Journal of Hyperstructures 12 (1) (2023), 158-172.

ISSN: 2322-1666 print/2251-8436 online

Research Paper

ON GEOMETRY OF WARPED PRODUCT SEMI INVARIANT SUBMANIFOLDS OF NEARLY (ε, δ) -TRANS SASAKIAN MANIFOLD WITH A CERTAIN CONNECTION

SHAMSUR RAHMAN, SABI AHMAD AND NIRANJAN KUMAR MISHRA

ABSTRACT. In this paper, we study the geometry of warped product semi invariant submanifold of a nearly (ε, δ) -trans-Sasakian manifold M with a quarter symmetric non metric connection. We see that warped product of the type $E_{\perp} \times_y E_T$ is a usual Riemannian product of E_{\perp} and E_T , where E_{\perp} and E_T are anti-invariant and invariant submanifolds of a nearly (ε, δ) -trans-Sasakian manifold with a quarter symmetric non metric connection M, respectively. We also obtain a characterization for such type of warped product.

Key Words: Warped product, semi-invariant submanifolds, nearly (ε, δ) -trans-Sasakian manifold

2010 Mathematics Subject Classification: Primary: 53D12. Secondary: 53C05.

1. Introduction

The warped product manifolds have been studied by Bishop and ONeill extensively for their constructing manifolds of non-positive curvature, the most effective generalization of Riemannian product manifold [1]. Chen extended the work of Bishop and ONeill and studied the warped product CR submanifold of Kaehler manifolds ([2], [3]), this study was also extended by many geometers in different settings ([4], [5],

Received: 18 October 2022, Accepted: 02 May 2023. Communicated by Dariush Latifi; *Address correspondence to Sabi Ahmad; E-mail: ahmadsabi361@gmail.com.

^{© 2023} University of Mohaghegh Ardabili.

[6], [12]). The study of the differential geometry of semi-invariant or contact CR submanifolds, as a generalization of invariant and anti-invariant submanifolds, of an almost contact metric manifold was initiated by Bejancu [8] and was followed by several geometers (see [8], [9] and references cited there). Several authors studied semi invariant submanifolds of different classes of almost contact metric manifolds [[10], [11]] given in references of this paper. Xufeng and Xiaoli premeditated that these manifolds are real hypersurfaces of indefinite Kahlerian manifolds [13].

The aim of the paper is to inquest the concept of warped product semi-invariant submanifolds of a nearly (ε, δ) -trans-Sasakian manifold M with a quarter symmetric non metric connection. We have shown that the warped product in the form $M = E_{\perp} \times_y E_T$ is simply Riemannian product of E_{\perp} and E_T where E_{\perp} are anti-invariant submanifold and E_T is an invariant submanifold and invariant submanifolds of a nearly (ε, δ) -trans-Sasakian manifold with a quarter symmetric non metric connection M, respectively. We also obtain a characterization for such type of warped product.

2. Preliminaries

If \overline{M} is an *n*-dimensional almost contact metric manifold with structure tensors (f, ξ, η, g) where f is a (1,1) type tensor field, ξ is a vector field, η is dual of ξ and g is also Riemannian metric tensor on \overline{M} , then

(2.1)
$$f^2U = -U + \eta(U)\xi, \quad \eta(\xi) = 1, \quad f\xi = 0,$$

$$(2.2) \hspace{1cm} \eta(fU)=0, \quad \eta(U)=\varepsilon g(U,\xi), \quad g(\xi,\xi)=\varepsilon$$

$$(2.3) \hspace{3.1em} g(fU,fV) = g(U,V) - \varepsilon \eta(U) \eta(V)$$

where $\varepsilon=g(\xi,\xi)=\pm 1$, for any vector fields U,V on \bar{M} , then \bar{M} is called (ε) -almost contact metric manifold. An (ε) -almost contact metric manifold is called (ε,δ) -trans-Sasakian manifold if

$$(2.4) \quad (\bar{\nabla}_U f)V = \alpha \{g(U, V)\xi - \varepsilon \eta(V)U\} + \beta \{g(fU, V)\xi - \delta \eta(V)fU\}$$

(2.5)
$$\bar{\nabla}_U \xi = -\varepsilon \alpha f U - \beta \delta f^2 U$$

$$(2.6) g(U, fV) = -g(fU, V)$$

holds for some smooth functions α and β on \bar{M} and $\varepsilon = \pm 1, \delta = \pm 1$. Further, an (ε) -almost contact metric manifold is called a nearly (ε, δ) -trans-Sasakian manifold if [12]

$$(2.7) (\bar{\nabla}_U f)V + (\bar{\nabla}_V f)U = \alpha \{2g(U, V)\xi - \varepsilon \eta(V)U - \varepsilon \eta(U)V\} -\beta \delta \{\eta(V)fU + \eta(U)fV\}$$

