα that is
a u x ⊆ µα.

Also, if x, y ∈ µα and z ∈ xt y then µ(z) ≥ µ(x)∧ µ(y) ≥ α∧α = α,
hence x t y ⊆ µα.

Finally, if z, z′ ∈ x u y and z ∈ µα, then µ(z) = µ(z′) ≥ α, hence
z′ ∈ µα. Therefore µα is an ideal of M.

Conversely, suppose that µα ∈ IM for all α ∈ L. Let x, y ∈M .
For α = µ(y), we have µα 6= ∅. Therefore, for any z ∈ x u y, µ(z) ≥

µ(x) ∨ µ(y).
For α = µ(x) ∧ µ(y), we have {x, y} ⊆ µα which is an ideal of M.

Thus x t y ⊆ µα. This implies µ(z) ≥ µ(x) ∧ µ(y) for all z ∈ x t y. If
z, z′ ∈ x u y, then for α = µ(z) and β = µ(z′), we have z ∈ (x u y) ∩ µα
and z′ ∈ (x u y) ∩ µβ. It follows that x u y ⊆ µα ∩ µβ since µα and
µβ are both ideals of M. Hence z′ ∈ µα and z ∈ µβ. This implies
µ(z′) ≥ α = µ(z) and µ(z) ≥ β = µ(z′) that is µ(z) = µ(z′). �

Theorem 3.7 gains in interest if we realize the following remarks.

Lemma 3.8. (1) FI1 is equivalent to: ∀x, y ∈M, x ≤ y ⇒ µ(x) ≥
µ(y).

(2) The inequality of FI2 can be replaced by the equality. In fact
z ∈ x t y implies x ≤ z and y ≤ z. Thus by FI1, we have
µ(z) ≤ µ(x) ∧ µ(y).

(3) If x ∈ M then, x ∈ Al implies µ(x) ≥
∨
{µ(a) | a ∈ A} and

x ∈ Au implies µ(x) ≤
∧
{µ(a) | a ∈ A} for all non-empty

subset A of M .

Proof. For (1), let x, y ∈ M such that x ≤ y then x ∈ x u y (Axiom
AM-5 of multilattices) hence, by FI1, µ(x) ≥ µ(x) ∨ µ(y) which means
µ(x) ≥ µ(y). Conversely, let z ∈ x u y then z ≤ x and z ≤ y. Hence
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µ(z) ≥ µ(x) and µ(z) ≥ µ(y) which gives µ(z) ≥ µ(x)∨µ(y) that is FI1
is satisfied.

For (2), it suffices to prove that µ(z) ≤ µ(x) ∧ µ(y) for all z ∈ x t y.
If z ∈ x t y then x ≤ z and y ≤ z (Axiom AM-5), thus, by FI1 we have
µ(z) ≤ µ(x) and µ(z) ≤ µ(y). It follows that µ(z) ≤ µ(x) ∧ µ(y)

The inequalities of (3) are direct consequences of FI1.
�

Proposition 3.9. Let µ be an L−fuzzy ideal ofM. Then, the following
assertions hold

(1) If δ is a filter of L then, δµ = {x ∈M | µ(x) ∈ δ} is an ideal of
M.

(2) If A is a subset of M then, Aµ = {α ∈ L | A ⊆ µα} is an ideal
of L.

Proof. For (1), let x, y ∈ M . If y ∈ δµ and x ≤ y then µ(y) ∈ δ and
µ(x) ≥ µ(y), since δ is a filter of L, we have µ(x) ∈ δ, thus x ∈ δµ.

If x, y ∈ δµ and z ∈ xty then µ(z) ≥ µ(x)∧µ(y) and µ(x) ∈ δ, µ(y) ∈
δ hence µ(x) ∧ µ(y) ∈ δ and then µ(z) ∈ δ that is z ∈ δµ.

If {z, z′} ⊆ x u y with µ(z) ∈ δ then µ(z′) = µ(z) ∈ δ, thus z′ ∈ δµ.
Therefore δµ is an ideal of M.

For (2), let α, β ∈ L. If β ∈ Aµ and α ≤ β then A ⊆ µβ and µβ ⊆ µα.
Thus, A ⊆ µα that is α ∈ Aµ.

