ON \mathcal{L} -FUZZY IDEALS OF MULTILATTICES

DAQUIN CEDRIC AWOUAFACK*, PIERRE CAROLE KENGNE AND CLESTIN LELE

ABSTRACT. For a given multilattice \mathcal{M} , the set $\mathfrak{I}_{\mathcal{M}}$ of all ideals of \mathcal{M} is a complete lattice and for a given complete lattice \mathcal{L} , the set $\mathcal{FI}(\mathcal{M},\mathcal{L})$ of all \mathcal{L} -fuzzy ideals of \mathcal{M} is also a complete lattice. The aim of this paper is to characterize \mathcal{L} -fuzzy ideals of multilattice and highlight some of their properties based on the Duality Principle. We establish that $\mathcal{FI}(\mathcal{M},\mathcal{L})$ is isomorphic to $\operatorname{Hom}(\mathcal{L}^{\partial},\mathfrak{I}_{\mathcal{M}})$ where \mathcal{L}^{∂} is the dual of \mathcal{L} . Since multilattices generalize lattices, the results remain true for \mathcal{L} -fuzzy ideals of lattices.

Key Words: Duality principle, *L*-fuzzy subsets, ideals, lattice homomorphisms.
2020 Mathematics Subject Classification: Primary: 06D72; Secondary: 06A11, 06B75.

1. INTRODUCTION

Since the introduction of the notion of fuzzy sets in 1965 by L. A. Zadeh [12], many works have been done on fuzzy structures. Most of them deal with the original notion of fuzzy subset. The notion of \mathcal{L} -fuzzy ideal is not new. Following the works of Zadeh [12] several authors have invested on its conceptualization including Lehmke [6], Malik [8], Swamy and Viswanadha Raju [11], Koguep et al. [5] who studied fuzzy ideals of lattices and semilattices.

The concepts of ordered and algebraic multilattices were introduced by Benado in [1]. A multilattice is an algebraic structure in which the restrictions imposed on a lattice, namely the "existence of least upper

Received: 24 March 2021, Accepted: 22 February 2022. Communicated by Yuming Feng;

 $[*] Address \ correspondence \ to \ Daquin \ Cdric \ Awouafack; \ E-mail: \ dcawouafack@yahoo.com$

^{© 2022} University of Mohaghegh Ardabili.

bounds and greatest lower bounds" are relaxed to the "existence of minimal upper bounds and maximal lower bounds" [3, 9, 10]. Many authors have investigated the notion of ideals of multilattice. In 2014, I.P. Cabrera et al. [3] proposed a definition of a multilattice ideal which is suitable for homomorphisms and congruences. Then, they proved the set of all ideals of a multilattice is a lattice with respect to inclusion.

We propose a description of \mathcal{L} -fuzzy ideals of multilattices by lattice homomorphisms and highlight some properties based on the duality principle.

This paper is organized as follows: in Section 2, we recall some preliminary results to understand the paper. Section 3, we study the main properties of \mathcal{L} -fuzzy ideals of multilattice. Section 4, we investigate some characterizations of \mathcal{L} -fuzzy ideals by lattice homorphisms. Let us recall some definitions and results on lattices and multilattices.

2. Preliminaries and notations

Let $\mathcal{P} = (P, \leq)$ be an ordered set and let $\emptyset \neq S \subseteq P$. An element $x \in P$ is an upper bound of S if $s \leq x$ for all $s \in S$. A lower bound is defined dually. The set of all upper bounds of S is denoted by S^u and the set of all lower bounds S^l :

$$S^{u} = \{x \in P \mid (\forall s \in S) \ s \le x\} \text{ and } S^{l} = \{x \in P \mid (\forall s \in S) \ x \le s\}.$$

A minimal element of S^u is called a **multisupremum** of S and we denote by Multisup(S) the set of all multisuprema of S; a maximal element of S^l is a **multinfimum** of S and we denote by Multinf(S) the set of all multinfima of S. If Multisup(S) (resp. Multinf(S)) has exactly on element, it is called sup(S) (resp. inf(S)).

Definition 2.1. [4] A lattice is a triple $\mathcal{L} = (L, \lor, \land)$ with the following properties called axioms of lattices.

- AL-1 For all $x \in L$, $x \lor x = x$, $x \land x = x$;
- AL-2 For all $x, y \in L$, $x \lor y = y \lor x$, $x \land y = y \land x$;
- AL-3 For all $x, y, z \in L$, $(x \lor y) \lor z = x \lor (y \lor z)$, $(x \land y) \land z = x \land (y \land z)$;
- AL-4 For all $x, y \in L$, $x \lor (x \land y) = x \land (x \lor y) = x$;
- AL-5 For all $x, y \in L, x \leq y \Leftrightarrow x \lor y = y \Leftrightarrow x \land y = x$.

 \mathcal{L} is said to be a complete lattice if any non-empty subset S of \mathcal{L} has an infimum and a supremum respectively denoted $\bigwedge S$ and $\bigvee S$.

Definition 2.2. [4] Let \mathcal{L} and \mathcal{K} be two lattices. A map $f : \mathcal{L} \to \mathcal{K}$ is a said to be a homomorphism if f is meet-preserving and join-preserving,

that is :

for all $x, y \in L$, $f(x \land y) = f(x) \land f(y)$ and $f(x \lor y) = f(x) \lor f(y)$.

A bijective homomorphism is a lattice isomorphism.

We denote by $\operatorname{Hom}(\mathcal{L}, \mathcal{K})$ the set of all homomorphisms from \mathcal{L} to \mathcal{K} . It is not difficult to see that if \mathcal{K} is a complete lattice, so is $\operatorname{Hom}(\mathcal{L}, \mathcal{K})$.

Proposition 2.3. [2] Let E be a non-empty set and let $\mathcal{L}^E = \{h : f(x) \}$ $E \to \mathcal{L} \mid h \text{ is a mapping}\}$. Then, \mathcal{L}^E is a complete lattice when the operations are defined pointwise: $(f \lor q)(x) = f(x) \lor q(x)$ and $(f \land q)(x) =$ $f(x) \wedge g(x).$

Proposition 2.4. The lattice \mathcal{L}^E satisfies exactly the same equations as \mathcal{L} .

Proposition 2.5. [4]

- (1) \mathcal{L}^E is bounded iff \mathcal{L} is bounded.
- (2) \mathcal{L}^E is distributive iff \mathcal{L} is distributive.

Given any ordered set $\mathcal{P} = (P, \leq)$ we can form a new ordered set $\mathcal{P}^{\partial} = (P, \leq^{\partial})$ (the dual of \mathcal{P}) by defining:

- For all x, x ∈ P[∂] iff x ∈ P;
 For all x, y ∈ P, x ≤ y iff y ≤[∂] x.

According to Davey [4], to each statement about \mathcal{P} there corresponds a statement about \mathcal{P}^{∂} . In general, given any statement Φ about ordered sets, we obtain the dual statement Φ^{∂} by replacing each occurrence of < by > and vice versa. Thus ordered set concepts and results hunt in pairs. The formal basis of this observation is the Duality Principle stated below.

Theorem 2.6. [4] Given a statement Φ about ordered sets which is true in all ordered sets, then the dual statement Φ^{∂} is true in all ordered sets.

Definition 2.7. [3] Let $\mathcal{M} = (M, \leq)$ be a non-empty poset.