On other hand, a quarter symmetric non metric connection ∇ on M is defined by

$$\bar{\nabla}_U V = \nabla_U V + \eta(V) f U$$

such that

$$(\bar{\nabla}_U g)(V, Z) = \eta(V)g(fU, Z) - \eta(Z)g(fU, V)$$

Using (2.1), (2.2) and (2.3) in (2.4) and (2.5), we get respectively

(2.9)
$$(\bar{\nabla}_U f)V = \alpha \{g(U, V)\xi - \varepsilon \eta(V)U\} - \eta(U)\eta(V)\xi + \beta \{g(fU, V)\xi - \delta \eta(V)fU\} + \eta(V)U\}$$

(2.10)
$$\bar{\nabla}_U \xi = -\varepsilon \alpha f U - \beta \delta f^2 U$$

In particular, an (ε) -almost contact metric manifold is called a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection if

$$(2.11) (\bar{\nabla}_{U}f)V + (\bar{\nabla}_{V}f)U = 2\alpha g(U,V)\xi - (\alpha\varepsilon - 1)\eta(V)U - (\alpha\varepsilon - 1)\eta(U)V\} - 2\eta(U)\eta(V)\xi -\beta\delta\{\eta(V)fU + \eta(U)fV\}$$

The covariant derivative of the tensor filed f is defined as

$$(2.12) (\bar{\nabla}_U f)V = \bar{\nabla}_U fV - f\bar{\nabla}_U V$$

for all $U, V \in T\overline{M}$. Now, if M is a submanifold immersed in \overline{M} and deliberate the induced metric on M also denoted by g, then the Gauss and Weingarten formulas for a warped product semi-invariant submanifolds of a nearly (ε, δ) -trans-Sasakian manifold are given by

$$(2.13) \bar{\nabla}_U V = \nabla_U V + h(U, V)$$

(2.14)
$$\bar{\nabla}_U N = -A_N U + \nabla_U^{\perp} N$$

for any U, V in TM and N in $T^{\perp}M$, where TM is the Lie algebras of vector fields in M and $T^{\perp}M$ is the set of all vector fields normal to M.

 ∇^{\perp} is the connection on the normal bundle, h is the second fundamental form and A_N is the Weingarten map associated with N as,

(2.15)
$$g(A_N U, V) = g(h(U, V), N).$$

For any $U \in TM$, we write

$$(2.16) fU = TU + FU$$

where TU is the tangential component and FU is the normal component

Similarly for any $N \epsilon T^{\perp} M$, we write

$$(2.17) fN = BN + CN$$

where BN is the tangential component and CN is the normal component of fN. The covariant derivatives of the tensor fields T and F are defined as

$$(2.18) (\nabla_U T)V = \nabla_U TV - T\nabla_U V$$

$$(2.19) (\nabla_U F)V = \nabla_U^{\perp} FV - F \nabla_U V$$

for all $U, V \in TM$. If M is a Riemannian manifold isometrically immersed in an almost contact metric manifold M, then for every $u \in M$ there exists a maximal invariant subspace denoted by D_u of the tangent space T_uM of M. If the dimension of D_u is the same for all values of $u \in M$, then D_u gives an invariant distribution D on M.

A submanifold M of an almost contact metric manifold \bar{M} with $\xi \epsilon TM$ is called a semi-invariant submanifold of \bar{M} if there exists two differentiable distributions D and D^{\perp} on M such that

- $TM = D \oplus D^{\perp} \oplus \langle \xi \rangle,$
- (ii)
- $f(D_u) \subseteq D_u$ $f(D_u^{\perp}) \subset T_u^{\perp} M.$

for any $u \in M$, where $T_u^{\perp} M$ denotes the orthogonal space of $T_u M$ in $T_u \bar{M}$. A semi-invariant submanifold is called anti-invariant if $D_u = \{0\}$ and invariant if $D_u^{\perp} = \{0\}$, respectively, for any $u \in M$. It is called the proper semi-invariant submanifold if neither $D_u = \{0\}$ nor $D_u^{\perp} = \{0\}$, for every $u \in M$.

