ON GEOMETRY OF WARPED PRODUCT SEMI INVARIANT SUBMANIFOLDS OF NEARLY (ε, δ)-TRANS SASAKIAN MANIFOLD WITH A CERTAIN CONNECTION

SHAMSUR RAHMAN, SABI AHMAD AND NIRANJAN KUMAR MISHRA

Abstract

In this paper, we study the geometry of warped product semi invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold M with a quarter symmetric non metric connection. We see that warped product of the type $E_{\perp} \times_{y} E_{T}$ is a usual Riemannian product of E_{\perp} and E_{T}, where E_{\perp} and E_{T} are anti-invariant and invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold with a quarter symmetric non metric connection M, respectively. We also obtain a characterization for such type of warped product.

Key Words: Warped product, semi-invariant submanifolds, nearly (ε, δ)-trans-Sasakian manifold.

2010 Mathematics Subject Classification: Primary: 53D12. Secondary: 53C05.

1. Introduction

The warped product manifolds have been studied by Bishop and ONeill extensively for their constructing manifolds of non-positive curvature, the most effective generalization of Riemannian product manifold [1]. Chen extended the work of Bishop and ONeill and studied the warped product CR submanifold of Kaehler manifolds ([2], [3]), this study was also extended by many geometers in different settings ([4], [5],

[^0][6], [12]). The study of the differential geometry of semi-invariant or contact CR submanifolds, as a generalization of invariant and anti-invariant submanifolds, of an almost contact metric manifold was initiated by Bejancu [8] and was followed by several geometers (see [8], [9] and references cited there). Several authors studied semi invariant submanifolds of different classes of almost contact metric manifolds [[10], [11]] given in references of this paper. Xufeng and Xiaoli premeditated that these manifolds are real hypersurfaces of indefinite Kahlerian manifolds [13].

The aim of the paper is to inquest the concept of warped product semi-invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold M with a quarter symmetric non metric connection. We have shown that the warped product in the form $M=E_{\perp} \times_{y} E_{T}$ is simply Riemannian product of E_{\perp} and E_{T} where E_{\perp} are anti-invariant submanifold and E_{T} is an invariant submanifold and invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold with a quarter symmetric non metric connection M, respectively. We also obtain a characterization for such type of warped product..

2. Preliminaries

If \bar{M} is an n-dimensional almost contact metric manifold with structure tensors (f, ξ, η, g) where f is a $(1,1)$ type tensor field, ξ is a vector field, η is dual of ξ and g is also Riemannian metric tensor on \bar{M}, then

$$
\begin{gather*}
f^{2} U=-U+\eta(U) \xi, \quad \eta(\xi)=1, \quad f \xi=0 \tag{2.1}\\
\eta(f U)=0, \quad \eta(U)=\varepsilon g(U, \xi), \quad g(\xi, \xi)=\varepsilon \tag{2.2}\\
g(f U, f V)=g(U, V)-\varepsilon \eta(U) \eta(V) \tag{2.3}
\end{gather*}
$$

where $\varepsilon=g(\xi, \xi)= \pm 1$, for any vector fields U, V on \bar{M}, then \bar{M} is called (ε)-almost contact metric manifold. An (ε)-almost contact metric manifold is called (ε, δ)-trans-Sasakian manifold if

$$
\begin{gather*}
\left(\bar{\nabla}_{U} f\right) V=\alpha\{g(U, V) \xi-\varepsilon \eta(V) U\}+\beta\{g(f U, V) \xi-\delta \eta(V) f U\} \tag{2.4}\\
\bar{\nabla}_{U} \xi=-\varepsilon \alpha f U-\beta \delta f^{2} U \tag{2.5}\\
g(U, f V)=-g(f U, V) \tag{2.6}
\end{gather*}
$$

holds for some smooth functions α and β on \bar{M} and $\varepsilon= \pm 1, \delta= \pm 1$. Further, an (ε)-almost contact metric manifold is called a nearly (ε, δ) -trans-Sasakian manifold if [12]

$$
\begin{align*}
\left(\bar{\nabla}_{U} f\right) V+\left(\bar{\nabla}_{V} f\right) U= & \alpha\{2 g(U, V) \xi-\varepsilon \eta(V) U-\varepsilon \eta(U) V\} \tag{2.7}\\
& -\beta \delta\{\eta(V) f U+\eta(U) f V\}
\end{align*}
$$

On other hand, a quarter symmetric non metric connection ∇ on M is defined by

$$
\begin{equation*}
\bar{\nabla}_{U} V=\nabla_{U} V+\eta(V) f U \tag{2.8}
\end{equation*}
$$

such that

$$
\left(\bar{\nabla}_{U} g\right)(V, Z)=\eta(V) g(f U, Z)-\eta(Z) g(f U, V)
$$

Using (2.1), (2.2) and (2.3) in (2.4) and (2.5), we get respectively

$$
\begin{align*}
\left(\bar{\nabla}_{U} f\right) V= & \alpha\{g(U, V) \xi-\varepsilon \eta(V) U\}-\eta(U) \eta(V) \xi \tag{2.9}\\
& +\beta\{g(f U, V) \xi-\delta \eta(V) f U\}+\eta(V) U \\
& \bar{\nabla}_{U} \xi=-\varepsilon \alpha f U-\beta \delta f^{2} U \tag{2.10}
\end{align*}
$$