- (i) \mathcal{M} is said to be a multilattice if for all $a, b, x \in \mathcal{M}$ with $a \leq x$ and $b \leq x$, there exists $z \in Multisup(a, b)$, such that $z \leq x$; and, similarly, for all $a, b, x \in M$ with $a \ge x$ and $b \ge x$, there exists $z \in Multin f(a, b)$, such that $z \geq x$.
- (ii) If Multisup(a,b) and Multinf(a,b) are non-empty for all $a, b \in M$, then M is said to be a full multilattice.

Clearly every finite poset is a multilattice but the converse is not true. When $S = \{a, b\}$, we denote respectively by $a \sqcap b$ and $a \sqcup b$ instead of Multinf($\{a, b\}$) and Multisup($\{a, b\}$). This gives two hyperoperations from M^2 to $\mathcal{P}^*(M)$. Therefore a multilattice can also be defined as a triple (M, \sqcup, \sqcap) with some required properties called axioms of multilattices [9]. In [10] many characterizations are proposed.

- AM-1 For all $x \in M$, $x \sqcup x = \{x\}$, $x \sqcap x = \{x\}$;
- AM-2 For all $x, y \in M$, $x \sqcup y = y \sqcup x$, $x \sqcap y = y \sqcap x$;
- AM-3 For all $x, y, z \in M$, $x \leq y \Rightarrow (x \sqcup y) \sqcup z \subseteq x \sqcup (y \sqcup z), (x \sqcap y) \sqcap z \subseteq x \sqcap (y \sqcap z);$
- AM-4 For all $x, y \in M$, $x \sqcup (x \sqcap y) = x \sqcap (x \sqcup y) = \{x\}$;
- AM-5 For all $x, y \in M$, $x \le y \Leftrightarrow x \sqcup y = \{y\} \Leftrightarrow x \sqcap y = \{x\}$.

We simply write (M, \sqcup, \sqcap) instead of $(M, \sqcup, \sqcap, \leq)$.

Thus we obtain the following result as a direct consequence of the Duality Principle.

Proposition 2.8. $\mathcal{M} = (M, \sqcup, \sqcap)$ iff $\mathcal{M}^{\partial} = (M, \sqcap, \sqcup)$.

Example 2.9. Consider the poset $M_1 = \{a_i, i = 1, 2, ..., 8\} \cup \{\bot, \top\}$ described by the following diagram.

 $\mathcal{M} = (M_1, \sqcup, \sqcap)$ is a full multilattice given by the following antichains: $\{a_i, i = 1, 2, 3\}, \{a_j : j = 4, 5, 6\}$ and $\{a_k, k = 7, 8\}.$

- $a_i \sqcup a_j = \{a_k \mid k = 4, 5, 6\}$ for all $i, j \in \{1, 2, 3\}, i \neq j;$
- $a_i \sqcup a_j = \{a_k \mid k = 7, 8\}$ for all $i, j \in \{4, 5, 6\}, i \neq j;$
- $a_i \sqcap a_j = \{a_k \mid k = 1, 2, 3\}$ for all $i, j \in \{4, 5, 6\}, i \neq j;$
- $a_7 \sqcap a_8 = \{a_k \mid k = 4, 5, 6\}.$

In the rest of this paper, $\mathcal{M} = (M, \sqcup, \sqcap)$ denotes any multilattce.

We will also use the following standard notations and definitions.

For $a \in M$, $\downarrow a = \{x \in M \mid x \le a\}$ and $\uparrow a = \{x \in M \mid a \le x\}$. For $A \subseteq M$, $\downarrow A = \bigcup_{a \in A} \downarrow a$ and $\uparrow A = \bigcup_{a \in A} \uparrow a$.

For $A, B \subseteq M$, $A \sqcup B = \bigcup_{(a,b) \in A \times B} a \sqcup b$ and $A \sqcap B = \bigcup_{(a,b) \in A \times B} a \sqcap b$. In the rest of this paper, we will refer to multilattices with bottom \bot . Lack of bottom can be easily remedied by adding one as usual. Given a multilattice \mathcal{M} (with or without bottom), we form \mathcal{M}_{\bot} (called \mathcal{M} lifted) as follows: Take an element $\bot \notin M$ and define \leq on $M \cup \{\bot\}$ by $x \leq y$ iff $x = \bot$ or $x \leq y$ in M (some basic operations on posets are presented in [4]).

Definition 2.10. [3] Let I be a subset of M. I is said to be an ideal of \mathcal{M} if it satisfies the following conditions:

I.1: For all $a \in M$ and for all $x \in I$, $a \sqcap x \subseteq I$;

I.2: For all $x, y \in I, x \sqcup y \subseteq I$;

I.3: For all $a, b \in M$, if $(a \sqcap b) \cap I \neq \emptyset$ then $a \sqcap b \subseteq I$.

The notions of filter and ideal are dual : F is a filter of \mathcal{M} iff F is an ideal of \mathcal{M}^{∂} . Hence, from the properties of ideals given here, one could deduce those of filters. We assume that the empty set is both an ideal and a filter of \mathcal{M} .

Remark 2.11. Every ideal of a finite multilattice is a downset but the converse is not true.

In example 2.9, $\downarrow a_5 = \{\bot, a_1, a_2, a_3, a_5\}$ is a downset but not an ideal. One could observe that $\{a_1, a_2\} \subseteq \downarrow a_5$ but $a_1 \sqcup a_2 = \{a_4, a_5, a_5\} \not\subseteq \downarrow a_5$.

Definition 2.12. Let A be a non-empty subset of M. Then, the smallest ideal of \mathcal{M} containing A is called the ideal generated by A and is denoted by $\langle A \rangle$. If $A = \{x\}$ it is simply denoted by $\langle x \rangle$.

The set of all ideals of \mathcal{M} will be denote by $\mathfrak{I}_{\mathcal{M}}$.

Theorem 2.13. [3] $(\mathfrak{I}_{\mathcal{M}}, \subseteq)$ is a complete lattice.

The meet of two ideals I and J is the intersection, $I \wedge J = I \cap J$, and the join is the ideal generated by $I \cup J$, $I \vee J = \langle I \cup J \rangle$.

Remark 2.14. Let $x, y, z, z' \in M$. Then, the following assumptions hold:

- (1) $z \in x \sqcup y$ implies $\langle z \rangle = \langle x \rangle \lor \langle y \rangle$;
- (2) $z \in x \sqcap y$ implies $\langle z \rangle \subseteq \langle x \rangle \land \langle y \rangle$;
- (3) $z, z' \in x \sqcap y$ implies $\langle z \rangle = \langle z' \rangle$.

The inclusion of (2) will be in general strict: in Example 2.9 we have that $a_1 \sqcap a_2 = \{\bot\}$ but $\langle a_1 \rangle = \langle a_2 \rangle = M$.

3. \mathcal{L} -fuzzy ideals of a multilattice

We first review some definitions and properties of \mathcal{L} -fuzzy subsets.

Definition 3.1. [7] An \mathcal{L} -fuzzy subset of E is a mapping $\mu : E \to \mathcal{L}$.

If $\mathcal{L} = (I, \max, \min)$ where I is the unit interval [0; 1] of real numbers then these are the usual fuzzy subsets of E (see [12]).

In the rest of this paper, $\mathcal{L} = (L, \lor, \land, 0, 1)$ stands for any complete and bounded lattice.

Definition 3.2. Let μ be an \mathcal{L} -fuzzy subset of E. Then, for any $\alpha \in L$, the set

$$\mu_{\alpha} = \{ x \in E \mid \mu(x) \ge \alpha \}$$

is called the α -level subset of μ or α -cut set of μ and the set

$$Im\mu = \{\mu(x) \mid x \in E\}$$

is called the image of μ .