If M is a semi-invariant submanifold of an almost contact metric manifold \bar{M} . Then, $F(T_uM)$ is a subspace of $T_u^{\perp}M$. Then for every $u\epsilon M$, there exists an invariant subspace x_u of $T_u\bar{M}$ such that

$$(2.20) T_u^{\perp} M = F(T_u M) \oplus x_u$$

A semi-invariant submanifold M of an almost contact metric manifold M is called Riemannian product if the invariant distribution D and antiinvariant distribution D^{\perp} are totally geodesic distributions in M.

If (E_1, g_1) and (E_2, g_2) are two Riemannian manifolds and y be a positive differentiable function on E_1 . The warped product of E and F is the Riemannian manifold $E_1 \times_y E_2 = (E_1 \times E_2, g)$, where

$$(2.21) g = g_1 + y^2 g_2$$

A warped product manifold $E_1 \times_y E_2$ is called trivial if the warping function y is constant. We recall.

Lemma 2.1. If $M = E_1 \times_{\nu} E_2$ is a warped product manifold with the warping function y, then

- (i) $\nabla_U V \epsilon \Gamma(TE_1)$, for each $U, V \epsilon TE_1$,
- (ii) $\nabla_U W = \nabla_W U = (U \ln y)W$, for each $U \epsilon T E_1$ and $W \epsilon T E_2$,

(iii) $\nabla_W X = \nabla_W^{E_2} X - g(W, X)/y) \operatorname{grad} y$, where ∇ and ∇^{E_2} denote the Levi-Civita connections on M and E_2 respectively.

In the above lemma grad y is the gradient of the function y defined by g(grad y, X) = Xy, for each $X \in TM$. From the Lemma 2.1, the warped product manifold $M = E_1 \times_{\nu} E_2$ are in the form

- (i) E_1 in M is totally geodesic;
- (ii) E_2 in M is totally geodesic;

Now, we denote by $\rho_U V$ and $Q_U V$ the tangential and normal parts of $(\bar{\nabla}_U f)V$, that is,

$$(2.22) \qquad (\bar{\nabla}_U f)V = \rho_U V + Q_U V$$

for all $U, V \in TM$. Making use of (2.13), (2.14), (2.16) and (2.19), the above equation yields,

$$\rho_U V = (\bar{\nabla}_U T)V - A_{FV}U - Bh(U, V)$$

(2.24)
$$Q_U V = (\bar{\nabla}_U F)V + h(U, TV) - Ch(U, V)$$

It is quite simple to check the following properties of ρ and Q, which we write here for later use:

$$p_1(i)$$
 $\rho_{U+V}X = \rho_U X + \rho_V X$ (ii) $Q_{U+V}X = Q_U X + Q_V X$

$$p_2(i)$$
 $\rho_U(V+X) = \rho_U V + \rho_U X$ (ii) $Q_U(V+X) = Q_U V + Q_U X$

$$p_3(i)$$
 $q(\rho_{II}V, X) = -q(V, \rho_{II}X)$ (ii) $q(Q_{II}V, N) = -q(V, Q_{II}N)$

for all $U, V, X \in TM$. On a submanifold M of a nearly (ε, δ) -trans-Sasakian manifold \overline{M} with a quarter symmetric non metric connection, we deduce from (2.12) and (2.22) that

$$(2.25) \rho_U V + \rho_V U = 2\alpha g(U, V)\xi - (\alpha \varepsilon - 1)\{\eta(V)U - \eta(U)V\}$$
$$-\beta \delta\{\eta(V)TU + \eta(U)TV\} - 2\eta(U)\eta(V)\xi$$

(2.26)
$$Q_UV + Q_VU = -\beta\delta\{\eta(V)FU + \eta(V)FU\}$$
 for any $U, V\epsilon TM$.

3. For $M=E_{\perp}\times_y E_T$ and $M=E_T\times_y E_{\perp}$, warped Product Semi-Invariant Submanifolds of Nearly (ε,δ) -Trans-Sasakian Manifold with Certain Connection

The warped product $M = E_1 \times_y E_2$ is trivial when ξ is tangent to E_2 , where E_1 and E_2 are the Riemannian submanifolds of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection is the subject of our consideration throughout this section. Thus, we deliberate the warped product $M = E_1 \times_y E_2$, when ξ is tangent to the submanifold E_1 . We have the following non-existence theorem.

Theorem 3.1. If $M = E_1 \times_y E_2$ is a warped product semi invariant submanifold of a nearly (ε, δ) -trans-Sasakian manifold M with a quarter symmetric non metric connection such that E_1 and E_2 are the Riemannian submanifolds of \bar{M} then M is a usual Riemannian product if the structure vector field ξ is tangent to E_2 .