In particular, an (ε)-almost contact metric manifold is called a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection if

$$
\begin{align*}
\left(\bar{\nabla}_{U} f\right) V+\left(\bar{\nabla}_{V} f\right) U= & 2 \alpha g(U, V) \xi-(\alpha \varepsilon-1) \eta(V) U \tag{2.11}\\
& -(\alpha \varepsilon-1) \eta(U) V\}-2 \eta(U) \eta(V) \xi \\
& -\beta \delta\{\eta(V) f U+\eta(U) f V\}
\end{align*}
$$

The covariant derivative of the tensor filed f is defined as

$$
\begin{equation*}
\left(\bar{\nabla}_{U} f\right) V=\bar{\nabla}_{U} f V-f \bar{\nabla}_{U} V \tag{2.12}
\end{equation*}
$$

for all $U, V \epsilon T \bar{M}$. Now, if M is a submanifold immersed in \bar{M} and deliberate the induced metric on M also denoted by g, then the Gauss and Weingarten formulas for a warped product semi-invariant submanifolds of a nearly (ε, δ)-trans-Sasakian manifold are given by

$$
\begin{align*}
& \bar{\nabla}_{U} V=\nabla_{U} V+h(U, V) \tag{2.13}\\
& \bar{\nabla}_{U} N=-A_{N} U+\nabla_{U}^{\frac{1}{U}} N \tag{2.14}
\end{align*}
$$

for any U, V in $T M$ and N in $T^{\perp} M$, where $T M$ is the Lie algebras of vector fields in M and $T^{\perp} M$ is the set of all vector fields normal to M.
∇^{\perp} is the connection on the normal bundle, h is the second fundamental form and A_{N} is the Weingarten map associated with N as,

$$
\begin{equation*}
g\left(A_{N} U, V\right)=g(h(U, V), N) . \tag{2.15}
\end{equation*}
$$

For any $U \epsilon T M$, we write

$$
\begin{equation*}
f U=T U+F U \tag{2.16}
\end{equation*}
$$

where $T U$ is the tangential component and $F U$ is the normal component of $f U$.
Similarly for any $N \epsilon T^{\perp} M$, we write

$$
\begin{equation*}
f N=B N+C N \tag{2.17}
\end{equation*}
$$

where $B N$ is the tangential component and $C N$ is the normal component of $f N$. The covariant derivatives of the tensor fields T and F are defined as

$$
\begin{align*}
& \left(\nabla_{U} T\right) V=\nabla_{U} T V-T \nabla_{U} V \tag{2.18}\\
& \left(\nabla_{U} F\right) V=\nabla_{U}^{\perp} F V-F \nabla_{U} V \tag{2.19}
\end{align*}
$$

for all $U, V \epsilon T M$. If M is a Riemannian manifold isometrically immersed in an almost contact metric manifold M, then for every $u \epsilon M$ there exists a maximal invariant subspace denoted by D_{u} of the tangent space $T_{u} M$ of M. If the dimension of D_{u} is the same for all values of $u \in M$, then D_{u} gives an invariant distribution D on M.
A submanifold M of an almost contact metric manifold \bar{M} with $\xi \in T M$ is called a semi-invariant submanifold of \bar{M} if there exists two differentiable distributions D and D^{\perp} on M such that
(i) $T M=D \oplus D^{\perp} \oplus\langle\xi\rangle$,
(ii) $f\left(D_{u}\right) \subseteq D_{u}$
(iii) $f\left(D_{u}^{\perp}\right) \subset T_{u}^{\perp} M$.
for any $u \epsilon M$, where $T_{u}^{\perp} M$ denotes the orthogonal space of $T_{u} M$ in $T_{u} \bar{M}$.
A semi-invariant submanifold is called anti-invariant if $D_{u}=\{0\}$ and invariant if $D_{u}^{\perp}=\{0\}$, respectively, for any $u \epsilon M$. It is called the proper semi-invariant submanifold if neither $D_{u}=\{0\}$ nor $D_{u}^{\perp}=\{0\}$, for every $u \epsilon M$.
If M is a semi-invariant submanifold of an almost contact metric manifold \bar{M}. Then, $F\left(T_{u} M\right)$ is a subspace of $T_{\underline{u}}^{\perp} M$. Then for every $u \epsilon M$, there exists an invariant subspace x_{u} of $T_{u} M$ such that

$$
\begin{equation*}
T_{u}^{\perp} M=F\left(T_{u} M\right) \oplus x_{u} \tag{2.20}
\end{equation*}
$$

A semi-invariant submanifold M of an almost contact metric manifold \bar{M} is called Riemannian product if the invariant distribution D and antiinvariant distribution D^{\perp} are totally geodesic distributions in M.
If $\left(E_{1}, g_{1}\right)$ and $\left(E_{2}, g_{2}\right)$ are two Riemannian manifolds and y be a positive differentiable function on E_{1}. The warped product of E and F is the Riemannian manifold $E_{1} \times{ }_{y} E_{2}=\left(E_{1} \times E_{2}, g\right)$, where

$$
\begin{equation*}
g=g_{1}+y^{2} g_{2} \tag{2.21}
\end{equation*}
$$

A warped product manifold $E_{1} \times{ }_{y} E_{2}$ is called trivial if the warping function y is constant. We recall.