In other words, $\mu_{\alpha} = \mu^{-1}([\alpha, \rightarrow [) \text{ where } [\alpha, \rightarrow [= \{l \in L \mid \alpha \leq l\} = \uparrow \alpha \subseteq L.$

Proposition 3.3. [5] Let μ be an \mathcal{L} -fuzzy subset of E. Then, the following assertions hold:

- (1) For any $x \in E$, the set $I_x = \{ \alpha \in L \mid x \in \mu_\alpha \}$ is an ideal of \mathcal{L} .
- (2) For all $x \in E$, $\mu(x) = \bigvee \{ \alpha \in L \mid x \in \mu_{\alpha} \}$
- (3) $\alpha, \beta \in Im\mu \text{ implies } \mu_{\alpha} = \mu_{\beta} \text{ iff } \alpha = \beta.$

Definition 3.4. An \mathcal{L} -fuzzy subset μ of \mathcal{M} is said to be an \mathcal{L} -fuzzy ideal of \mathcal{M} if μ_{α} is an ideal of \mathcal{M} for all $\alpha \in L$.

Example 3.5. Consider the multilattice of Example 2.9. Then, the \mathcal{L} -fuzzy subset of \mathcal{M} defined by $\mu(\perp) = 1$, $\mu(\top) = 0$ and $\mu(a_i) = 0$, i = 1, 2, ..., 8 is a 2-fuzzy ideal of \mathcal{M} , where $2 := (\{0, 1\}, \max, \min)$.

Remark 3.6. We will denote by $\mathcal{FI}(\mathcal{M}, \mathcal{L})$ (resp. $\mathcal{FF}(\mathcal{M}, \mathcal{L})$) the set of all \mathcal{L} -fuzzy ideals (resp. \mathcal{L} -fuzzy filters) of \mathcal{M} .

The set $\mathcal{FI}(\mathcal{M}, \mathcal{L})$ is ordered as follows :

 $\mu \preccurlyeq \nu$ if and only if $\mu_{\alpha} \subseteq \nu_{\alpha}$ for all $\alpha \in L$

It is a complete lattice where the following assumptions hold :

- (1) $[\mu \wedge \nu](x) \ge \alpha$ if and only if $\mu(x) \ge \alpha$ and $\nu(x) \ge \alpha$
- (2) $[\mu \lor \nu](x) \le \alpha$ if and only if $\mu(x) \le \alpha$ and $\nu(x) \le \alpha$

A charactrization of \mathcal{L} -fuzzy ideals is given by Theorem 3.7.

Theorem 3.7. Let μ be an \mathcal{L} -fuzzy subset of \mathcal{M} . Then, $\mu \in \mathcal{FI}(\mathcal{M}, \mathcal{L})$ iff the following conditions hold:

- FI1: For all $x, y \in M$, $z \in x \sqcap y \Rightarrow \mu(z) \ge \mu(x) \lor \mu(y)$.
- FI2: For all $x, y \in M$, $z \in x \sqcup y \Rightarrow \mu(z) \ge \mu(x) \land \mu(y)$.
- FI3: For all $x, y \in M$, $z_1, z_2 \in x \sqcap y \Rightarrow \mu(z_1) = \mu(z_2)$.

Proof. Let $\mu : \mathcal{M} \to \mathcal{L}$ and $\alpha \in \mathrm{Im}(\mu)$.

Suppose that $x \in \mu_{\alpha}$ and $z \in a \sqcap x$ such that FI1, FI2 and FI3 hold, then $\mu(z) \ge \mu(x) \lor \mu(a) \ge \mu(x)$. Hence, $\mu(z) \ge \alpha$ implies $z \in \mu_{\alpha}$ that is $a \sqcap x \subseteq \mu_{\alpha}$.

Also, if $x, y \in \mu_{\alpha}$ and $z \in x \sqcup y$ then $\mu(z) \ge \mu(x) \land \mu(y) \ge \alpha \land \alpha = \alpha$, hence $x \sqcup y \subseteq \mu_{\alpha}$.

Finally, if $z, z' \in x \sqcap y$ and $z \in \mu_{\alpha}$, then $\mu(z) = \mu(z') \ge \alpha$, hence $z' \in \mu_{\alpha}$. Therefore μ_{α} is an ideal of \mathcal{M} .

Conversely, suppose that $\mu_{\alpha} \in \mathfrak{I}_{\mathcal{M}}$ for all $\alpha \in \mathcal{L}$. Let $x, y \in M$.

For $\alpha = \mu(y)$, we have $\mu_{\alpha} \neq \emptyset$. Therefore, for any $z \in x \sqcap y$, $\mu(z) \ge \mu(x) \lor \mu(y)$.

For $\alpha = \mu(x) \land \mu(y)$, we have $\{x, y\} \subseteq \mu_{\alpha}$ which is an ideal of \mathcal{M} . Thus $x \sqcup y \subseteq \mu_{\alpha}$. This implies $\mu(z) \ge \mu(x) \land \mu(y)$ for all $z \in x \sqcup y$. If $z, z' \in x \sqcap y$, then for $\alpha = \mu(z)$ and $\beta = \mu(z')$, we have $z \in (x \sqcap y) \cap \mu_{\alpha}$ and $z' \in (x \sqcap y) \cap \mu_{\beta}$. It follows that $x \sqcap y \subseteq \mu_{\alpha} \cap \mu_{\beta}$ since μ_{α} and μ_{β} are both ideals of \mathcal{M} . Hence $z' \in \mu_{\alpha}$ and $z \in \mu_{\beta}$. This implies $\mu(z') \ge \alpha = \mu(z)$ and $\mu(z) \ge \beta = \mu(z')$ that is $\mu(z) = \mu(z')$. \Box

Theorem 3.7 gains in interest if we realize the following remarks.

- **Lemma 3.8.** (1) FI1 is equivalent to: $\forall x, y \in M, x \leq y \Rightarrow \mu(x) \geq \mu(y)$.
 - (2) The inequality of FI2 can be replaced by the equality. In fact $z \in x \sqcup y$ implies $x \leq z$ and $y \leq z$. Thus by FI1, we have $\mu(z) \leq \mu(x) \land \mu(y)$.
 - (3) If $x \in M$ then, $x \in A^l$ implies $\mu(x) \ge \bigvee \{\mu(a) \mid a \in A\}$ and $x \in A^u$ implies $\mu(x) \le \bigwedge \{\mu(a) \mid a \in A\}$ for all non-empty subset A of M.

Proof. For (1), let $x, y \in M$ such that $x \leq y$ then $x \in x \sqcap y$ (Axiom AM-5 of multilattices) hence, by FI1, $\mu(x) \geq \mu(x) \lor \mu(y)$ which means $\mu(x) \geq \mu(y)$. Conversely, let $z \in x \sqcap y$ then $z \leq x$ and $z \leq y$. Hence

 $\mu(z) \ge \mu(x)$ and $\mu(z) \ge \mu(y)$ which gives $\mu(z) \ge \mu(x) \lor \mu(y)$ that is FI1 is satisfied.

For (2), it suffices to prove that $\mu(z) \leq \mu(x) \wedge \mu(y)$ for all $z \in x \sqcup y$. If $z \in x \sqcup y$ then $x \leq z$ and $y \leq z$ (Axiom AM-5), thus, by FI1 we have $\mu(z) \leq \mu(x)$ and $\mu(z) \leq \mu(y)$. It follows that $\mu(z) \leq \mu(x) \wedge \mu(y)$

The inequalities of (3) are direct consequences of FI1.