Proof. Consider any $U \in TE$ and ξ tangent to E_2 , then we have

$$\bar{\nabla}_U \xi = \nabla_U \xi + h(U, \xi)$$

From 2.10 and Lemma 2.1 (ii), we have

(3.2)
$$-\varepsilon \alpha f U + \beta \delta U - \beta \delta \eta(U) \xi = (U \ln y) \xi + h(U, \xi)$$

The tangential component of 3.2, we conclude that

$$(Ulny)\xi = -\varepsilon\alpha PU + \beta\delta U - \beta\delta\eta(U)\xi,$$

for all $U \in TE_1$, that is, y is constant function on E_1 . Thus, M is the Riemannian product.

Now, we will explore the other case of warped product $M = E_1 \times_y E_2$ when $\xi \epsilon T E_1$, where E_1 and E_2 are the Riemannian submanifolds of \bar{M} . For any $U \epsilon T E_2$, we have

(3.3)
$$\bar{\nabla}_U \xi = \nabla_U \xi + h(U, \xi)$$

From 2.10 and Lemma 2.1 (ii), we get

(3.4) (i)
$$\xi lny = -\varepsilon \alpha T - \beta \delta$$
, (ii) $h(U,\xi) = -\varepsilon \alpha FU - \beta \delta \eta(U)\xi$

Here there are two subcases such as:

(i)
$$M = E_{\perp} \times_{y} E_{T}$$

(ii)
$$M = E_T \times_y E_\perp$$

where E_T and E_{\perp} are invariant and anti-invariant submanifolds of \overline{M} , respectively. In the following theorem we prove that the warped product semi-invariant submanifold of the type (i) is CR-product.

Theorem 3.2. If $M = E_T \times_y E_\perp$ be a warped product semi-invariant submanifold of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection, then the invariant distribution D and the anti-invariant distribution D^\perp are always integrable.

Proof. Consider $U, V \in D$, then we have

(3.5)
$$F[U, V] = F\nabla_U V - F\nabla_V U$$

From (2.19), we have

(3.6)
$$F[U,V] = (\bar{\nabla}_U F)V - (\bar{\nabla}_V F)U$$

Using (2.24), we get

(3.7)
$$F[U,V] = Q_{U}V - h(U,TV) + Ch(U,V) - Q_{V}U + h(V,TU) - Ch(U,V)$$

Then from (2.26), we derive

(3.8)
$$F[U,V] = 2Q_{U}V + h(V,TU) - h(U,TV) + \beta\delta\{\eta(V)FU + \eta(U)FV\}$$

Now, analyse $U, V \in D$, then we have

(3.9)
$$h(U,TV) + \nabla_U TV = \bar{\nabla}_U TV = \bar{\nabla}_U fV$$

By means of the covariant derivative property of $\bar{\nabla} f$, we acquire

(3.10)
$$h(U,TV) + \nabla_U TV = (\bar{\nabla}_U f)V + f\bar{\nabla}_U V$$

From (2.13) and (2.22), we have

$$(3.11) h(U,TV) + \nabla_U TV = \rho_U V + Q_U V + f(\nabla_U V + h(U,V))$$

Since E_P is totally geodesic in M see Lemma 2.1 (i), then from (2.16) and (2.17), we get

(3.12)
$$h(U,TV) + \nabla_U TV = \rho_U V + Q_U V + T \nabla_U V + Bh(U,V) + Ch(U,V)$$

Equating normal parts, we get

$$(3.13) h(U,TV) = Q_UV + Ch(U,V)$$

Similarly,

$$(3.14) h(V,TU) = Q_V U + Ch(U,V)$$

Using (3.13) and (3.14), we get

(3.15)
$$h(V, TU) - h(U, TV) = Q_U V - Q_V U$$

In view of (2.26), we have

(3.16)
$$h(V, TU) - h(U, TV) = -2Q_UV - \beta\delta\{\eta(V)FU + \eta(U)FV\}$$

Then, it shows from (3.4) and (3.16) that S[U,V]=0, for all $U,V\epsilon D$. This establishes the integrability of D. Now, for the integrability of D^{\perp} , we deliberate any $U\epsilon D$ and $W,X\epsilon D^{\perp}$, and we have

$$g([W,X],U) = g(\bar{\nabla}_W X - \bar{\nabla}_X W, U)$$

$$(3.17) = -g(\nabla_W U, X) + g(\nabla_X U, W)$$

From Lemma 2.1 (ii), we acquire

(3.18)
$$g([W,X],U) = -(Ulny)g(W,X) + (Ulny)g(W,X) = 0$$

Then from (3.18), we conclude that $[W, X] \in D^{\perp}$, for each $W, X \in D^{\perp}$. \square