Lemma 2.1. If $M=E_{1} \times{ }_{y} E_{2}$ is a warped product manifold with the warping function y, then
(i) $\nabla_{U} V \epsilon \Gamma\left(T E_{1}\right)$, for each $U, V \epsilon T E_{1}$,
(ii) $\nabla_{U} W=\nabla_{W} U=(U \ln y) W$, for each $U \epsilon T E_{1}$ and $W \epsilon T E_{2}$,
(iii) $\left.\nabla_{W} X=\nabla_{W}^{E_{2}} X-g(W, X) / y\right)$ grad y,
where ∇ and $\nabla^{E_{2}}$ denote the Levi-Civita connections on M and E_{2} respectively.

In the above lemma grad y is the gradient of the function y defined by $g(\operatorname{grad} y, X)=X y$, for each $X \epsilon T M$. From the Lemma 2.1, the warped product manifold $M=E_{1} \times{ }_{y} E_{2}$ are in the form
(i) E_{1} in M is totally geodesic ;
(ii) E_{2} in M is totally geodesic ;

Now, we denote by $\rho_{U} V$ and $Q_{U} V$ the tangential and normal parts of $\left(\bar{\nabla}_{U} f\right) V$, that is,

$$
\begin{equation*}
\left(\bar{\nabla}_{U} f\right) V=\rho_{U} V+Q_{U} V \tag{2.22}
\end{equation*}
$$

for all $U, V \epsilon T M$. Making use of (2.13), (2.14), (2.16) and (2.19), the above equation yields,

$$
\begin{gather*}
\rho_{U} V=\left(\bar{\nabla}_{U} T\right) V-A_{F V} U-B h(U, V) \tag{2.23}\\
Q_{U} V=\left(\bar{\nabla}_{U} F\right) V+h(U, T V)-C h(U, V) \tag{2.24}
\end{gather*}
$$

It is quite simple to check the following properties of ρ and Q, which we write here for later use:

$$
\begin{array}{rrll}
p_{1}(i) & \rho_{U+V} X=\rho_{U} X+\rho_{V} X & \text { (ii) } & Q_{U+V} X=Q_{U} X+Q_{V} X \\
p_{2}(i) & \rho_{U}(V+X)=\rho_{U} V+\rho_{U} X & \text { (ii) } & Q_{U}(V+X)=Q_{U} V+Q_{U} X \\
p_{3}(i) & g\left(\rho_{U} V, X\right)=-g\left(V, \rho_{U} X\right) & \text { (ii) } & g\left(Q_{U} V, N\right)=-g\left(V, Q_{U} N\right)
\end{array}
$$

for all $U, V, X \epsilon T M$. On a submanifold M of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection, we deduce from (2.12) and (2.22) that
(2.25) $\rho_{U} V+\rho_{V} U=2 \alpha g(U, V) \xi-(\alpha \varepsilon-1)\{\eta(V) U-\eta(U) V\}$

$$
-\beta \delta\{\eta(V) T U+\eta(U) T V\}-2 \eta(U) \eta(V) \xi
$$

$$
\begin{equation*}
Q_{U} V+Q_{V} U=-\beta \delta\{\eta(V) F U+\eta(V) F U\} \tag{2.26}
\end{equation*}
$$

for any $U, V \epsilon T M$.

3. For $M=E_{\perp} \times_{y} E_{T}$ and $M=E_{T} \times_{y} E_{\perp}$, warped Product
 Semi-Invariant Submanifolds of Nearly (ε, δ)-Trans-Sasakian Manifold with certain connection

The warped product $M=E_{1} \times{ }_{y} E_{2}$ is trivial when ξ is tangent to E_{2}, where E_{1} and E_{2} are the Riemannian submanifolds of a nearly (ε, δ) -trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection is the subject of our consideration throughout this section. Thus, we deliberate the warped product $M=E_{1} \times_{y} E_{2}$, when ξ is tangent to the submanifold E_{1}. We have the following non-existence theorem.

Theorem 3.1. If $M=E_{1} \times{ }_{y} E_{2}$ is a warped product semi invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold M with a quarter symmetric non metric connection such that E_{1} and E_{2} are the Riemannian submanifolds of \bar{M} then M is a usual Riemannian product if the structure vector field ξ is tangent to E_{2}.

Proof. Consider any $U \epsilon T E$ and ξ tangent to E_{2}, then we have

$$
\begin{equation*}
\bar{\nabla}_{U} \xi=\nabla_{U} \xi+h(U, \xi) \tag{3.1}
\end{equation*}
$$

From 2.10 and Lemma 2.1 (ii), we have

$$
\begin{equation*}
-\varepsilon \alpha f U+\beta \delta U-\beta \delta \eta(U) \xi=(U \ln y) \xi+h(U, \xi) \tag{3.2}
\end{equation*}
$$

The tangential component of 3.2 , we conclude that

$$
(U \ln y) \xi=-\varepsilon \alpha P U+\beta \delta U-\beta \delta \eta(U) \xi,
$$

for all $U \epsilon T E_{1}$, that is, y is constant function on E_{1}. Thus, M is the Riemannian product.