Proposition 3.9. Let μ be an \mathcal{L} -fuzzy ideal of \mathcal{M} . Then, the following assertions hold

- (1) If δ is a filter of \mathcal{L} then, $\delta_{\mu} = \{x \in M \mid \mu(x) \in \delta\}$ is an ideal of \mathcal{M} .
- (2) If A is a subset of M then, $A^{\mu} = \{ \alpha \in L \mid A \subseteq \mu_{\alpha} \}$ is an ideal of \mathcal{L} .

Proof. For (1), let $x, y \in M$. If $y \in \delta_{\mu}$ and $x \leq y$ then $\mu(y) \in \delta$ and $\mu(x) \geq \mu(y)$, since δ is a filter of \mathcal{L} , we have $\mu(x) \in \delta$, thus $x \in \delta_{\mu}$.

If $x, y \in \delta_{\mu}$ and $z \in x \sqcup y$ then $\mu(z) \ge \mu(x) \land \mu(y)$ and $\mu(x) \in \delta$, $\mu(y) \in \delta$ hence $\mu(x) \land \mu(y) \in \delta$ and then $\mu(z) \in \delta$ that is $z \in \delta_{\mu}$.

If $\{z, z'\} \subseteq x \sqcap y$ with $\mu(z) \in \delta$ then $\mu(z') = \mu(z) \in \delta$, thus $z' \in \delta_{\mu}$. Therefore δ_{μ} is an ideal of \mathcal{M} .

For (2), let $\alpha, \beta \in L$. If $\beta \in A^{\mu}$ and $\alpha \leq \beta$ then $A \subseteq \mu_{\beta}$ and $\mu_{\beta} \subseteq \mu_{\alpha}$. Thus, $A \subseteq \mu_{\alpha}$ that is $\alpha \in A^{\mu}$.

If $\alpha \in A^{\mu}$, $\beta \in A^{\mu}$ then for all $x \in A$, we have $\mu(x) \ge \alpha$ and $\mu(x) \ge \beta$ that is $\mu(x) \ge \alpha \lor \beta$. Thus $A \subseteq \mu_{\alpha \lor \beta}$. Therefore A^{μ} is an ideal of \mathcal{L} . \Box

For every subset $A \subseteq M$, set

$$A^* := \bigcup \{ a \sqcap b : (a \sqcap b) \cap (\downarrow A) \neq \emptyset, \ a, b \in M \}.$$

define the sequence $A^{(n)}$, $n \in \mathbb{N}$, recursively as follows:

$$A^{(0)} = A, \quad A^{(1)} = A^* \text{ and } \forall n \ge 1, \quad A^{(n+1)} = (A^{(n)} \sqcup A^{(n)})^*.$$

Lemma 3.10. Let μ be an \mathcal{L} -fuzzy subset of \mathcal{M} . Then, μ is an \mathcal{L} -fuzzy ideal of \mathcal{M} iff for all finte subset $A_n = \{a_i\}_{i=1}^n \subseteq M$, $n \in \mathbb{N}$ and for all $k \in \mathbb{N}^*$, $x \in A_n^{(k)} \Rightarrow \mu(x) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}$.

Proof. Firstly, we assume that μ is an \mathcal{L} -fuzzy ideal of \mathcal{M} . We proceed by inference. Let $x \in A_n^{(1)} = A_n^*$ then there is $(a, b) \in M^2$ such that $x \in (a \sqcap b) \cap (\downarrow A)$. Therefore, there exists $p \in \{1, 2, ..., n\}$ such that $\mu(x) \ge \mu(a_p)$, but $\mu(a_p) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}$. Hence $\mu(x) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}$ for all $x \in A_n^{(1)}$. Suppose that it is true for all $x \in A_n^{(k)}$. Let

 $y \in A_n^{(k+1)} = (A_n^{(k)} \sqcup A_n^{(k)})^*, \text{ then there exists } c \in A_n^{(k)}, d \in A_n^{(k)} \text{ and } (a,b) \in \mathcal{M}^2 \text{ such that } y \in a \sqcap b \text{ and } (a \sqcap b) \cap [\downarrow (c \sqcup d)] \neq \emptyset. \text{ Let } y' \in (a \sqcap b) \cap [\downarrow (c \sqcup d)] \text{ then } \mu(y) = \mu(y') \ge \mu(c) \land \mu(d) \text{ but } \mu(c), \mu(d) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}. \text{ Hence } \mu(y) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}. \text{ It follows that for all } n \in \mathbb{N} \text{ and for all } k \in \mathbb{N}^*, x \in A_n^{(k)} \Rightarrow \mu(x) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}.$

Conversely, suppose that $\mu(x) \ge \bigwedge \{\mu(a_i), 1 \le i \le n\}$ for all $x \in A_n^{(k)}$, $n \in \mathbb{N}^*$ and $k \in \mathbb{N}^*$. Let $x \in \mathcal{M}$ and $y \in \mathcal{M}$. If $z \in x \sqcap y$ then we have $z \in \{x\}^{(1)} \cap \{y\}^{(1)}$. Thus $\mu(z) \ge \mu(x) \lor \mu(y)$.

If $z \in x \sqcup y$, then $z \in \{x, y\}^{(2)}$ which implies $\mu(z) \ge \mu(x) \land \mu(y)$.

If $z, z' \in a \sqcap b$ for some $a, b \in \mathcal{M}$, then $z \in \{z'\}^{(1)}$ and $z \in \{z'\}^{(1)}$. Hence $\mu(z) \ge \mu(z')$ and $\mu(z') \ge \mu(z)$ that is $\mu(z) = \mu(z')$. Therefore μ is an \mathcal{L} -fuzzy ideal of \mathcal{M} .

Since \mathcal{L} is a complete lattice, Lemma 3.10 can be extended to any non-empty subset of M.

Theorem 3.11. Let μ be an \mathcal{L} -fuzzy ideal of \mathcal{M} and let $\alpha \in L$. If $A = \{x \in M \mid \mu(x) = \alpha\}$ then, $\mu_{\alpha} = \langle A \rangle$.

Proof. As μ_{α} is an ideal of \mathcal{M} containing A we claim that $\langle A \rangle \subseteq \mu_{\alpha}$. The reverse inclusion holds from Lemma 3.10.

Let χ_A be the characteristic function of a subset A of \mathcal{M} .

Corollary 3.12. Let I be a non-empty subset of M. Then, I is an ideal of \mathcal{M} iff χ_I is a 2-fuzzy ideal of \mathcal{M} .

Theorem 3.13. $\mathfrak{I}_{\mathcal{M}}$ is isomorphic to the lattice of 2-fuzzy ideals of \mathcal{M} .

Proof. Consider the following mapping $\chi : I \mapsto \chi_I$. It is not difficult to observe that $\chi_{\emptyset}(x) = 0$ and $\chi_M(x) = 1$ for all $x \in M$. The Corollary 3.12 proves that it is well defined.