Lemma 3.3. If a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection admits a warped product semi invariant submanifold $M = M_T \times_u M_\perp$, then

(i)
$$q(\rho_W V, U) = q(h(W, V), FU) = 0$$

$$(ii) \quad g(\rho_W U, X) = 2\alpha g(W, U)\eta(X) - (fWlny)g(U, X)$$
$$-g(h(W, U), FX) - 2\eta(X)\eta(W)\eta(U)$$
$$-(\alpha \varepsilon - 1)(g(W, X)\eta(U) + g(U, X)\eta(W))$$
$$-\beta \delta(g(fW, X)\eta(U) + g(fU, X)\eta(W))$$

(iii)
$$g(h(fW,U), FU) = (Wlny)||U||^2 + 2\alpha g(fW,U)\eta(U)$$

 $-(\alpha \varepsilon - 1)\eta(U)g(fW,U) - \beta \delta \eta(U)g(W,U)$
 $+\beta \delta \eta(U)\eta(U)\eta(W)$

for all $W, V \in TE_T$ and $U, X \in TE_{\perp}$.

Proof. Assume that $M = M_T \times_y M_\perp$, be a warped product submanifold of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection such that M_T is totally geodesic in M. Then using (2.18) and (2.23), we get

(3.19)
$$g(\rho_W V, U) = -g(Bh(W, V), U) = g(h(W, V), FU)$$

for any $W, V \in TE_T$. The left-hand side of (3.19) is skew symmetric in W and V whereas the right hand side is and symmetric in W and V, which gives (i). Next by using (2.18) and (2.23), we have

(3.20)
$$\rho_U W = -T\nabla_U W - A_{FW} U - Bh(U, W)$$

for any $U\epsilon TE_T$ and $W\epsilon TE_{\perp}$. In view of Lemma 2.1 (ii), the first term of right-hand side is zero. Thus, taking the product with $X\epsilon TE_{\perp}$, we obtain

(3.21)
$$g(\rho_W U, X) = -g(A_{FU}W, X) - g(Bh(W, U), X)$$

Using (2.3) and (2.15), we get

(3.22)
$$g(\rho_W U, X) = -g(h(W, X), FU) + g(h(W, U), FX)$$

which gives the first equality of (ii). Again, from (2.18) and (2.23), we have

$$(3.23) \rho_U W = \nabla_U TW - T\nabla_U W - Bh(W, U)$$

Then from Lemma 2.1 (ii), we deduce

(3.24)
$$\rho_U W = (TW \ln y)U - Bh(W, U)$$

Taking inner product with $X \in TE_{\perp}$ and using (2.3), we acquire

$$(3.25) g(\rho_U W, X) = (TW lny)g(U, X) + g(h(W, U), FX)$$

Using (2.26), we get

$$(3.26) \ g(\rho_W U, X) = 2\alpha g(W, U)\eta(X) - (fW lny)g(U, X) -g(h(W, U), FX) - 2\eta(X)\eta(W)\eta(U) -(\alpha \varepsilon - 1)(g(W, X)\eta(U) + g(U, X)\eta(W)) -\beta \delta(g(fW, X)\eta(U) + g(fU, X)\eta(W))$$

which gives the second equality of (ii). Now, from (3.20) and (3.24), we have

$$(3.27) \quad \rho_W U + \rho_U W = -T \nabla_W U - A_{FU} W + (TW \ln y) U - 2Bh(W, U)$$

Using (2.26) and Lemma 2.1 (i), we get left-hand side and the first term of right-hand side are zero. Thus the above equation takes the form

$$(3.28) (TWlny)U = -(\varepsilon \alpha - 1)(\eta(U)W + \varepsilon \eta(W)U)$$

$$+2\alpha g(W,U)\xi - \beta \delta \{\eta(U)TW + \eta(W)TU\}$$

$$-2\eta(W)\eta(U)\xi + A_{FU}W + 2Bh(W,U)$$

Taking the product with X and on using (2.3) and (2.15), we get

$$(3.29)(fWlny)||U||^{2} = -(\alpha \varepsilon - 1)(g(W, U)\eta(U) - g(U, U)\eta(W))$$
$$-g(h(W, U), fU) + 2\alpha g(W, U)\eta(U)$$
$$-\beta \delta(\eta(U)g(fW, U) - \eta(W)g(fU, U))$$
$$-2\eta(W)\eta(Z)\eta(Z)$$