Now, we will explore the other case of warped product $M=E_{1} \times{ }_{y} E_{2}$ when $\xi \epsilon T E_{1}$, where E_{1} and E_{2} are the Riemannian submanifolds of \bar{M}. For any $U \epsilon T E_{2}$, we have

$$
\begin{equation*}
\bar{\nabla}_{U} \xi=\nabla_{U} \xi+h(U, \xi) \tag{3.3}
\end{equation*}
$$

From 2.10 and Lemma 2.1 (ii), we get

$$
\begin{equation*}
\text { (i) } \quad \xi \ln y=-\varepsilon \alpha T-\beta \delta, \quad(i i) \quad h(U, \xi)=-\varepsilon \alpha F U-\beta \delta \eta(U) \xi \tag{3.4}
\end{equation*}
$$

Here there are two subcases such as :

$$
\begin{gathered}
\text { (i) } \quad M=E_{\perp} \times_{y} E_{T} \\
\text { (ii) } \quad M=E_{T} \times_{y} E_{\perp}
\end{gathered}
$$

where E_{T} and E_{\perp} are invariant and anti-invariant submanifolds of \bar{M}, respectively. In the following theorem we prove that the warped product semi-invariant submanifold of the type (i) is CR-product.

Theorem 3.2. If $M=E_{T} \times{ }_{y} E_{\perp}$ be a warped product semi-invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection, then the the invariant distribution D and the anti-invariant distribution D^{\perp} are always integrable.

Proof. Consider $U, V \epsilon D$, then we have

$$
\begin{equation*}
F[U, V]=F \nabla_{U} V-F \nabla_{V} U \tag{3.5}
\end{equation*}
$$

From (2.19), we have

$$
\begin{equation*}
F[U, V]=\left(\bar{\nabla}_{U} F\right) V-\left(\bar{\nabla}_{V} F\right) U \tag{3.6}
\end{equation*}
$$

Using (2.24), we get

$$
\begin{align*}
F[U, V]= & Q_{U} V-h(U, T V)+C h(U, V) \tag{3.7}\\
& -Q_{V} U+h(V, T U)-C h(U, V)
\end{align*}
$$

Then from (2.26), we derive

$$
\begin{align*}
F[U, V]= & 2 Q_{U} V+h(V, T U)-h(U, T V) \tag{3.8}\\
& +\beta \delta\{\eta(V) F U+\eta(U) F V\}
\end{align*}
$$

Now, analyse $U, V \epsilon D$, then we have

$$
\begin{equation*}
h(U, T V)+\nabla_{U} T V=\bar{\nabla}_{U} T V=\bar{\nabla}_{U} f V \tag{3.9}
\end{equation*}
$$

By means of the covariant derivative property of $\bar{\nabla} f$, we acquire

$$
\begin{equation*}
h(U, T V)+\nabla_{U} T V=\left(\bar{\nabla}_{U} f\right) V+f \bar{\nabla}_{U} V \tag{3.10}
\end{equation*}
$$

From (2.13) and (2.22), we have

$$
\begin{equation*}
h(U, T V)+\nabla_{U} T V=\rho_{U} V+Q_{U} V+f\left(\nabla_{U} V+h(U, V)\right) \tag{3.11}
\end{equation*}
$$

Since E_{P} is totally geodesic in M see Lemma 2.1 (i), then from (2.16) and (2.17), we get

$$
\begin{align*}
h(U, T V)+\nabla_{U} T V= & \rho_{U} V+Q_{U} V+T \nabla_{U} V \tag{3.12}\\
& +B h(U, V)+C h(U, V)
\end{align*}
$$

Equating normal parts, we get

$$
\begin{equation*}
h(U, T V)=Q_{U} V+C h(U, V) \tag{3.13}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
h(V, T U)=Q_{V} U+C h(U, V) \tag{3.14}
\end{equation*}
$$

Using (3.13) and (3.14), we get

$$
\begin{equation*}
h(V, T U)-h(U, T V)=Q_{U} V-Q_{V} U \tag{3.15}
\end{equation*}
$$

In view of (2.26), we have

$$
\begin{equation*}
h(V, T U)-h(U, T V)=-2 Q_{U} V-\beta \delta\{\eta(V) F U+\eta(U) F V\} \tag{3.16}
\end{equation*}
$$

Then, it shows from (3.4) and (3.16) that $S[U, V]=0$, for all $U, V \epsilon D$. This establishes the integrability of D. Now, for the integrability of D^{\perp}, we deliberate any $U \epsilon D$ and $W, X \epsilon D^{\perp}$, and we have

$$
\begin{align*}
& g([W, X], U)=g\left(\bar{\nabla}_{W} X-\bar{\nabla}_{X} W, U\right) \\
& \quad=-g\left(\nabla_{W} U, X\right)+g\left(\nabla_{X} U, W\right) \tag{3.17}
\end{align*}
$$

From Lemma 2.1 (ii), we acquire

$$
\begin{equation*}
g([W, X], U)=-(U \ln y) g(W, X)+(U \ln y) g(W, X)=0 \tag{3.18}
\end{equation*}
$$