If α ∈ Aµ, β ∈ Aµ then for all x ∈ A, we have µ(x) ≥ α and µ(x) ≥ β
that is µ(x) ≥ α∨β. Thus A ⊆ µα∨β. Therefore Aµ is an ideal of L. �

For every subset A ⊆M , set

A∗ := ∪{a u b : (a u b) ∩ (↓ A) 6= ∅, a, b ∈M}.

define the sequence A(n), n ∈ N, recursively as follows:

A(0) = A, A(1) = A∗ and ∀ n ≥ 1, A(n+1) = (A(n) tA(n))∗.

Lemma 3.10. Let µ be an L−fuzzy subset ofM. Then, µ is an L−fuzzy
ideal of M iff for all finte subset An = {ai}ni=1 ⊆ M , n ∈ N and for all

k ∈ N∗, x ∈ A(k)
n ⇒ µ(x) ≥

∧
{µ(ai), 1 ≤ i ≤ n}.

Proof. Firstly, we assume that µ is an L−fuzzy ideal ofM. We proceed

by inference. Let x ∈ A(1)
n = A∗n then there is (a, b) ∈M2 such that x ∈

(a u b) ∩ (↓ A). Therefore, there exists p ∈ {1, 2, .., n} such that µ(x) ≥
µ(ap), but µ(ap) ≥

∧
{µ(ai), 1 ≤ i ≤ n}. Hence µ(x) ≥

∧
{µ(ai), 1 ≤

i ≤ n} for all x ∈ A
(1)
n . Suppose that it is true for all x ∈ A

(k)
n . Let
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y ∈ A(k+1)
n = (A

(k)
n t A(k)

n )∗, then there exists c ∈ A(k)
n , d ∈ A(k)

n and
(a, b) ∈ M2 such that y ∈ a u b and (a u b) ∩ [↓ (c t d)] 6= ∅. Let
y′ ∈ (au b)∩ [↓ (ct d)] then µ(y) = µ(y′) ≥ µ(c)∧µ(d) but µ(c), µ(d) ≥∧
{µ(ai), 1 ≤ i ≤ n}. Hence µ(y) ≥

∧
{µ(ai), 1 ≤ i ≤ n}. It follows that

for all n ∈ N and for all k ∈ N∗, x ∈ A(k)
n ⇒ µ(x) ≥

∧
{µ(ai), 1 ≤ i ≤ n}.

Conversely, suppose that µ(x) ≥
∧
{µ(ai), 1 ≤ i ≤ n} for all x ∈ A(k)

n ,
n ∈ N∗ and k ∈ N∗. Let x ∈ M and y ∈ M. If z ∈ x u y then we have
z ∈ {x}(1) ∩ {y}(1). Thus µ(z) ≥ µ(x) ∨ µ(y).

If z ∈ x t y, then z ∈ {x, y}(2) which implies µ(z) ≥ µ(x) ∧ µ(y).

If z, z′ ∈ a u b for some a, b ∈ M, then z ∈ {z′}(1) and z ∈ {z′}(1).
Hence µ(z) ≥ µ(z′) and µ(z′) ≥ µ(z) that is µ(z) = µ(z′). Therefore µ
is an L−fuzzy ideal of M. �

Since L is a complete lattice, Lemma 3.10 can be extended to any
non-empty subset of M.

Theorem 3.11. Let µ be an L−fuzzy ideal of M and let α ∈ L. If
A = {x ∈M | µ(x) = α} then, µα = 〈A〉.

Proof. As µα is an ideal of M containing A we claim that 〈A〉 ⊆ µα.
The reverse inclusion holds from Lemma 3.10. �

Let χA be the characteristic function of a subset A of M.

Corollary 3.12. Let I be a non-empty subset of M . Then, I is an ideal
of M iff χI is a 2−fuzzy ideal of M.

Theorem 3.13. IM is isomorphic to the lattice of 2−fuzzy ideals of
M.