 $\chi_{I \vee J}(x) = 1$ implies $x \in I \vee J$. Thus there exists $(n, k) \in \mathbb{N}^{*2}$ and $A_n = \{a_1, ..., a_n\} \subseteq I \cup J$ such that $x \in A_n^{(k)}$. We have that $(\chi_I \vee \chi_J)(a_i) = 1$ for all i = 1, ..., n. According to Lemma 3.10, $(\chi_I \vee \chi_J)(x) = 1$. Hence $\chi_{I \vee J} \leq \chi_I \vee \chi_J$; the reverse inequality is natural. It is obvious that $\chi_{I \cap J} = \chi_I \wedge \chi_J$ and I = J iff $\chi_I = \chi_J$. If μ is a 2-fuzzy ideal of \mathcal{M} , $\mu \neq 0$ then $I = \mu^{-1}(1)$ is an ideal of \mathcal{M} satisfying $\chi_I = \mu$. Hence φ is bijective and the proof is completed.

The following is the construction of \mathcal{L} -fuzzy ideals from a chain of ideals of \mathcal{M} .

Theorem 3.14. Let $(\Omega, \leq, 0, 1)$ be a bounded totally ordered set. If $\{I_{\alpha}\}_{\alpha\in\Omega}$ is a chain of ideals of \mathcal{M} such that $\alpha \leq \beta \implies I_{\alpha} \subseteq I_{\beta}$, $I_0 = \{\bot\}$ and $I_1 = \mathcal{M}$. Then, for all antitone mapping $\varphi : \Omega \to \mathcal{L}$, the function $\mu : \mathcal{M} \to \mathcal{L}$ defined by induction as follows:

$$\mu(x) = \begin{cases} \varphi(0) \ \text{if } x = \bot; \\ \varphi(\alpha) \ \text{if } x \in I_{\alpha} \setminus \bigcup_{\beta < \alpha} I_{\beta}. \end{cases}$$

is an \mathcal{L} -fuzzy ideal of \mathcal{M} .

Proof. Define $J_{\alpha} = I_{\alpha} \setminus \bigcup_{\beta < \alpha} I_{\beta}$ then $\{J_{\alpha}\}_{\alpha \in \Omega}$ is a partition of M. Let

 $x, y \in M$ then there is $(\alpha, \alpha') \in \Omega^2$ such that $x \in J_{\alpha}$ and $y \in J_{\alpha'}$.

If $x \leq y$ then $\alpha \leq \alpha'$. Hence, $\varphi(\alpha) \geq \varphi(\alpha')$ and it follows that $\mu(x) \geq \mu(y)$. If $z \in x \sqcup y$ then for $\beta = \max(\alpha, \alpha')$ we have $x, y \in I_{\beta}$ and so $z \in J_{\beta}$. Thus, $\mu(z) = \varphi(\beta) \geq \varphi(\alpha) \land \varphi(\alpha') = \mu(x) \land \mu(y)$.

If $z, z' \in x \sqcap y$ then for all $\alpha \in \Omega$, $z \in I_{\alpha}$ iff $z' \in I_{\alpha}$. Hence $\mu(z) = \mu(z')$. Therefore μ is an \mathcal{L} -fuzzy ideal of \mathcal{M} .

From Theorem 3.14 we have the following corollary:

Corollary 3.15. Let $\{I_k\}_{k=0}^n$ be a family of (n+1) ideals of \mathcal{M} such that $\{\bot\} = I_0 \subsetneq I_1 \subsetneq \ldots \subsetneq I_{n-1} \subsetneq I_n = \mathcal{M}$. Let $a_0 \le a_1 \le \ldots \le a_{n-1} \le a_n$ be a finite sequence of \mathcal{L} . Then, the mapping μ defined by :

$$\mu(x) = \begin{cases} a_n & \text{if } x = \bot; \\ a_{n-i} & \text{if } x \in I_i \setminus I_{i-1}, i \ge 1. \end{cases}$$

is an \mathcal{L} -fuzzy ideal of \mathcal{M} .

Proof. By taking $\Omega = \{0, 1, ..., n\}$ with respect to the natural order and $\varphi(i) = a_{n-i}$ we apply Theorem 3.14.

Example 3.16. Let us consider the posets $M_2 = \{\perp, x_1, ..., x_9, \top\}$ and $L = \{0, a_1, ..., a_6, 1\}$ depicted in the following diagrams.

The multilattice $\mathcal{M} = (M_2, \sqcup, \sqcap)$ has five ideals $I_0 = \{\bot\}$, $I_1 = \{\bot, x_1\}$, $I_2 = \{\bot, x_2\}$, $I_7 = \{\bot, x_1, x_7\}$, $I_9 = \{\bot, x_1, x_2, x_3, x_4, x_5, x_6, x_9\}$ and M. With $I_0 \subsetneq I_1 \subsetneq I_7 \subsetneq M$ and $I_0 \subsetneq I_2 \subsetneq I_9 \subsetneq M$. The following mappings are \mathcal{L} -fuzzy ideals of \mathcal{M} .

- (1) $\mu(\perp) = 1$, $\mu(x_1) = a_5$, $\mu(x_7) = a_1$, and $\mu(x) = 0$ for all $x \in M \setminus I_7$.
- (2) $\nu(\perp) = 1$, $\nu(x_2) = a_6$, $\nu(x_i) = a_2$, i = 3, 4, 5, 6, 9 and $\nu(x) = 0$ for all $x \in M \setminus I_9$.

From Corollary 3.15, we deduce the following result:

Corollary 3.17. The following assertions are equivalent

- (1) I is an ideal of \mathcal{M} .
- (2) For all $\alpha, \beta \in L$ such that $\alpha < \beta$, the \mathcal{L} -fuzzy subset I_{α}^{β} defined by

$$I_{\alpha}^{\beta}(x) = \begin{cases} \alpha \ if \ x \in I; \\ \beta \ if \ x \notin I. \end{cases}$$

is an \mathcal{L} -fuzzy ideal of \mathcal{M} .

Proof. We apply Corollary 3.15 to the chain $\{I, M\}$ with $\Omega = \{\alpha, \beta\}$. \Box

From Corollary 3.17, it follows that:

Corollary 3.18. Let I be a proper subset of M and let $\alpha, \beta \in L$. Then, I is an ideal iff I_{α}^{β} is an \mathcal{L} -fuzzy ideal of \mathcal{M} .

Proof. It suffices to observe that $I = (I_{\alpha}^{\beta})^{-1}(\uparrow \alpha)$.

From Corollary 3.18, we obtain the following characterization:

Corollary 3.19. For any fixed $\alpha, \beta \in L$, the set $\{I_{\alpha}^{\beta} \mid I \in \mathfrak{J}_{\mathcal{M}}\}$ is a sublattice of $\mathcal{FI}(\mathcal{M},\mathcal{L})$ which is isomorphic to $\mathfrak{J}_{\mathcal{M}}$.

Proof. We observe that $I_{\alpha}^{\beta} = (\alpha \wedge \chi_I) \vee (\beta \wedge \chi_I)$. Hence, we use the arguments of Theorem 3.13.

4. Charaterization of \mathcal{L} -fuzzy ideals by lattice homomorphisms

This section investigates the connection between the lattice $\mathcal{FI}(\mathcal{M}, \mathcal{L})$ of all \mathcal{L} -fuzzy ideals of \mathcal{M} and the lattice $\mathfrak{I}_{\mathcal{M}}$ of all ideals of \mathcal{M} .

Lemma 4.1. Let μ be an \mathcal{L} -fuzzy ideal of \mathcal{M} and let $\alpha, \beta \in L$. Then, the following conditions hold.