Then from (3.18), we conclude that $[W, X] \epsilon D^{\perp}$, for each $W, X \in D^{\perp}$.
Lemma 3.3. If a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection admits a warped product semi invariant submanifold $M=M_{T} \times{ }_{y} M_{\perp}$, then
(i) $g\left(\rho_{W} V, U\right)=g(h(W, V), F U)=0$

$$
\text { (ii) } \begin{aligned}
g\left(\rho_{W} U, X\right)= & 2 \alpha g(W, U) \eta(X)-(f W \ln y) g(U, X) \\
& -g(h(W, U), F X)-2 \eta(X) \eta(W) \eta(U) \\
& -(\alpha \varepsilon-1)(g(W, X) \eta(U)+g(U, X) \eta(W)) \\
& -\beta \delta(g(f W, X) \eta(U)+g(f U, X) \eta(W))
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
g(h(f W, U), F U)= & (W \ln y)\|U\|^{2}+2 \alpha g(f W, U) \eta(U) \\
& -(\alpha \varepsilon-1) \eta(U) g(f W, U)-\beta \delta \eta(U) g(W, U) \\
& +\beta \delta \eta(U) \eta(U) \eta(W)
\end{aligned}
$$

for all $W, V \epsilon T E_{T}$ and $U, X \epsilon T E_{\perp}$.

Proof. Assume that $M=M_{T} \times{ }_{y} M_{\perp}$, be a warped product submanifold of a nearly (ε, δ)-trans-Sasakian manifold \bar{M} with a quarter symmetric non metric connection such that M_{T} is totally geodesic in M. Then using (2.18) and (2.23), we get

$$
\begin{equation*}
g\left(\rho_{W} V, U\right)=-g(B h(W, V), U)=g(h(W, V), F U) \tag{3.19}
\end{equation*}
$$

for any $W, V \epsilon T E_{T}$. The left-hand side of (3.19) is skew symmetric in W and V whereas the right hand side is and symmetric in W and V, which gives (i). Next by using (2.18) and (2.23), we have

$$
\begin{equation*}
\rho_{U} W=-T \nabla_{U} W-A_{F W} U-B h(U, W) \tag{3.20}
\end{equation*}
$$

for any $U \epsilon T E_{T}$ and $W \epsilon T E_{\perp}$. In view of Lemma 2.1 (ii), the first term of right-hand side is zero. Thus, taking the product with $X \epsilon T E_{\perp}$, we obtain

$$
\begin{equation*}
g\left(\rho_{W} U, X\right)=-g\left(A_{F U} W, X\right)-g(B h(W, U), X) \tag{3.21}
\end{equation*}
$$

Using (2.3) and (2.15), we get

$$
\begin{equation*}
g\left(\rho_{W} U, X\right)=-g(h(W, X), F U)+g(h(W, U), F X) \tag{3.22}
\end{equation*}
$$

which gives the first equality of (ii). Again, from (2.18) and (2.23), we have

$$
\begin{equation*}
\rho_{U} W=\nabla_{U} T W-T \nabla_{U} W-B h(W, U) \tag{3.23}
\end{equation*}
$$

Then from Lemma 2.1 (ii), we deduce

$$
\begin{equation*}
\rho_{U} W=(T W \ln y) U-B h(W, U) \tag{3.24}
\end{equation*}
$$

Taking inner product with $X \epsilon T E_{\perp}$ and using (2.3), we acquire

$$
\begin{equation*}
g\left(\rho_{U} W, X\right)=(T W \ln y) g(U, X)+g(h(W, U), F X) \tag{3.25}
\end{equation*}
$$

Using (2.26), we get

$$
\begin{align*}
g\left(\rho_{W} U, X\right)= & 2 \alpha g(W, U) \eta(X)-(f W \ln y) g(U, X) \tag{3.26}\\
& -g(h(W, U), F X)-2 \eta(X) \eta(W) \eta(U) \\
& -(\alpha \varepsilon-1)(g(W, X) \eta(U)+g(U, X) \eta(W)) \\
& -\beta \delta(g(f W, X) \eta(U)+g(f U, X) \eta(W))
\end{align*}
$$

which gives the second equality of (ii). Now, from (3.20) and (3.24), we have
(3.27) $\rho_{W} U+\rho_{U} W=-T \nabla_{W} U-A_{F U} W+(T W \ln y) U-2 B h(W, U)$

Using (2.26) and Lemma 2.1 (i), we get left-hand side and the first term of right-hand side are zero. Thus the above equation takes the form
$(3.28)(T W \ln y) U=-(\varepsilon \alpha-1)(\eta(U) W+\varepsilon \eta(W) U\}$

$$
+2 \alpha g(W, U) \xi-\beta \delta\{\eta(U) T W+\eta(W) T U\}
$$

$$
-2 \eta(W) \eta(U) \xi+A_{F U} W+2 B h(W, U)
$$

Taking the product with X and on using (2.3) and (2.15), we get

$$
\begin{aligned}
(3.29)(f W \ln y)\|U\|^{2}= & -(\alpha \varepsilon-1)(g(W, U) \eta(U)-g(U, U) \eta(W)) \\
& -g(h(W, U), f U)+2 \alpha g(W, U) \eta(U) \\
& -\beta \delta(\eta(U) g(f W, U)-\eta(W) g(f U, U)) \\
& -2 \eta(W) \eta(Z) \eta(Z)
\end{aligned}
$$