Proof. Consider the following mapping χ : I 7→ χI . It is not difficult to
observe that χ∅(x) = 0 and χM (x) = 1 for all x ∈ M . The Corollary
3.12 proves that it is well defined.
χI∨J(x) = 1 implies x ∈ I ∨ J . Thus there exists (n, k) ∈ N∗2 and

An = {a1, ..., an} ⊆ I ∪ J such that x ∈ A
(k)
n . We have that (χI ∨

χJ)(ai) = 1 for all i = 1, ..., n. According to Lemma 3.10, (χI∨χJ)(x) =
1. Hence χI∨J ≤ χI ∨χJ ; the reverse inequality is natural. It is obvious
that χI∩J = χI ∧ χJ and I = J iff χI = χJ . If µ is a 2−fuzzy ideal of
M, µ 6= 0 then I = µ−1(1) is an ideal of M satisfying χI = µ. Hence ϕ
is bijective and the proof is completed. �

The following is the construction of L−fuzzy ideals from a chain of
ideals of M.
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Theorem 3.14. Let (Ω,≤, 0, 1) be a bounded totally ordered set. If
{Iα}α∈Ω is a chain of ideals of M such that α � β =⇒ Iα ( Iβ,
I0 = {⊥} and I1 = M . Then, for all antitone mapping ϕ : Ω → L, the
function µ :M→ L defined by induction as follows:

µ(x) =

ϕ(0) if x = ⊥;

ϕ(α) if x ∈ Iα \
⋃
β<α

Iβ.

is an L−fuzzy ideal of M.

Proof. Define Jα = Iα \
⋃
β<α

Iβ then {Jα}α∈Ω is a partition of M . Let

x, y ∈M then there is (α, α′) ∈ Ω2 such that x ∈ Jα and y ∈ Jα′ .
If x ≤ y then α ≤ α′. Hence, ϕ(α) ≥ ϕ(α′) and it follows that

µ(x) ≥ µ(y). If z ∈ xt y then for β = max(α, α′) we have x, y ∈ Iβ and
so z ∈ Jβ. Thus, µ(z) = ϕ(β) ≥ ϕ(α) ∧ ϕ(α′) = µ(x) ∧ µ(y).

If z, z′ ∈ xuy then for all α ∈ Ω, z ∈ Iα iff z′ ∈ Iα. Hence µ(z) = µ(z′).
Therefore µ is an L−fuzzy ideal of M. �

From Theorem 3.14 we have the following corollary:

Corollary 3.15. Let {Ik}nk=0 be a family of (n+1) ideals ofM such that
{⊥} = I0 ( I1 ( ... ( In−1 ( In = M . Let a0 ≤ a1 ≤ ... ≤ an−1 ≤ an be
a finite sequence of L. Then, the mapping µ defined by :

µ(x) =

{
an if x = ⊥;

an−i if x ∈ Ii \ Ii−1, i ≥ 1.

is an L−fuzzy ideal of M.

Proof. By taking Ω = {0, 1, ..., n} with respect to the natural order and
ϕ(i) = an−i we apply Theorem 3.14. �
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Example 3.16. Let us consider the posets M2 = {⊥, x1, ..., x9,>} and
L = {0, a1, ..., a6, 1} depicted in the following diagrams.

>

x9 x8

x5 x6 x7

x4 x3 x2 x1

⊥

M2

1

a4 a5 a6

a1 a2 a3

0

L

The multilatticeM = (M2,t,u) has five ideals I0 = {⊥}, I1 = {⊥, x1},
I2 = {⊥, x2}, I7 = {⊥, x1, x7}, I9 = {⊥, x1, x2, x3, x4, x5, x6, x9} and M .
With I0 ( I1 ( I7 (M and I0 ( I2 ( I9 (M . The following mappings
are L−fuzzy ideals of M.

(1) µ(⊥) = 1, µ(x1) = a5, µ(x7) = a1, and µ(x) = 0 for all x ∈
M \ I7.

(2) ν(⊥) = 1, ν(x2) = a6, ν(xi) = a2, i = 3, 4, 5, 6, 9 and ν(x) = 0
for all x ∈M \ I9.

From Corollary 3.15, we deduce the following result:

Corollary 3.17. The following assertions are equivalent

(1) I is an ideal of M.

(2) For all α, β ∈ L such that α < β, the L−fuzzy subset Iβα defined
by

Iβα(x) =

{
α if x ∈ I;

β if x /∈ I.
is an L−fuzzy ideal of M.

Proof. We apply Corollary 3.15 to the chain {I,M} with Ω = {α, β}. �

From Corollary 3.17, it follows that:

Corollary 3.18. Let I be a proper subset of M and let α, β ∈ L. Then,

I is an ideal iff Iβα is an L−fuzzy ideal of M.
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Proof. It suffices to observe that I = (Iβα)−1(↑ α). �

From Corollary 3.18, we obtain the following characterization:

Corollary 3.19. For any fixed α, β ∈ L, the set {Iβα | I ∈ JM} is a
sublattice of FI(M,L) which is isomorphic to JM.