Replacing W by fW and using (2.1), we acquire

(3.30)
$$\{-W + \eta(W)\xi\} \ln y ||U||^2 = -g(h(fW, U), FU) + 2\alpha g(fW, U)\eta(U) - (\alpha \varepsilon - 1)(\eta(U)g(fW, U)) + \beta \delta \eta(U)(g(W, U) - \eta(W)\eta(U))$$

Then from (3.4) (i), the above equation reduces to

$$g(h(fW,U),FU) = (Wlny)||U||^2 + 2\alpha g(fW,U)\eta(U)$$
$$-(\alpha \varepsilon - 1)\eta(U)g(fW,U) - \beta \delta \eta(U)g(W,U)$$
$$+\beta \delta \eta(U)\eta(U)\eta(W)$$

This proves the lemma completely.

Theorem 3.4. If $M=E_{\perp}\times_y E_T$ is a warped product semi invariant submanifold of a nearly (ε,δ) -trans-Sasakian manifold M with a quarter symmetric non metric connection such that E_{\perp} is a anti-invariant and E_T is a invariant submanifolds of \bar{M} , then M is a usual Riemannian product.

Proof. When $\xi \epsilon T E_T$, then by Theorem 3.1, M is a Riemannian product. Thus, we consider $\xi \epsilon T E_{\perp}$. Consider $W \epsilon T E_T$ and $U \epsilon T E_{\perp}$, then we have

$$(3.31)g(h(W, fW), FU) = g(h(W, fW), fU) = g(\bar{\nabla}_W fW, fU)$$

$$= g(f\bar{\nabla}_W W, fU) + g((\bar{\nabla}_W f)W, fU)$$

From the structure equation of nearly (ε, δ) -trans-Sasakian manifold with a quarter symmetric non metric connection, the second term of right hand side vanishes identically. Thus from (2.3), we derive

$$(3.320)h(W, fW), FU) = -\alpha \varepsilon \eta(W)g(W, fU) - g(W, \bar{\nabla}_W U) + \varepsilon \eta(U)g(W, \bar{\nabla}_W \xi) + \eta(W)g(W, fU) -\beta \delta \eta(W)g(fW, fU) + \beta g(g(fX, X), fU)$$

Using then from (2.13), Lemma 2.1 (ii), and (2.5), we obtain

(3.33)
$$g(h(W, fW), FU) = (\beta \delta \varepsilon \eta(U) - U \ln y) ||W||^2 - \beta \delta \varepsilon \eta(W) g(W, U)$$

Replacing W by fW in (3.33) and by use of the fact that $\xi \epsilon TE_{\perp}$, we obtain

(3.34)
$$g(h(W, fW), FU) = (\beta \delta \varepsilon \eta(U) - U \ln y) ||W||^2$$

It follows from (3.33) and (3.34) that Ulny = 0, for all $U\epsilon TE_{\perp}$. Also, from (3.4) we have $\xi lny = -\varepsilon \alpha T - \beta \delta T^2$.

From the above theorem we have seen that the warped product of the type $M = E_{\perp} \times_y E_T$ is a usual Riemannian product of an anti-invariant submanifold E_{\perp} and an invariant submanifold E_T of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection. Since both E_{\perp} and E_T are totally geodesic in M, then M is CR-product. Now, we study the warped product semi-invariant submanifold $M = E_{\perp} \times_y E_T$ of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} .

Theorem 3.5. For a proper semi-invariant submanifold M of a nearly (ε, δ) -trans-Sasakian manifold with a quarter symmetric non metric connection \bar{M} is locally a semi-invariant warped product if and only if some function μ on M satisfying $V(\mu) = 0$ for each $V \varepsilon D^{\perp}$, then

$$(3.35) A_{fU}W = -(fWlny)U + 2\alpha g(W,U)\xi + (\alpha \varepsilon - 1)\eta(U)W$$
$$-(2\alpha + \alpha \varepsilon - 1)\eta(W)\eta(U)\xi + \beta \delta \eta(U)fW$$

Proof. Direct part shows from the Lemma 3.3 (iii). For the converse, assume that M is a semi-invariant submanifold of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection, satisfying (3.35) then we have

$$\begin{array}{lll} (3.36)(h(W,V),fU) &=& g(A_{fU}W,V) \\ &=& -(fW\mu)g(V,U) + 2\alpha\eta(V)g(W,U) \\ && + (\alpha\varepsilon-1)\eta(U)g(W,V) + \beta\delta\eta(U)g(fW,V) \\ && - (2\alpha + \alpha\varepsilon - 1)\eta(W)\eta(V)\eta(U)\xi \end{array}$$