Replacing W by $f W$ and using (2.1), we acqire

$$
\begin{align*}
\{-W+ & \eta(W) \xi\} \ln y\|U\|^{2}=-g(h(f W, U), F U) \tag{3.30}\\
& +2 \alpha g(f W, U) \eta(U)-(\alpha \varepsilon-1)(\eta(U) g(f W, U)) \\
& +\beta \delta \eta(U)(g(W, U)-\eta(W) \eta(U))
\end{align*}
$$

Then from (3.4) (i), the above equation reduces to

$$
\begin{aligned}
g(h(f W, U), F U)= & (W \ln y)\|U\|^{2}+2 \alpha g(f W, U) \eta(U) \\
& -(\alpha \varepsilon-1) \eta(U) g(f W, U)-\beta \delta \eta(U) g(W, U) \\
& +\beta \delta \eta(U) \eta(U) \eta(W)
\end{aligned}
$$

This proves the lemma completely.
Theorem 3.4. If $M=E_{\perp} \times_{y} E_{T}$ is a warped product semi invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold M with a quarter symmetric non metric connection such that E_{\perp} is a anti-invariant and E_{T} is a invariant submanifolds of \bar{M}, then M is a usual Riemannian product.

Proof. When $\xi \in T E_{T}$, then by Theorem 3.1, M is a Riemannian product. Thus, we consider $\xi \epsilon T E_{\perp}$. Consider $W \epsilon T E_{T}$ and $U \epsilon T E_{\perp}$, then we have

$$
\begin{aligned}
(3.31) g(h(W, f W), F U)= & g(h(W, f W), f U)=g\left(\bar{\nabla}_{W} f W, f U\right) \\
& =g\left(f \bar{\nabla}_{W} W, f U\right)+g\left(\left(\bar{\nabla}_{W} f\right) W, f U\right)
\end{aligned}
$$

From the structure equation of nearly (ε, δ)-trans-Sasakian manifold with a quarter symmetric non metric connection, the second term of right hand side vanishes identically. Thus from (2.3), we derive

$$
\begin{aligned}
(3.32) h(W, f W), F U)= & -\alpha \varepsilon \eta(W) g(W, f U)-g\left(W, \bar{\nabla}_{W} U\right) \\
& +\varepsilon \eta(U) g\left(W, \bar{\nabla}_{W} \xi\right)+\eta(W) g(W, f U) \\
& -\beta \delta \eta(W) g(f W, f U)+\beta g(g(f X, X), f U)
\end{aligned}
$$

Using then from (2.13), Lemma 2.1 (ii) , and (2.5), we obtain

$$
\begin{equation*}
g(h(W, f W), F U)=(\beta \delta \varepsilon \eta(U)-U \ln y)\|W\|^{2}-\beta \delta \varepsilon \eta(W) g(W, U) \tag{3.33}
\end{equation*}
$$

Replacing W by $f W$ in (3.33) and by use of the fact that $\xi \epsilon T E_{\perp}$, we obtain

$$
\begin{equation*}
g(h(W, f W), F U)=(\beta \delta \varepsilon \eta(U)-U \ln y)\|W\|^{2} \tag{3.34}
\end{equation*}
$$

It follows from (3.33) and (3.34) that $U \ln y=0$, for all $U \epsilon T E_{\perp}$. Also, from (3.4) we have $\xi \ln y=-\varepsilon \alpha T-\beta \delta T^{2}$.
From the above theorem we have seen that the warped product of the type $M=E_{\perp} \times_{y} E_{T}$ is a usual Riemannian product of an anti-invariant submanifold E_{\perp} and an invariant submanifold E_{T} of a nearly (ε, δ)-transSasakian manifold \bar{M} with a quarter symmetric non metric connection. Since both E_{\perp} and E_{T} are totally geodesic in M, then M is CR-product. Now, we study the warped product semi-invariant submanifold $M=$ $E_{\perp} \times_{y} E_{T}$ of a nearly (ε, δ)-trans-Sasakian manifold \bar{M}.

Theorem 3.5. For a proper semi-invariant submanifold M of a nearly (ε, δ)-trans-Sasakian manifold with a quarter symmetric non metric connection \bar{M} is locally a semi-invariant warped product if and only if some function μ on M satisfying $V(\mu)=0$ for each $V \varepsilon D^{\perp}$, then
(3.35) $A_{f U} W=-(f W \ln y) U+2 \alpha g(W, U) \xi+(\alpha \varepsilon-1) \eta(U) W$

$$
-(2 \alpha+\alpha \varepsilon-1) \eta(W) \eta(U) \xi+\beta \delta \eta(U) f W
$$

Proof. Direct part shows from the Lemma 3.3 (iii). For the converse, assume that M is a semi-invariant submanifold of a nearly (ε, δ)-transSasakian manifold \bar{M} with a quarter symmetric non metric connection, satisfying (3.35) then we have

$$
\begin{aligned}
(3.3 g)(h(W, V), f U)= & g\left(A_{f U} W, V\right) \\
& =-(f W \mu) g(V, U)+2 \alpha \eta(V) g(W, U) \\
& +(\alpha \varepsilon-1) \eta(U) g(W, V)+\beta \delta \eta(U) g(f W, V) \\
& -(2 \alpha+\alpha \varepsilon-1) \eta(W) \eta(V) \eta(U) \xi
\end{aligned}
$$

