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Abstract. We consider the notion of fuzzy lattices introduced
by Chon and define a fuzzy semi-ortholattice and a fuzzy semi-
orthocomplemented lattice. We investigate some algebraic proper-
ties of these fuzzy lattices such as a sufficient condition of a fuzzy
semi-lattice and the equivalent relationship between fuzzy covering
property and fuzzy exchange property in fuzzy lattices.
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1. Introduction

Zadeh [8],[9] introduced fuzzy sets. In 1994 Ajmal and Thomas [12]
defined a fuzzy lattice. Maeda and Maeda [3] studied semi-orthogonality
in lattices and defined atomistic lattice, covering and exchange property
in lattices. Chon [2] studied Zadeh’s fuzzy order and defined a fuzzy
lattice with new definition. Mezzomo [3] defined fuzzy ideals and fuzzy
filters of a fuzzy lattice (X,A), in the sense of Chon [2], as a crisp set
Y ⊆ X endowed with the fuzzy order A |Y×Y . He also defined a new
notion of a fuzzy ideal and fuzzy filter for fuzzy lattices and defined
some types of fuzzy ideals and fuzzy filters of a fuzzy lattices, such
as, fuzzy principal ideals (filters), proper fuzzy ideals (filters), fuzzy
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prime ideals (filters) and fuzzy maximal ideals (filters). In addition,
he proved distributive inequality, distributive law, modular inequality,
modular lattice in fuzzy lattices. Lastly he proved that a distributive
fuzzy lattice is modular fuzzy lattice.

Recently, in [10], Wasadikar and Khubchandani defined a fuzzy mod-
ular pair (fuzzy dual modular pair) in fuzzy lattice (X,A) in the sense
of Chon [2]. In addition, they studied the notion of a fuzzy indepen-
dent pair. Several characterizations of fuzzy modular pair and fuzzy
independent pair were obtained in [10].

In [11], a new notion of a fuzzy Birkhoff lattice and complementation
in a fuzzy lattice were defined. In this study, it was proved that right
and left complement coincide in a fuzzy lattice (X,A).

The motivation is from the work of Wasadikar and Khubchandani
[10, 11]. In section 3, we define a fuzzy semi-ortholattice, fuzzy semi-
orthocomplemented lattice and fuzzy relatively semi-orthocomplemented
lattice. We also prove that a relatively semi-orthocomplemented lattice
L = (X,A) is relatively complemented. In section 4, we prove that a
left complemented fuzzy lattice is FM-symmetric and is fuzzy relatively
semi-orthocomplemented lattice. We also prove that any complemented
fuzzy modular lattice is left complemented. In section 5, we will focus
on fuzzy atomistic, fuzzy covering and fuzzy exchange property in fuzzy
lattices (X,A).

2. Preliminaries

Throughout in this paper, (X,A) denotes a fuzzy lattice, where A is
a fuzzy partial order relation on a non empty set X.
For the definitions of a fuzzy partial order relation, fuzzy equivalence
relation, fuzzy supremum, fuzzy infimum, fuzzy lattice etc. we refer
to Chon [2]. We use the notations a ∨F b and a ∧F b to denote the
fuzzy supremum and the fuzzy infimum of a, b ∈ X to distinguish the
supremum and infimum of a, b in the lattice sense, if these exist in X.

Definition 2.1. [5, Definition 3.4] A fuzzy lattice L = (X,A) is bounded
if there exist elements ⊥ and > in X, such that A(⊥, a) > 0 and
A(a,>) > 0, for all a ∈ X. In this case, ⊥ and > are called bottom and
top elements, respectively.

We recall some known results which we shall use in this paper.

Proposition 2.2. [2, Proposition 3.3] and [4, Proposition 2.4]
Let (X,A) be a fuzzy lattice. For a, b, c ∈ X.



80 M. P. Wasadikar and P. A. Khubchandani

The following statements hold:
(i) A(a, b) > 0 iff a ∨F b = b iff a ∧F b = a;
(ii) If A(b, c) > 0, then A(a∧F b, a∧F c) > 0 and A(a∨F b, a∨F c) > 0.

We recall some definitions from [10] and [11].

Definition 2.3. [10, Definition 3.1] Let X be a nonempty set and L =
(X,A) be a fuzzy lattice with ⊥. Let a, b ∈ X. We say that (a, b) is a
fuzzy meet-modular pair and we write (a, b)FMm if whenever A(c, b) > 0,
then (c ∨F a) ∧F b = c ∨F (a ∧F b).