Proof. We observe that Iβα = (α ∧ χI) ∨ (β ∧ χI). Hence, we use the
arguments of Theorem 3.13. �

4. Charaterization of L-fuzzy ideals by lattice homomorphisms

This section investigates the connection between the lattice FI(M,L)
of all L−fuzzy ideals of M and the lattice IM of all ideals of M.

Lemma 4.1. Let µ be an L−fuzzy ideal of M and let α, β ∈ L. Then,
the following conditions hold.

(1) µα∧β = 〈µα ∪ µβ〉 = µα ∨ µβ.
(2) µα∨β = µα ∩ µβ = µα ∧ µβ.

Proof. For (1), we have α ≥ α ∧ β and β ≥ α ∧ β. Thus µα ⊆ µα∧β and
µβ ⊆ µα∧β. It follows that µα∨µβ ⊆ µα∧β. For the reverse inclusion, we
assume that α, β ∈ Imµ that is there exists x, y ∈M such that µ(x) = α
and µ(y) = β. Hence, for any z ∈ x t y, we have that z ∈ µα ∨ µβ with
µ(z) = µ(x) ∧ µ(y) = α ∧ β. Therefore µα∧β ⊆ µα ∨ µβ. If µα = ∅ or
µβ = ∅ then there is nothing to prove.

For (2), we have α ≤ α ∨ β and β ≤ α ∨ β. Thus µα ⊇ µα∨β and
µβ ⊇ µα∨β, hence µα ∧ µβ ⊇ µα∨β. Let x ∈ µα ∧ µβ then x ∈ µα and
x ∈ µβ. Thus µ(x) ≥ α and µ(x) ≥ β which imply µ(x) ≥ α ∨ β,
that is x ∈ µα∨β. Therefore µα ∧ µβ ⊆ µα∨β and we obtain the desired
equality. �

Corollary 4.2. Let µ be an L−fuzzy ideal of M. Then, Imµ is sublat-
tice of L.

Lemma 4.3. Let µ, µ′ be two L−fuzzy ideals ofM. Then, for all α ∈ L,

(1) (µ ∧ µ′)α = µα ∩ µ′α = µα ∧ µ′α.
(2) (µ ∨ µ′)α = 〈µα ∪ µ′α〉 = µα ∨ µ′α.

Proof. For (1), let x ∈ M , x ∈ (µ ∧ µ′)α means that µ(x) ∧ µ′(x) ≥ α
which is equivalent to µ(x) ≥ α and µ′(x) ≥ α that is x ∈ µα ∩ µ′α.
Thus, (µ ∧ µ′)α ⊆ µα ∩ µ′α. The reverse inclusion is straightforward.

For (2), on one hand, we have µ ≤ µ ∨ µ′ and µ′ ≤ µ ∨ µ′ which give
µα ⊆ (µ ∨ µ′)α and µ′α ⊆ (µ ∨ µ′)α. Thus µα ∨ µ′α ⊆ (µ ∨ µ′)α.
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On the other hand, let x ∈ (µ ∨ µ′)α then µ(x) ∨ µ′(x) ≥ α. Fix
β1 = µ′(x) and β2 = µ(x). Then, the previous inequality becomes
(β1 ∨ β2) ≥ α which induces the following inequalities: β1 ≥ β2 ∧ α and
β2 ≥ β1 ∧α. That is µ(x) ≥ β1 ∧α and µ′(x) ≥ β2 ∧α. Thus, according
to Lemma 4.1 we have x ∈ µβ1∧α = µβ1 ∨ µα and x ∈ µ′β2∧α = µ′β2 ∨ µ

′
α.

It follows that x ∈ (µβ1 ∨ µα) ∩ (µ′β2 ∨ µ
′
α) ⊆ µα ∨ µ′α �

According to Lemma 4.1 and Lemma 4.3 we have the following de-
scription:

Corollary 4.4. The following assertions hold:

(1) For any α ∈ L,
FI(M,L)→ IM

µ 7→ µα
is a lattice epimorphism.

(2) For any µ ∈ FI(M,L),
L∂ → IM
α 7→ µα

is a lattice homomorphism.

Lemma 4.5. Let µ and µ′ be two L−fuzzy ideals of M. Then, the
following conditions hold

(1) If µα = µ′α for all α ∈ L then, µ = µ′.
(2) If µα = µβ for all µ ∈ FI(M,L) then, α = β.