Now, from (2.13) and the property of covariant derivative of $\bar{\nabla}$, we have

$$(3.37) \quad g(h(W,V), fU) = g(\bar{\nabla}_W V, fU) = -g(f\bar{\nabla}_W V, U)$$
$$= -g(\bar{\nabla}_W fV, U) + g((\bar{\nabla}_W f)V, U)$$

Using (2.13), (2.22), and (3.36), we get

$$(3.38)g(\nabla_W TV, U) = g(\rho_W V, U) - 2\alpha \eta(V)g(W, U)$$

$$+(2\alpha + \alpha \varepsilon - 1)\eta(U)\eta(V)\eta(W)\xi$$

$$-(\alpha \varepsilon - 1)\eta(U)g(W, V) - \beta \delta \eta(U)g(fW, V)$$

Using (2.18) and (2.23), we acquire

$$(3.39) g(\nabla_W TV, U) = g(\nabla_W TV, U) - g(T\nabla_W V, U) - g(Bh(W, V), U) - 2\alpha\eta(V)g(W, U) - (\alpha\varepsilon - 1)\eta(U)g(W, V) - \beta\delta\eta(U)g(fW, V) + (2\alpha + \alpha\varepsilon - 1)\eta(U)\eta(V)\eta(W)\xi$$

Then from (2.3), the above equation reduces to

$$(3.40) g(T\nabla_W V, U) = g(h(W, V), fU) - 2\alpha \eta(V)g(W, U) - (\alpha \varepsilon - 1)\eta(U)g(W, V) - \beta \delta \eta(U)g(fW, V) + (2\alpha + \alpha \varepsilon - 1)\eta(U)\eta(V)\eta(W)\xi$$

Hence using (2.15) and (3.36), we get

$$(3.41) g(T\nabla_W V, U) = g(A_{fU}W, V)$$

which indicates $\nabla_W V \epsilon D \oplus \{\xi\}$, that is, $D \oplus \{\xi\}$ is integrable and its leaves are totally geodesic in M. Now, for any $U, X \epsilon D^{\perp}$ and $W \epsilon D \oplus \{\xi\}$, we have

$$(3.42) g(\nabla_U X, fW) = g(\bar{\nabla}_U X, fW) = -g(f\bar{\nabla}_U X, W)$$
$$= g((\bar{\nabla}_U f)X, W) - g(\bar{\nabla}_U fX, W)$$

Using (2.14) and (2.22), we acquire

$$(3.43) g(\nabla_W X, fU) = g(\rho_W X, U) + g(A_{fX} W, U)$$

Then from (2.13) and the property p_3 , we arrive at

(3.44)
$$g(\nabla_U X, fW) = -g(X, \rho_U W) + g(h(U, W), fX)$$

Again from (2.13) and (2.26), we get

$$(3.45) g(\nabla_U X, fW) = g(\rho_W U, X) - 2\alpha g(W, U)\eta(X)$$
$$-(\alpha \varepsilon - 1)\eta(U)g(W, X) + \eta(W)g(U, X))$$
$$-\beta \delta(\eta(U)g(TW, X) + \eta(W)g(TU, X)$$
$$+g(A_{fX}W, U)$$

On the other hand, from (2.18) and (2.23), we get

(3.46)
$$\rho_W U = -T\nabla_W U - A_{FU}W - Bh(W, U)$$

Taking the product with $X \in D^{\perp}$ and using (3.36), we acquire

$$(3.47) \quad g(\rho_W U, X) = -g(T\nabla_W U, X) + (fW\mu)g(U, X)$$
$$-\beta \delta \eta(U)g(fW, X) - 2\alpha g(W, U)\eta(X)$$
$$-(\alpha \varepsilon - 1)\eta(U)g(W, X) + g(A_{fX}W, U)$$
$$+(2\alpha + \alpha \varepsilon - 1)\eta(U)\eta(W)\eta(X)$$

The first term of right-hand side of above equation is zero using the fact that TX = 0, for any $X \in D^{\perp}$. Again using (2.15), we get

$$(3.48) \quad g(\rho_W U, X) = (fW\mu)g(U, X) - 2\alpha g(W, U)\eta(X)$$
$$-(\alpha \varepsilon - 1)\eta(U)g(W, X) + g(A_{fX}W, U)$$
$$+(2\alpha + \alpha \varepsilon - 1)\eta(U)\eta(W)\eta(X)$$