We say that (a, b) is a fuzzy join-modular pair and we write (a, b)FMj

if whenever A(b, c) > 0, then (c ∧F a) ∨F b = c ∧F (a ∨F b).
We write (a, b)FMj or (a, b)FMm when the pair (a, b) is not a fuzzy
join-modular or fuzzy meet-modular pair respectively.

Definition 2.4. [10, Definition 3.3] Let P denote the set of all a ∈ X
such that ⊥ ≺F a. The elements of P are called fuzzy atoms.

Definition 2.5. [10, Definition 4.4] Let L = (X,A) be a fuzzy lattice.
Let a, b ∈ X. We say that a fuzzy covers b and write b ≺F a, if
0 < A(b, a) < 1 and A(b, c) > 0 and A(c, a) > 0 imply c = a or c = b.

Definition 2.6. [10, Definition 3.2] Let a, b ∈ X. We say that (a, b) is
a fuzzy independent pair and we write (a, b) ⊥F Mm if (a, b)FMm and
a ∧F b = ⊥ hold.

Corollary 2.7. [10, Corollary 3.1] Let a1 ∈ X. If (a, b) ⊥F Mm and
A(a1, a) > 0, then (a1, b)FMm.

Lemma 2.8. [10, Lemma 3.3] If (a, b)FMm and if (c, a ∨F b)FMm,
A(c∧F (a∨F b), a) > 0, then (c∨F a, b)FMm and (c∨F a)∧F b = a∧F b.

Lemma 2.9. [10, Lemma 3.5] Let a be an element of a fuzzy lattice
L = (X,A). Then, (a, x)FMm for all x ∈ X if and only if (a, x)FMj

for all x ∈ X.

Definition 2.10. [10, Definition 4.2] A fuzzy lattice (X,A) with ⊥ is
called ⊥F -symmetric fuzzy lattice when in (X,A), (a, b) ⊥F Mm implies
(b, a)FMm.

Lemma 2.11. [10, Lemma 4.3] If a ∧F b ≺F b and if (b, a)FMj, then
a ≺F a ∨F b.

Definition 2.12. [11, Definition 4.1] Let a, b, b1 ∈ X. Then b1 is called
a right complement within b of a in a∨F b if, A(b1, b) > 0, a∨F b1 = a∨F b
and (a, b1) ⊥F Mm hold.
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We say that b1 is a left complement within b of a in a∨F b if A(b1, b) >
0, a ∨F b1 = a ∨F b, (b1, a) ⊥F Mm.

Lemma 2.13. [11, Lemma 3.1] Suppose that b, c ∈ X. Then (b, c)FMm

if and only if A(b∧F c, a) > 0 and A(a, c) > 0 imply that (a∨F b)∧F c = a.

Definition 2.14. [11, Definition 3.2] A fuzzy lattice L = (X,A) is called
a FM -symmetric fuzzy lattice if in L, (a, b)FMm implies (b, a)FMm.

Theorem 2.15. [11, Theorem 4.1] Let (a, b)FMm. Then b1 is a right
complement within b of a in a∨F b iff b1 is a right complement of a∧F b
in b.

3. Fuzzy Semi-orthogonality in Fuzzy lattices

In this section, we define fuzzy semi-orthogonality in a fuzzy lattice
and prove some properties.

Definition 3.1. Let L = (X,A) be a fuzzy lattice with ⊥. If there
exists a binary relation “ ⊥F ” which satisfies the following axioms:
(⊥1) a ⊥F a implies a = ⊥;
(⊥2) a ⊥F b implies b ⊥F a;
(⊥3) a ⊥F b, A(a1, a) > 0 imply a1 ⊥F b;
(⊥4) a ⊥F b, a ∨F b ⊥F c imply a ⊥F b ∨F c,
then L = (X,A) is called fuzzy semi-ortholattice.
Two elements a and b of X are said to be fuzzy semi-orthogonal if a ⊥F b.

Remark 3.2. In a fuzzy semi-ortholattice, a ⊥F b implies a ∧F b = ⊥.

Definition 3.3. Let L = (X,A) be a fuzzy semi-ortholattice with >
is called a fuzzy semi-orthocomplemented lattice if for every element
a ∈ X there exists an element a⊥ such that a ∨F a⊥ = > and a ⊥F a⊥.
The element a⊥ is called a fuzzy semi-orthocomplement of a.