Now, from (2.13) and the property of covariant derivative of $\bar{\nabla}$, we have

$$
\begin{align*}
g(h(W, V), f U)= & g\left(\bar{\nabla}_{W} V, f U\right)=-g\left(f \bar{\nabla}_{W} V, U\right) \tag{3.37}\\
& =-g\left(\bar{\nabla}_{W} f V, U\right)+g\left(\left(\bar{\nabla}_{W} f\right) V, U\right)
\end{align*}
$$

Using (2.13), (2.22), and (3.36), we get

$$
\begin{aligned}
(3.38) g\left(\nabla_{W} T V, U\right)= & g\left(\rho_{W} V, U\right)-2 \alpha \eta(V) g(W, U) \\
& +(2 \alpha+\alpha \varepsilon-1) \eta(U) \eta(V) \eta(W) \xi \\
& -(\alpha \varepsilon-1) \eta(U) g(W, V)-\beta \delta \eta(U) g(f W, V)
\end{aligned}
$$

Using (2.18) and (2.23), we acquire

$$
\begin{aligned}
(3.39) g\left(\nabla_{W} T V, U\right) & =g\left(\nabla_{W} T V, U\right)-g\left(T \nabla_{W} V, U\right) \\
& -g(B h(W, V), U)-2 \alpha \eta(V) g(W, U) \\
& -(\alpha \varepsilon-1) \eta(U) g(W, V)-\beta \delta \eta(U) g(f W, V) \\
& +(2 \alpha+\alpha \varepsilon-1) \eta(U) \eta(V) \eta(W) \xi
\end{aligned}
$$

Then from (2.3), the above equation reduces to

$$
\begin{aligned}
(3.40) g\left(T \nabla_{W} V, U\right) & =g(h(W, V), f U)-2 \alpha \eta(V) g(W, U) \\
& -(\alpha \varepsilon-1) \eta(U) g(W, V)-\beta \delta \eta(U) g(f W, V) \\
& +(2 \alpha+\alpha \varepsilon-1) \eta(U) \eta(V) \eta(W) \xi
\end{aligned}
$$

Hence using (2.15) and (3.36), we get

$$
\begin{equation*}
g\left(T \nabla_{W} V, U\right)=g\left(A_{f U} W, V\right) \tag{3.41}
\end{equation*}
$$

which indicates $\nabla_{W} V \epsilon D \oplus\{\xi\}$, that is, $D \oplus\{\xi\}$ is integrable and its leaves are totally geodesic in M. Now, for any $U, X \epsilon D^{\perp}$ and $W \epsilon D \oplus\{\xi\}$, we have

$$
\begin{align*}
g\left(\nabla_{U} X, f W\right)= & g\left(\bar{\nabla}_{U} X, f W\right)=-g\left(f \bar{\nabla}_{U} X, W\right) \tag{3.42}\\
& =g\left(\left(\bar{\nabla}_{U} f\right) X, W\right)-g\left(\bar{\nabla}_{U} f X, W\right)
\end{align*}
$$

Using (2.14) and (2.22), we acquire

$$
\begin{equation*}
g\left(\nabla_{W} X, f U\right)=g\left(\rho_{W} X, U\right)+g\left(A_{f X} W, U\right) \tag{3.43}
\end{equation*}
$$

Then from (2.13) and the property p_{3}, we arrive at

$$
\begin{equation*}
g\left(\nabla_{U} X, f W\right)=-g\left(X, \rho_{U} W\right)+g(h(U, W), f X) \tag{3.44}
\end{equation*}
$$

Again from (2.13) and (2.26), we get

$$
\begin{aligned}
(3.45) g\left(\nabla_{U} X, f W\right)= & g\left(\rho_{W} U, X\right)-2 \alpha g(W, U) \eta(X) \\
& -(\alpha \varepsilon-1) \eta(U) g(W, X)+\eta(W) g(U, X)) \\
& -\beta \delta(\eta(U) g(T W, X)+\eta(W) g(T U, X) \\
& +g\left(A_{f X} W, U\right)
\end{aligned}
$$

On the other hand, from (2.18) and (2.23), we get

$$
\begin{equation*}
\rho_{W} U=-T \nabla_{W} U-A_{F U} W-B h(W, U) \tag{3.46}
\end{equation*}
$$

Taking the product with $X \epsilon D^{\perp}$ and using (3.36), we acquire

$$
\begin{align*}
g\left(\rho_{W} U, X\right)= & -g\left(T \nabla_{W} U, X\right)+(f W \mu) g(U, X) \tag{3.47}\\
& -\beta \delta \eta(U) g(f W, X)-2 \alpha g(W, U) \eta(X) \\
& -(\alpha \varepsilon-1) \eta(U) g(W, X)+g\left(A_{f X} W, U\right) \\
& +(2 \alpha+\alpha \varepsilon-1) \eta(U) \eta(W) \eta(X)
\end{align*}
$$

The first term of right-hand side of above equation is zero using the fact that $T X=0$, for any $X \epsilon D^{\perp}$. Again using (2.15), we get

$$
\begin{align*}
g\left(\rho_{W} U, X\right)= & (f W \mu) g(U, X)-2 \alpha g(W, U) \eta(X) \tag{3.48}\\
& -(\alpha \varepsilon-1) \eta(U) g(W, X)+g\left(A_{f X} W, U\right) \\
& +(2 \alpha+\alpha \varepsilon-1) \eta(U) \eta(W) \eta(X)
\end{align*}
$$