Proof. For (1), let x ∈ M , let α = µ(x) and β = µ′(x). Then x ∈ µα
and x ∈ µ′β. Since µ′α = µα and µβ = µ′β, we have x ∈ µ′α and x ∈ µβ.

Hence µ′(x) ≥ µ(x) and µ(x) ≥ µ′(x). Therefore µ(x) = µ′(x) for all
x ∈M .

For (2), we use the notations of Corollary 3.18. Suppose that α 6= β
and let I be an ideal of M, I 6= M .

If α and β are incomparable, then (Iβα)−1([α,→ [) =M but (Iβα)−1([β,→
[) = I.

If α < β then (Iβα)−1([α,→ [) = M but (Iβα)−1([β,→ [) = I.

If α > β then (Iβα)−1([α,→ [) = I but (Iβα)−1([β,→ [) = M . Therefore
α 6= β implies that there exists a µ ∈ FI(M,L) such that µα 6= µβ. �

Given µ an L−fuzzy subset ofM, we define the mappings µ∂ , L−fuzzy
subset of M∂ and µ∂ , L∂−fuzzy subset of M as follows:

µ∂ :
M∂ → L

x 7→ µ∂(x) = µ(x)
and µ∂ :

M→ L∂
x 7→ µ∂(x) = µ(x)

The following results follows.

Proposition 4.6. Let µ and µ′ be two L−fuzzy ideals of M. Then, the
following assertions hold:
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(1) (µ ∨ µ′)∂ = µ∂ ∨ µ′∂
(2) (µ ∧ µ′)∂ = µ∂ ∧ µ′∂
(3) (µ ∨ µ′)∂ = µ∂ ∧ µ

′
∂

(4) (µ ∧ µ′)∂ = µ∂ ∨ µ
′
∂

(3) and (4) of Proposition 4.6 induce the following corollary.

Corollary 4.7. (LM)∂ is cononically isomorphic to (L∂)M.

L−fuzzy ideals and L−fuzzy filters are related as given by Theorem
4.8

Theorem 4.8. The following assertions are equivalent:

(i) µ :M→ L is an L−fuzzy ideal of M.
(ii) µ∂ :M∂ → L is an L−fuzzy filter of M.

Proof. Recall thatM = (M,t,u)⇒M∂ = (M,u,t) and L = (L,∨,∧)⇒
L∂ = (L,∧,∨).

(i)⇒ (ii) Let µ :M→ L be an L−fuzzy ideal of M. Let x, y ∈M .
If z ∈ x t∂ y then z ∈ x u y. Hence µ(z) ≥ µ(x) ∨ µ(y);
If z ∈ x u∂ y then z ∈ x t y. Hence µ(z) = µ(x) ∧ µ(y).
If z1, z2 ∈ xt∂ y then z1, z2 ∈ xu y. Hence µ(z1) = µ(z2). Thus µ∂ is

an L−fuzzy filter of M.
(ii) ⇒ (i) Let µ∂ : M∂ → L be an L−fuzzy filter of M∂ and let

x, y ∈M .
If z ∈ x u y then z ∈ x t∂ y. Hence µ(z) ≥ µ(x) ∨ µ(y).
If z ∈ x t y then z ∈ x u∂ y. Hence µ(z) = µ(x) ∧ µ(y).
If z1, z2 ∈ x u y then z1, z2 ∈ x t∂ y. Hence µ(z1) = µ(z2). Therefore

µ is an L−fuzzy filter of M. �

From Proposition 4.6 and Theorem 4.8 we have the following corol-
lary:

Corollary 4.9. ϕ :
FI(M,L)→ FF(M∂ ,L)

µ 7→ µ∂
is a lattice isomor-

phism.

Theorem 4.10. The following assertions are equivalent:

(i) µ : M→ L is an L−fuzzy ideal of M satisfying µ(z) ≤ µ(x) ∨
µ(y) for all z ∈ x u y.

(ii) µ∂ : M∂ → L∂ is an L∂−fuzzy ideal of M∂ satisfying µ(z) ≤
µ(x) ∨∂ µ(y) for all z ∈ x u∂ y;
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Proof. (i) ⇒ (ii) Suppose that µ is an L−fuzzy ideal of M. Let x, y ∈
M∂ .