Definition 3.4. Let L = (X,A) be a fuzzy semi-ortholattice. L is
called a fuzzy relatively semi-orthocomplemented lattice with a, b ∈ X
satisfying A(a, b) > 0, then there exists an element c ∈ X such that
b = a ∨F c and a ⊥F c. In this case c is called a fuzzy relative semi-
orthocomplement of a in b.

Remark 3.5. Let L = (X,A) be a fuzzy semi-orthocomplement. Let
a ∈ X. If b ∈ X is a fuzzy semi-orthocomplement of a, then b is a
complement of a.
It need not be necessarily unique.
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Lemma 3.6. Let a and b be elements of a fuzzy semi-orthocomplemented
lattice L = (X,A). If a ⊥F b, then there exists a fuzzy semi-orthocomplement
b⊥ of b such that A(a, b⊥) > 0.

Proof. Suppose that a ⊥F b holds. Let c be a fuzzy semi-orthocomplement
of a∨F b. Then c ⊥F a∨F b holds with c∨F a∨F b = >. Hence b⊥ = a∨F c
is a fuzzy semi-orthocomplement of b. Thus, we get A(a, b⊥) > 0. �

Lemma 3.7. Let L = (X,A) be a fuzzy semi-orthocomplemented lattice
and a, b ∈ X. If A(a, b) > 0 and if b⊥ is a fuzzy semi-orthocomplement
of b, then there exists a fuzzy semi-orthocomplement a⊥ of a such that
A(b⊥, a⊥) > 0.

Proof. Let A(a, b) > 0 and let b⊥ be a semi-orthocomplement of b.
Since b⊥ ⊥ a, it follows from Lemma 3.6 that there exists a fuzzy semi-
orthocomplement a⊥ of a such that A(b⊥, a⊥) > 0. �

Theorem 3.8. Let L = (X,A) be a fuzzy relatively semi-orthocomplemented
lattice. If a ⊥F b, then (a, b)FMm.

Proof. Let L = (X,A) be a fuzzy semi-orthocomplemented lattice.
Let a, b ∈ X. Suppose that a ⊥F b holds then we have

(3.1) a ∧F b = ⊥.

To prove that (a, b)FMm holds.
Let c ∈ X be such that A(c, b) > 0. We know that for any a, b, c ∈ X,

(3.2) A(c ∨F (a ∧F b), (c ∨F a) ∧F b) > 0

always holds.
By (3.1) a ∧F b = ⊥ so, we get

(3.3) A(c, (c ∨F a) ∧F b) > 0,

hence by comparing (3.2) and (3.3) we get c ∨F (a ∧F b) = c.
By (i) of Proposition 2.2 we have A(a ∧F b, c) > 0.
Since A(c, (c∨Fa)∧F b) > 0 and L = (X,A) is a fuzzy semi-orthocomplemented
lattice, there exists d ∈ X such that

(3.4) (c ∨F a) ∧F b = d ∨F c

and c ⊥F d.
By (3.4),

(3.5) A(d ∨F c, c ∨F a) > 0
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always holds.
Also,

(3.6) A(d, d ∨F c) > 0

always holds.
Therefore, by fuzzy transitivity of A from (3.5) and (3.6) we get

(3.7) A(d, c ∨F a) > 0

From (3.4) we have A(d∨F c, b) > 0 and b ⊥F a. Therefore, by (⊥3) we
get d∨F c ⊥F a. As d ⊥F c and d∨F c ⊥F a by (⊥4) we get d ⊥F c∨F a.
By (⊥2) we get c∨F a ⊥F d. So, we have c∨F a ⊥F d and A(d, c∨F a) > 0
this imply d ⊥F d by (⊥3), that is, d = ⊥ by (⊥1). Putting d = ⊥ in
(3.4), we get (c ∨F a) ∧F b = c. Hence (a, b)FMm holds. �

Lemma 3.9. Let L = (X,A) be a fuzzy relatively semi-orthocomplemented
lattice with >. Let a, b ∈ X.
(i) If a ⊥F b, then there exists a fuzzy semi-orthocomplement b⊥ of b
such that (a ∨F b) ∧F b⊥ = a;
(ii) If A(a, b) > 0 and if c is a fuzzy relatively semi-orthocomplement
of a in b, then there exists a semi-orthocomplement a⊥ of a such that
c = b ∧F a⊥.