Then from (3.36), we deduce

$$(3.49) g(\rho_W U, X) = 0$$

Using (3.36), (3.45) and (3.49), we get

$$(3.50)g(\nabla_{U}X, fW) = -(fW\mu)g(X, U) - (\alpha\varepsilon - 1)\eta(W)g(U, X) + (2\alpha + \alpha\varepsilon + 1)\eta(U)\eta(X)\eta(W) - \beta\delta\eta(U)g(TW, X)$$

If M^{\perp} is a leaf of D^{\perp} , and let h^{\perp} be the second fundamental form of the immersion of M^{\perp} into M, then for any $W, X \in D^{\perp}$, we have

$$(3.51) g(h^{\perp}(U,X), fW) = g(\nabla_U X, fW)$$

Thus, from (3.50) and (3.51), we conclude that

$$(3.52)g(h^{\perp}(U,X), fW) = -(\alpha \varepsilon - 1)\eta(W)g(U,X)$$
$$-\beta \delta \eta(U)g(TW,X) - (fW\mu)g(X,U)$$
$$-(2\alpha + \alpha \varepsilon + 1)\eta(W)\eta(X)\eta(U)$$

The above relation shows that integral manifold M_{\perp} of D^{\perp} is totally umbilical in M. Since the anti-invariant distribution D^{\perp} of a warped product semi-invariant submanifold of a nearly (ε, δ) -trans-Sasakian manifold with a quarter symmetric non metric connection \bar{M} is always integrable Theorem (3.2) and $V(\mu) = 0$ for each $V \in D^{\perp}$, which indicates that the integral manifold of D^{\perp} is an extrinsic sphere in M; that is, it is totally umbilical and its mean curvature vector field is nonzero and parallel along M_{\perp} . Hence by virtue of results acquired in [8], M is locally a warped product $E_T \times_y E_{\perp}$, where E_T and E_{\perp} denote the integral manifolds of the distributions $D \oplus \langle \xi \rangle$ and D^{\perp} , respectively and y is the warping function.

References

- [1] R.L. Bishop and B. O Neill, *Manifolds of Negative curvature*, Trans. Amer. Math. Soc., **145** (1969), 149.
- [2] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math., 133 (2001), 177195.
- [3] B.Y. Chen Geometry of warped product CR-submanifolds in Kaehler manifolds.
 II, Monatshefte f
 ür Mathematik, 134 (2) (2001), 103119.
- [4] Atçeken, M., Warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds, Mathematical Problems in Engineering, 2009 (2009) Article ID 621625, 16 pages.
- [5] D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific Journal of Mathematics, 39 (1971), 285292.
- [6] S. Hiepko, , Eine innere Kennzeichnung der verzerrten produkte, Mathematische Annalen, 241 (3) (1979), 209215.
- [7] S. Rahman, A.K. Rai, A. Horaira and M. S. Khan On warped product semi invariant submanifolds of nearly (ε, δ) -trans Sasakian manifold, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 13 (62), 1, (2020), 247-260.
- [8] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publ. Co., Holland, 1986.
- [9] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser, Boston, 1983.
- [10] Rahman, S., and Ahmad, A., On semi-invariant submanifolds of a nearly transhyperbolic Sasakan manifold, Malaya Journal of Matematik 3 (3) (2015), 303311.
- [11] Rahman, S., Jun, B. J., and Ahmad A., On semi-invariant submanifolds of a nearly Lorentzian para-Sasakian manifold, Far East Journal of Mathematical Sciences, 96 (6) (2015), 709-724.
- [12] Rahman, S. Rai, A.K., Horaira, A. and Khan M. S. On warped product semi invariant submanifolds of nearly (ε, δ) -trans Sasakian manifold Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 13 (62), 1, 2020, 247-260.

[13] Xufeng, U. and Xiaoli, C. Two theorems on e -Sasakian manifolds , Int. J. Math. Math. Sci., 21 (2) (1998), 249-254.

Shamsur Rahman

Faculty of Mathematics, Maulana Azad National Urdu University, Polytechnic Off Campus Darbhanga Bihar- 846002, India

Email: shamsur@rediffmail.com, shamsur@manuu.edu.in

Sabi Ahmad

Department of Mathematics, University of RKDF, Ranchi, Jharkhand 834004, Ranchi, India

Email: ahmadsabi361@gmail.com

Niranjan Kumar Mishra

 $\label{eq:continuous} Department of Mathematics, University of RKDF, Ranchi, Jharkhand 834004, Ranchi, India$