Then from (3.36), we deduce

$$
\begin{equation*}
g\left(\rho_{W} U, X\right)=0 \tag{3.49}
\end{equation*}
$$

Using (3.36), (3.45) and (3.49), we get

$$
\begin{aligned}
(3.50) g\left(\nabla_{U} X, f W\right)= & -(f W \mu) g(X, U)-(\alpha \varepsilon-1) \eta(W) g(U, X) \\
& +(2 \alpha+\alpha \varepsilon+1) \eta(U) \eta(X) \eta(W) \\
& -\beta \delta \eta(U) g(T W, X)
\end{aligned}
$$

If M^{\perp} is a leaf of D^{\perp}, and let h^{\perp} be the second fundamental form of the immersion of M^{\perp} into M, then for any $W, X \epsilon D^{\perp}$, we have

$$
\begin{equation*}
g\left(h^{\perp}(U, X), f W\right)=g\left(\nabla_{U} X, f W\right) \tag{3.51}
\end{equation*}
$$

Thus, from (3.50) and (3.51), we conclude that

$$
\begin{aligned}
(3.52) g\left(h^{\perp}(U, X), f W\right)= & -(\alpha \varepsilon-1) \eta(W) g(U, X) \\
& -\beta \delta \eta(U) g(T W, X)-(f W \mu) g(X, U) \\
& -(2 \alpha+\alpha \varepsilon+1) \eta(W) \eta(X) \eta(U)
\end{aligned}
$$

The above relation shows that integral manifold M_{\perp} of D^{\perp} is totally umbilical in M. Since the anti-invariant distribution D^{\perp} of a warped product semi-invariant submanifold of a nearly (ε, δ)-trans-Sasakian manifold with a quarter symmetric non metric connection \bar{M} is always integrable Theorem (3.2) and $V(\mu)=0$ for each $V \epsilon D^{\perp}$, which indicates that the integral manifold of D^{\perp} is an extrinsic sphere in M; that is, it is totally umbilical and its mean curvature vector field is nonzero and parallel along M_{\perp}. Hence by virtue of results acquired in [8] , M is locally a warped product $E_{T} \times{ }_{y} E_{\perp}$, where E_{T} and E_{\perp} denote the integral manifolds of the distributions $D \oplus\langle\xi\rangle$ and D^{\perp}, respectively and y is the warping function.

References

[1] R.L. Bishop and B. O Neill, Manifolds of Negative curvature, Trans. Amer. Math. Soc., 145 (1969), 149 .
[2] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifold, Monatsh. Math., 133 (2001), 177195.
[3] B.Y. Chen Geometry of warped product CR-submanifolds in Kaehler manifolds. II , Monatshefte für Mathematik, 134 (2) (2001), 103119.
[4] Atçeken, M., Warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds, Mathematical Problems in Engineering, 2009 (2009) Article ID 621625, 16 pages.
[5] D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific Journal of Mathematics, 39 (1971), 285292.
[6] S. Hiepko, Eine innere Kennzeichnung der verzerrten produkte, Mathematische Annalen, 241 (3) (1979), 209215.
[7] S. Rahman, A.K. Rai, A. Horaira and M. S. Khan On warped product semi invariant submanifolds of nearly (ε, δ)-trans Sasakian manifold, Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 13 (62), 1, (2020), 247-260.
[8] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publ. Co., Holland, 1986.
[9] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser, Boston, 1983.
[10] Rahman, S., and Ahmad, A., On semi-invariant submanifolds of a nearly transhyperbolic Sasakan manifold, Malaya Journal of Matematik 3 (3) (2015), 303311.
[11] Rahman, S.,Jun, B. J., and Ahmad A., On semi-invariant submanifolds of a nearly Lorentzian para-Sasakian manifold, Far East Journal of Mathematical Sciences, 96 (6) (2015), 709-724.
[12] Rahman, S. Rai, A.K., Horaira, A. and Khan M. S. On warped product semi invariant submanifolds of nearly (ε, δ)-trans Sasakian manifold Bulletin of the Transilvania University of Brasov Series III: Mathematics, Informatics, Physics, 13 (62), 1, 2020, 247-260.
[13] Xufeng, U. and Xiaoli, C. Two theorems on e-Sasakian manifolds, Int. J. Math. Math. Sci., 21 (2) (1998), 249-254.

Shamsur Rahman

Faculty of Mathematics, Maulana Azad National Urdu University, Polytechnic Off
Campus Darbhanga Bihar- 846002, India
Email: shamsur@rediffmail.com, shamsur@manuu.edu.in

Sabi Ahmad

Department of Mathematics, University of RKDF, Ranchi, Jharkhand 834004, Ranchi, India
Email: ahmadsabi361@gmail.com
Niranjan Kumar Mishra
Department of Mathematics, University of RKDF, Ranchi, Jharkhand 834004, Ranchi, India

[^0]: Received: 18 October 2022, Accepted: 02 May 2023. Communicated by Dariush Latifi; *Address correspondence to Sabi Ahmad; E-mail: ahmadsabi361@gmail.com.
 (C) 2023 University of Mohaghegh Ardabili.