Proof. Let a, b ∈ X.
(i): If a ⊥F b, then by Lemma 3.6, there exists b⊥ such that A(a, b⊥) > 0.
As L = (X,A) is semi-orthocomplemented lattice we have b ⊥F b⊥.
By Theorem 3.8, we get (b, b⊥)FMm. Since A(a, b⊥) > 0 we have
(a ∨F b) ∧F b⊥ = a ∨F (b ∧F b⊥) = a ∨F ⊥ = a.

(ii): Let A(a, b) > 0 and let c be a fuzzy relatively semi-orthocomplement
of a in b. Then a ∨F c = b and a ⊥F c. From (i) it follows that there
exists a⊥ such that c = (c ∨F a) ∧F a⊥ = b ∧F a⊥. �

4. Fuzzy semi-orthogonality in ⊥F -symmetric fuzzy lattices

In this section, we consider some general properties of fuzzy semi-
orthogonality in ⊥F -symmetric fuzzy lattices.

Definition 4.1. A fuzzy lattice L = (X,A) is called a fuzzy modular
lattice, if (a, b)FMm (equivalently, (a, b)FMj) holds for all a, b ∈ X.

Remark 4.2. A fuzzy modular lattice L = (X,A) with ⊥ is a fuzzy
semi-ortholattice when a ⊥F b is defined by a ∧F b = ⊥.
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Theorem 4.3. Let L = (X,A) be a ⊥F -symmetric fuzzy lattice.
If we define a fuzzy semi-orthogonality relation “ a ⊥F b ” on X as
follows:
a ⊥F b if and only if a ∧F b = ⊥ and (a, b)FMm, then L is a fuzzy
semi-ortholattice.

Proof. Let a, b ∈ X.
We need to show L = (X,A) is fuzzy semi-ortholattice,
i.e., to show (i) a ⊥F a implies a = ⊥;
(ii) a ⊥F b implies b ⊥F a;
(iii) a ⊥F b, A(a1, a) > 0 imply a1 ⊥F b;
(iv) a ⊥F b, a ∨F b ⊥F c imply a ⊥F b ∨F c,
From the given condition we have
(i): a ⊥F a implies a ∧F a = ⊥ this implies a = ⊥,
that is, a ⊥F a implies a = ⊥.

(ii): Suppose that a ⊥F b holds. This implies a∧F b = ⊥ and (a, b)FMm.
By the definition of a ⊥F -symmetric fuzzy lattice, we get (b, a)FMm and
this implies b ⊥F a.

(iii): Suppose that a ⊥F b. Let a1 ∈ X be such that A(a1, a) > 0. Then
by (ii) of Proposition 2.2, we have A(a1 ∧F b, a ∧F b) > 0. This implies
that A(a1 ∧F b,⊥) > 0 as a ∧F b = ⊥. Also, A(⊥, a1 ∧F b) > 0 always
holds. So, by fuzzy antisymmetry of A we get a1∧F b = ⊥. By Corollary
2.7, we have (a1, b)FMm. So, we get a1 ⊥F b.

(iv): Suppose that a ⊥F b and a ∨F b ⊥F c hold. From a ⊥F b we have
a ∧F b = ⊥. Since L be a ⊥F -symmetric fuzzy lattice (b, a)FMm holds.
Also, from a ∨F b ⊥F c we have (a ∨F b) ∧F c = ⊥ and (c, a ∨F b)FMm.
Hence by Lemma 2.8, we have (b ∨F c, a)FMm and
(b ∨F c) ∧F a = b ∧F a = ⊥. Thus, we have a ⊥F b ∨F c. �

Theorem 4.4. Let L = (X,A) be a left complemented fuzzy lattice.
Then L is a FM -symmetric fuzzy lattice and is also a fuzzy relatively
semi-orthocomplemented lattice.

Proof. (i): Suppose that (a, b)FMm holds for some a, b ∈ X.
Since L is left complemented, then there exists a left complement b1

within b of a in a ∨F b.
Then we have

A(b1, b) > 0, b1 ∨F a = b ∨F a, a ∧F b1 = ⊥ and (b1, a)FMm.
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Hence by Theorem 2.15, we have

(4.1) b = b ∨F (a ∧F b) = b1 ∨F (a ∧F b)

Since (a ∧F b, a)FMm, (b1, a)FMm and A(b1 ∧F a, a ∧F b) > 0 so from
Lemma 2.8, we get

(b1 ∨F (a ∧F b), a)FMm.