- (1) $\mu_{\alpha \wedge \beta} = \langle \mu_{\alpha} \cup \mu_{\beta} \rangle = \mu_{\alpha} \vee \mu_{\beta}.$
- (2) $\mu_{\alpha \vee \beta} = \mu_{\alpha} \cap \mu_{\beta} = \mu_{\alpha} \wedge \mu_{\beta}$.

Proof. For (1), we have $\alpha \geq \alpha \wedge \beta$ and $\beta \geq \alpha \wedge \beta$. Thus $\mu_{\alpha} \subseteq \mu_{\alpha \wedge \beta}$ and $\mu_{\beta} \subseteq \mu_{\alpha \wedge \beta}$. It follows that $\mu_{\alpha} \vee \mu_{\beta} \subseteq \mu_{\alpha \wedge \beta}$. For the reverse inclusion, we assume that $\alpha, \beta \in \text{Im}\mu$ that is there exists $x, y \in M$ such that $\mu(x) = \alpha$ and $\mu(y) = \beta$. Hence, for any $z \in x \sqcup y$, we have that $z \in \mu_{\alpha} \lor \mu_{\beta}$ with $\mu(z) = \mu(x) \wedge \mu(y) = \alpha \wedge \beta$. Therefore $\mu_{\alpha \wedge \beta} \subseteq \mu_{\alpha} \vee \mu_{\beta}$. If $\mu_{\alpha} = \emptyset$ or $\mu_{\beta} = \emptyset$ then there is nothing to prove.

For (2), we have $\alpha \leq \alpha \lor \beta$ and $\beta \leq \alpha \lor \beta$. Thus $\mu_{\alpha} \supseteq \mu_{\alpha \lor \beta}$ and $\mu_{\beta} \supseteq \mu_{\alpha \vee \beta}$, hence $\mu_{\alpha} \wedge \mu_{\beta} \supseteq \mu_{\alpha \vee \beta}$. Let $x \in \mu_{\alpha} \wedge \mu_{\beta}$ then $x \in \mu_{\alpha}$ and $x \in \mu_{\beta}$. Thus $\mu(x) \geq \alpha$ and $\mu(x) \geq \beta$ which imply $\mu(x) \geq \alpha \lor \beta$, that is $x \in \mu_{\alpha \vee \beta}$. Therefore $\mu_{\alpha} \wedge \mu_{\beta} \subseteq \mu_{\alpha \vee \beta}$ and we obtain the desired equality.

Corollary 4.2. Let μ be an \mathcal{L} -fuzzy ideal of \mathcal{M} . Then, $Im\mu$ is sublattice of \mathcal{L} .

Lemma 4.3. Let μ, μ' be two \mathcal{L} -fuzzy ideals of \mathcal{M} . Then, for all $\alpha \in L$,

- (1) $(\mu \wedge \mu')_{\alpha} = \mu_{\alpha} \cap \mu'_{\alpha} = \mu_{\alpha} \wedge \mu'_{\alpha}.$ (2) $(\mu \vee \mu')_{\alpha} = \langle \mu_{\alpha} \cup \mu'_{\alpha} \rangle = \mu_{\alpha} \vee \mu'_{\alpha}$

Proof. For (1), let $x \in M$, $x \in (\mu \land \mu')_{\alpha}$ means that $\mu(x) \land \mu'(x) \ge \alpha$ which is equivalent to $\mu(x) \ge \alpha$ and $\mu'(x) \ge \alpha$ that is $x \in \mu_{\alpha} \cap \mu'_{\alpha}$. Thus, $(\mu \wedge \mu')_{\alpha} \subseteq \mu_{\alpha} \cap \mu'_{\alpha}$. The reverse inclusion is straightforward.

For (2), on one hand, we have $\mu \leq \mu \lor \mu'$ and $\mu' \leq \mu \lor \mu'$ which give $\mu_{\alpha} \subseteq (\mu \lor \mu')_{\alpha}$ and $\mu'_{\alpha} \subseteq (\mu \lor \mu')_{\alpha}$. Thus $\mu_{\alpha} \lor \mu'_{\alpha} \subseteq (\mu \lor \mu')_{\alpha}$.

On the other hand, let $x \in (\mu \vee \mu')_{\alpha}$ then $\mu(x) \vee \mu'(x) \geq \alpha$. Fix $\beta_1 = \mu'(x)$ and $\beta_2 = \mu(x)$. Then, the previous inequality becomes $(\beta_1 \vee \beta_2) \geq \alpha$ which induces the following inequalities: $\beta_1 \geq \beta_2 \wedge \alpha$ and $\beta_2 \geq \beta_1 \wedge \alpha$. That is $\mu(x) \geq \beta_1 \wedge \alpha$ and $\mu'(x) \geq \beta_2 \wedge \alpha$. Thus, according to Lemma 4.1 we have $x \in \mu_{\beta_1 \wedge \alpha} = \mu_{\beta_1} \vee \mu_{\alpha}$ and $x \in \mu'_{\beta_2 \wedge \alpha} = \mu'_{\beta_2} \vee \mu'_{\alpha}$. It follows that $x \in (\mu_{\beta_1} \vee \mu_{\alpha}) \cap (\mu'_{\beta_2} \vee \mu'_{\alpha}) \subseteq \mu_{\alpha} \vee \mu'_{\alpha}$

According to Lemma 4.1 and Lemma 4.3 we have the following description:

Corollary 4.4. The following assertions hold:

- (1) For any $\alpha \in L$, $\begin{array}{c} \mathcal{FI}(\mathcal{M},\mathcal{L}) \to \mathfrak{I}_{\mathcal{M}} \\ \mu \mapsto \mu_{\alpha} \end{array}$ is a lattice epimorphism. (2) For any $\mu \in \mathcal{FI}(\mathcal{M},\mathcal{L}), \begin{array}{c} \mathcal{L}^{\partial} \to \mathfrak{I}_{\mathcal{M}} \\ \alpha \mapsto \mu_{\alpha} \end{array}$ is a lattice homomorphism.

Lemma 4.5. Let μ and μ' be two \mathcal{L} -fuzzy ideals of \mathcal{M} . Then, the following conditions hold

- (1) If $\mu_{\alpha} = \mu'_{\alpha}$ for all $\alpha \in L$ then, $\mu = \mu'$. (2) If $\mu_{\alpha} = \mu_{\beta}$ for all $\mu \in \mathcal{FI}(\mathcal{M}, \mathcal{L})$ then, $\alpha = \beta$.

Proof. For (1), let $x \in M$, let $\alpha = \mu(x)$ and $\beta = \mu'(x)$. Then $x \in \mu_{\alpha}$ and $x \in \mu'_{\beta}$. Since $\mu'_{\alpha} = \mu_{\alpha}$ and $\mu_{\beta} = \mu'_{\beta}$, we have $x \in \mu'_{\alpha}$ and $x \in \mu_{\beta}$. Hence $\mu'(x) \ge \mu(x)$ and $\mu(x) \ge \mu'(x)$. Therefore $\mu(x) = \mu'(x)$ for all $x \in M$.

For (2), we use the notations of Corollary 3.18. Suppose that $\alpha \neq \beta$ and let I be an ideal of $\mathcal{M}, I \neq M$.

If α and β are incomparable, then $(I_{\alpha}^{\beta})^{-1}([\alpha, \to [) = \mathcal{M} \text{ but } (I_{\alpha}^{\beta})^{-1}([\beta, \to [] = \mathcal{M}$ [) = I.