If z ∈ x u∂ y then z ∈ x t y. Hence µ(z) = µ(x) ∧ µ(y) (see Lemma
3.8) that is µ(z) ≤ µ(x) or more precisely that µ(z) ≥∂ µ(x).

If z ∈ x t∂ y then z ∈ x u y. Hence µ(z) ≥ µ(x) and µ(z) ≥ µ(y)
since z ≤ x and z ≤ y. Therefore µ(z) ≥ µ(x) ∨ µ(y) = µ(x) ∧∂ µ(y),
the reverse inequality comes from the assumption.

If z1, z2 ∈ xu∂y then z1, z2 ∈ xty. Hence µ(z1) = µ(x)∧µ(y) = µ(z2).
Thus µ∂ is an L∂−fuzzy filter of M∂ .

(ii)⇒ (i) uses the previous arguments since (L∂)∂ = L and (M∂)∂ =
M. �

Theorem 4.11. Then, 〈.〉: x 7→ 〈x〉 is an (IM)∂−fuzzy ideal of M.

Proof. Let x, y ∈M .
If x ≤ y then 〈x〉 ⊆ 〈y〉 that is 〈y〉 ⊆∂ 〈x〉.
If z ∈ x t y then 〈z〉 = 〈x〉 ∨ 〈y〉, this implies 〈z〉 = 〈x〉 ∧∂ 〈y〉.
If z, z′ ∈ x u y then (x u y) ∩ 〈z〉 6= ∅ and (x u y) ∩ 〈z′〉 6= ∅. Hence

z′ ∈ 〈z〉 and z ∈ 〈z′〉 it follows that 〈z〉 = 〈z′〉. �

We end this section by establishing that the L−fuzzy ideals lattice of
M, FI(M,L) is completely described by homomorphisms from L∂ to
the ideals lattice of M, IM.

Theorem 4.12. FI(M,L) is isomorphic to Hom(L∂ , IM).

Proof. Consider the following mapping:

Φ :
FI(M,L)→ Hom(L∂ , IM)

µ 7→ Φ(µ) :
L∂ → IM

α 7→ Φ(µ)(α) = µα

Corollary 3.18 proves that Φ is well defined and Lemma 4.3 proves its
compatibility with ∧ and ∨.

Let µ, µ′ ∈ FI(M,L). Then, Φ(µ) = Φ(µ′) implies µα = µ′α for all
α ∈ L. Hence by Lemma 4.5 we have µ = µ′ which proves that Φ is one
to one.

Let f : L∂ → IM be a lattice homomorphism. Define

µ :M→ L by µ(x) =
∨
{α ∈ L : x ∈ f(α)}.

We will prove that µ ∈ FI(M,L) and Φ(µ) = f .
Let x, y ∈ M . If x ≤ y then y ∈ f(α) implies x ∈ f(α) since f(α) is

an ideal of M. Hence {α ∈ L | y ∈ f(α)} ⊆ {α ∈ L | x ∈ f(α)} and
then

∨
{α ∈ L | x ∈ f(α)} ≥

∨
{α ∈ L | y ∈ f(α)} that is µ(x) ≥ µ(y).
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If z, z′ ∈ x u y then z ∈ f(α) iff z′ ∈ f(α) since f(α) is either empty
or an ideal of M. Thus µ(z) = µ(z′).

It remains to prove that µ(z) ≥ µ(x)∧ µ(y) for all z ∈ xt y. For this
it will suffice to prove that [x ∈ f(α) and y ∈ f(β)⇒ z ∈ f(α ∧ β)].
x ∈ f(α) and y ∈ f(β) imply {x, y} ⊆ f(α) ∨ f(β). Hence x t y ⊆

f(α) ∨ f(β) = f(α ∧ β). Thus z ∈ f(α ∧ β).
This is true since f(α) and f(β) are both ideals and f(α ∧ β) =

f(α) ∨ f(β). �

5. Conclusion and future works

The L−fuzzy ideals lattice of multilattice has been described. Sev-
eral characterizations have been proposed and the relationship between
ideals and L−fuzzy ideals has been highlighted. The transition from the
L−fuzzy ideals to the L−fuzzy filters evidenced by the Duality principle
has been shown. We have finally proved that the L−fuzzy ideals lattice
of a multilattice is isomorphic to the lattice of homomorphisms from the
dual of L to the ideals lattice of M.

We plan in a future to study the prime L−fuzzy ideals theorem and
maximality on L−fuzzy ideals of multilattices.
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