If $\alpha < \beta$ then $(I_{\alpha}^{\beta})^{-1}([\alpha, \rightarrow [) = M$ but $(I_{\alpha}^{\beta})^{-1}([\beta, \rightarrow [) = I.$

If $\alpha > \beta$ then $(I_{\alpha}^{\beta})^{-1}([\alpha, \rightarrow []) = I$ but $(I_{\alpha}^{\beta})^{-1}([\beta, \rightarrow []) = M$. Therefore $\alpha \neq \beta$ implies that there exists a $\mu \in \mathcal{FI}(\mathcal{M}, \mathcal{L})$ such that $\mu_{\alpha} \neq \mu_{\beta}$. \Box

Given μ an \mathcal{L} -fuzzy subset of \mathcal{M} , we define the mappings μ^{∂} , \mathcal{L} -fuzzy subset of \mathcal{M}^{∂} and μ_{∂} , \mathcal{L}^{∂} -fuzzy subset of \mathcal{M} as follows:

$$\mu^{\partial}: \begin{array}{c} \mathcal{M}^{\partial} \to \mathcal{L} \\ x \mapsto \mu^{\partial}(x) = \mu(x) \end{array} \text{ and } \mu_{\partial}: \begin{array}{c} \mathcal{M} \to \mathcal{L}^{\partial} \\ x \mapsto \mu_{\partial}(x) = \mu(x) \end{array}$$

The following results follows.

Proposition 4.6. Let μ and μ' be two \mathcal{L} -fuzzy ideals of \mathcal{M} . Then, the following assertions hold:

- (1) $(\mu \lor \mu')^{\partial} = \mu^{\partial} \lor \mu'^{\partial}$ (2) $(\mu \wedge \mu')^{\partial} = \mu^{\partial} \wedge \mu'^{\partial}$ (3) $(\mu \lor \mu')_{\partial} = \mu_{\partial} \land \mu'_{\partial}$
- (4) $(\mu \wedge \mu')_{\partial} = \mu_{\partial} \vee \mu'_{\partial}$

(3) and (4) of Proposition 4.6 induce the following corollary.

Corollary 4.7. $(\mathcal{L}^{\mathcal{M}})^{\partial}$ is cononically isomorphic to $(\mathcal{L}^{\partial})^{\mathcal{M}}$.

 \mathcal{L} -fuzzy ideals and \mathcal{L} -fuzzy filters are related as given by Theorem 4.8

Theorem 4.8. The following assertions are equivalent:

(i) $\mu: \mathcal{M} \to \mathcal{L}$ is an \mathcal{L} -fuzzy ideal of \mathcal{M} . (ii) $\mu^{\partial} : \mathcal{M}^{\partial} \to \mathcal{L}$ is an \mathcal{L} -fuzzy filter of \mathcal{M} . *Proof.* Recall that $\mathcal{M} = (M, \sqcup, \sqcap) \Rightarrow \mathcal{M}^{\partial} = (M, \sqcap, \sqcup) \text{ and } \mathcal{L} = (L, \lor, \land) \Rightarrow$ $\mathcal{L}^{\partial} = (L, \wedge, \vee).$ $(i) \Rightarrow (ii)$ Let $\mu : \mathcal{M} \to \mathcal{L}$ be an \mathcal{L} -fuzzy ideal of \mathcal{M} . Let $x, y \in M$. If $z \in x \sqcup^{\partial} y$ then $z \in x \sqcap y$. Hence $\mu(z) \ge \mu(x) \lor \mu(y)$; If $z \in x \sqcap^{\partial} y$ then $z \in x \sqcup y$. Hence $\mu(z) = \mu(x) \land \mu(y)$. If $z_1, z_2 \in x \sqcup^{\partial} y$ then $z_1, z_2 \in x \sqcap y$. Hence $\mu(z_1) = \mu(z_2)$. Thus μ^{∂} is an \mathcal{L} -fuzzy filter of \mathcal{M} . $(ii) \Rightarrow (i)$ Let μ^{∂} : $\mathcal{M}^{\partial} \to \mathcal{L}$ be an \mathcal{L} -fuzzy filter of \mathcal{M}^{∂} and let $x, y \in M$. If $z \in x \sqcap y$ then $z \in x \sqcup^{\partial} y$. Hence $\mu(z) \ge \mu(x) \lor \mu(y)$. If $z \in x \sqcup y$ then $z \in x \sqcap^{\partial} y$. Hence $\mu(z) = \mu(x) \land \mu(y)$. If $z_1, z_2 \in x \sqcap y$ then $z_1, z_2 \in x \sqcup^{\partial} y$. Hence $\mu(z_1) = \mu(z_2)$. Therefore μ is an \mathcal{L} -fuzzy filter of \mathcal{M} .

From Proposition 4.6 and Theorem 4.8 we have the following corol-

lary:

Corollary 4.9. φ : $\mathcal{FI}(\mathcal{M},\mathcal{L}) \to \mathcal{FF}(\mathcal{M}^{\partial},\mathcal{L})$ is a lattice isomor- $\mu \mapsto \mu^{\partial}$ is a lattice isomorphism.

Theorem 4.10. The following assertions are equivalent:

- (i) $\mu : \mathcal{M} \to \mathcal{L}$ is an \mathcal{L} -fuzzy ideal of \mathcal{M} satisfying $\mu(z) \leq \mu(x) \vee$ $\mu(y)$ for all $z \in x \sqcap y$.
- (ii) $\mu_{\partial}: \mathcal{M}^{\partial} \to \mathcal{L}^{\partial}$ is an \mathcal{L}^{∂} -fuzzy ideal of \mathcal{M}^{∂} satisfying $\mu(z) \leq$ $\mu(x) \vee^{\partial} \mu(y)$ for all $z \in x \sqcap^{\partial} y$:

Proof. (i) \Rightarrow (ii) Suppose that μ is an \mathcal{L} -fuzzy ideal of \mathcal{M} . Let $x, y \in \mathcal{M}^{\partial}$.

If $z \in x \sqcap^{\partial} y$ then $z \in x \sqcup y$. Hence $\mu(z) = \mu(x) \land \mu(y)$ (see Lemma 3.8) that is $\mu(z) \leq \mu(x)$ or more precisely that $\mu(z) \geq^{\partial} \mu(x)$.

If $z \in x \sqcup^{\partial} y$ then $z \in x \sqcap y$. Hence $\mu(z) \ge \mu(x)$ and $\mu(z) \ge \mu(y)$ since $z \le x$ and $z \le y$. Therefore $\mu(z) \ge \mu(x) \lor \mu(y) = \mu(x) \land^{\partial} \mu(y)$, the reverse inequality comes from the assumption.

If $z_1, z_2 \in x \sqcap^{\partial} y$ then $z_1, z_2 \in x \sqcup y$. Hence $\mu(z_1) = \mu(x) \land \mu(y) = \mu(z_2)$. Thus μ^{∂} is an \mathcal{L}^{∂} -fuzzy filter of M^{∂} .

(ii) \Rightarrow (i) uses the previous arguments since $(\mathcal{L}^{\partial})^{\partial} = \mathcal{L}$ and $(\mathcal{M}^{\partial})^{\partial} = \mathcal{M}$.

Theorem 4.11. Then, $\langle . \rangle \colon x \mapsto \langle x \rangle$ is an $(\mathfrak{I}_{\mathcal{M}})^{\partial}$ -fuzzy ideal of \mathcal{M} .

Proof. Let
$$x, y \in M$$
.

If $x \leq y$ then $\langle x \rangle \subseteq \langle y \rangle$ that is $\langle y \rangle \subseteq^{\partial} \langle x \rangle$.

If $z \in x \sqcup y$ then $\langle z \rangle = \langle x \rangle \lor \langle y \rangle$, this implies $\langle z \rangle = \langle x \rangle \land^{\partial} \langle y \rangle$. If $z, z' \in x \sqcap y$ then $(x \sqcap y) \cap \langle z \rangle \neq \emptyset$ and $(x \sqcap y) \cap \langle z' \rangle \neq \emptyset$. Hence $z' \in \langle z \rangle$ and $z \in \langle z' \rangle$ it follows that $\langle z \rangle = \langle z' \rangle$.

We end this section by establishing that the \mathcal{L} -fuzzy ideals lattice of $\mathcal{M}, \mathcal{FI}(\mathcal{M}, \mathcal{L})$ is completely described by homomorphisms from \mathcal{L}^{∂} to the ideals lattice of $\mathcal{M}, \mathfrak{I}_{\mathcal{M}}$.

Theorem 4.12. $\mathcal{FI}(\mathcal{M}, \mathcal{L})$ is isomorphic to $Hom(\mathcal{L}^{\partial}, \mathfrak{I}_{\mathcal{M}})$.

Proof. Consider the following mapping:

$$\Phi: \begin{array}{c} \mathcal{FI}(\mathcal{M},\mathcal{L}) \to Hom(\mathcal{L}^{\partial},\mathfrak{I}_{\mathcal{M}}) \\ \mu \mapsto \Phi(\mu): & \mathcal{L}^{\partial} \to \mathfrak{I}_{\mathcal{M}} \\ \alpha \mapsto \Phi(\mu)(\alpha) = \mu_{\alpha} \end{array}$$

Corollary 3.18 proves that Φ is well defined and Lemma 4.3 proves its compatibility with \wedge and \vee .

Let $\mu, \mu' \in \mathcal{FI}(\mathcal{M}, \mathcal{L})$. Then, $\Phi(\mu) = \Phi(\mu')$ implies $\mu_{\alpha} = \mu'_{\alpha}$ for all $\alpha \in L$. Hence by Lemma 4.5 we have $\mu = \mu'$ which proves that Φ is one to one.

Let $f: \mathcal{L}^{\partial} \to \mathfrak{I}_{\mathcal{M}}$ be a lattice homomorphism. Define

$$\mu : \mathcal{M} \to \mathcal{L}$$
 by $\mu(x) = \bigvee \{ \alpha \in L : x \in f(\alpha) \}.$

We will prove that $\mu \in \mathcal{FI}(\mathcal{M}, \mathcal{L})$ and $\Phi(\mu) = f$.

Let $x, y \in M$. If $x \leq y$ then $y \in f(\alpha)$ implies $x \in f(\alpha)$ since $f(\alpha)$ is an ideal of \mathcal{M} . Hence $\{\alpha \in L \mid y \in f(\alpha)\} \subseteq \{\alpha \in L \mid x \in f(\alpha)\}$ and then $\bigvee \{\alpha \in L \mid x \in f(\alpha)\} \geq \bigvee \{\alpha \in L \mid y \in f(\alpha)\}$ that is $\mu(x) \geq \mu(y)$. If $z, z' \in x \sqcap y$ then $z \in f(\alpha)$ iff $z' \in f(\alpha)$ since $f(\alpha)$ is either empty or an ideal of \mathcal{M} . Thus $\mu(z) = \mu(z')$.

It remains to prove that $\mu(z) \ge \mu(x) \land \mu(y)$ for all $z \in x \sqcup y$. For this it will suffice to prove that $[x \in f(\alpha) \text{ and } y \in f(\beta) \Rightarrow z \in f(\alpha \land \beta)]$.

 $x \in f(\alpha)$ and $y \in f(\beta)$ imply $\{x, y\} \subseteq f(\alpha) \lor f(\beta)$. Hence $x \sqcup y \subseteq f(\alpha) \lor f(\beta) = f(\alpha \land \beta)$. Thus $z \in f(\alpha \land \beta)$.

This is true since $f(\alpha)$ and $f(\beta)$ are both ideals and $f(\alpha \wedge \beta) = f(\alpha) \vee f(\beta)$.

5. Conclusion and future works

The \mathcal{L} -fuzzy ideals lattice of multilattice has been described. Several characterizations have been proposed and the relationship between ideals and \mathcal{L} -fuzzy ideals has been highlighted. The transition from the \mathcal{L} -fuzzy ideals to the \mathcal{L} -fuzzy filters evidenced by the Duality principle has been shown. We have finally proved that the \mathcal{L} -fuzzy ideals lattice of a multilattice is isomorphic to the lattice of homomorphisms from the dual of \mathcal{L} to the ideals lattice of \mathcal{M} .

We plan in a future to study the prime \mathcal{L} -fuzzy ideals theorem and maximality on \mathcal{L} -fuzzy ideals of multilattices.

Acknowledgments

The authors wish to thank the referee for their valuable and insightful comments, which improved the paper substantially.

References

- M. Benado, Les ensembles partiellement ordonns et le Thorme de raffinement de scheier, II. Thorie des multistructures, Czechoslovak Mathematical Journal, 5(80)(1955)308-344.
- [2] G. Birkhoff, Lattice Theory, Colloquium Publications, Amer. Math. Soc., 25 (1967).
- [3] I. P. Cabrera, P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego, On residuation in multilattices: filters, congruences, and homomorphisms, Fuzzy sets and systems, 234(1) (2014)1-21.
- [4] B. A. Davey, Introduction to lattices theory, Cambridge University press, (1990).
- [5] B. B. Koguep Njionou, C. Nkuimi, C. Lele, On fuzzy prime ideals of lattice, SAMSA J. Pure Appl. Math., 3 (2008) 1-11.
- [6] S. Lehmke, Some properties of fuzzy ideals on a lattice, Fuzzy-IEEE, 97 (1997)813-818.
- [7] A. Maheswari, Member, IACSIT, M. Palanivelrajan, Introduction to Intuitionistic *L*-fuzzy Semi Filter (ILFSF) of Lattices, International Journal of Machine Learning and Computing, 2 (6) (2012)738-740.

- On $\mathcal L{\rm -fuzzy}$ ideals of multilattices
- [8] D. S. Malik, Fuzzy maximal, radical, and primary ideals of a ring, Inf. Sci., 53(1991)237-250.
- [9] J. Martínez, G. Guetiérrez, I. P. de Guzmán, P. Cordero, Generalization of lattices via non-dterministic operators, Discrete Math., 295(1-3) (2005) 107-141.
- [10] O. Klaućová, Characterization of multilattices by a betweeness relation, Math.Slov., 26(2) (1976) 119-129.
- [11] U. M. Swamy, D. Viswanadha Raju, Fuzzy ideals and congruences of lattices, Fuzzy Sets and Systems, 95 (1998)249-253.
- [12] L. A. Zadeh, *Fuzzy sets*, Inf. Control, **8**(1965)338-353.

Daquin Cdric Awouafack

Department of Mathematics and Computer Science, University of Dschang, P.O.Box 67, Dschang, Cameroon

Email: dcawouafack@yahoo.com

Pierre Carole kengne

Department of Mathematics and Computer Science, University of Dschang, P.O.Box 67, Dschang, Cameroon Email: kpierrecarole@yahoo.fr

Clestin Ll

Department of Mathematics and Computer Science, University of Dschang, P.O.Box 67, Dschang, Cameroon

Email: celestinlele@yahoo.com