Hence, by (4.1) we get (b, a)FMm.
Thus, L = (X,A) is a FM -symmetric fuzzy lattice.
(ii): To show that L = (X,A) is fuzzy relatively semi-orthocomplemented.
Let a, b ∈ X be such that A(a, b) > 0. Since L = (X,A) is left comple-
mented we have

b = a ∨F b = a ∨F b1, A(b1, b) > 0, a ∧F b1 = ⊥ and (a, b1)FMm.

As a ∧F b1 = ⊥ and (a, b1)FMm imply a ⊥F b1.
Thus, L = (X,A) is a fuzzy relatively semi-orthocomplemented lattice.

�

Corollary 4.5. Any complemented fuzzy modular lattice L = (X,A) is
left complemented.

Proof. For a, b ∈ X. Let c be a complement of a ∧F b.
That is, c ∨F (a ∧F b) = > and c ∧F (a ∧F b) = ⊥.
Put b1 = c ∧F b.
Then A(b1, b) > 0 so a∧F b1 = a∧F c∧F b = ⊥, so, we get a∧F b1 = ⊥.
Moreover

b1 ∨F (a ∧F b)

= (c ∧F b) ∨F (a ∧F b),

= b ∧F {c ∨F (a ∧F b)}, as (X,A) is fuzzy modular

= b ∧F >, as c ∨F (a ∧F b) = >
= b.

Therefore, b1 ∨F (a ∧F b) = b.
Also, a ∨F b1 = a ∨F (a ∧F b) ∨F b1 = a ∨F b.
Hence b1 is a left complement within b of a in a ∨F b. �

5. Fuzzy atomistic lattice with fuzzy covering property in
a fuzzy lattice

In this section, we define fuzzy covering property, fuzzy exchange
property in a fuzzy lattice and prove relationships between them.
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Definition 5.1. A fuzzy poset L = (X,A) with the least element ⊥
is called fuzzy atomic, if for every element b ∈ X, there exists a fuzzy
atom a such that a ≺F b, i.e., there exists some a such that A(a, b) > 0
and ⊥ ≺F a.

Definition 5.2. A fuzzy poset L = (X,A) with the least element ⊥ is
called fuzzy atomistic if every element x ∈ X is the least upper bound
of the set of fuzzy atoms less than or equal to x.

The following lemma gives a characterization of fuzzy atomistic lat-
tices.

Lemma 5.3. A fuzzy lattice L = (X,A) with ⊥ is fuzzy atomistic iff 0 <
A(a, b) < 1 implies the existence of a fuzzy atom p such that A(p, a) = 0
and A(p, b) > 0.

Proof. Suppose that L = (X,A) is fuzzy atomistic.
Let a, b ∈ X be such that A(a, b) > 0. Since L is fuzzy atomistic
b =

∨
{p; A(p, b) > 0 where p is a fuzzy atom}. Since A(a, b) > 0 there

exists a fuzzy atom p such that A(p, b) > 0 and A(p, a) = 0.
Conversely, suppose that L = (X,A) satisfies the given condition.

Let a be a non-zero element of X and H be the set of all fuzzy atoms
contained in a. If a 6=

∨
H, then there exists a fuzzy upper bound b of

H such that A(a, b) = 0. Since A(a∧F b, a) > 0, it follows from the given
condition that there exists a fuzzy atom p such that A(p, a∧F b) = 0 and
A(p, a) > 0. Since p ∈ H we have A(p, b) > 0. Hence A(p, a ∧F b) > 0,
which is a contradiction. Hence a =

∨
H. Thus L = (X,A) is fuzzy

atomistic. �

Lemma 5.4. If a ∧F b ≺F b, then (a, b)FMm.

Proof. Suppose that a ∧F b ≺F b holds. Let c ∈ X be such that
A(a ∧F b, c) > 0 and A(c, b) > 0. Since a ∧F b ≺F b we conclude that
either a ∧F b = c or c = b.
If c = a ∧F b, then

(c ∨F a) ∧F b = [(a ∧F b) ∨F a] ∧F b = a ∧F b = c.

If c = b, then

(c ∨F a) ∧F b = (b ∨F a) ∧F b = b = c.

By Lemma 2.13, we have (a, b)FMm. �

Lemma 5.5. If b ≺F a ∨F b, then (a, b)FMj.
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Proof. Suppose that b ≺F a∨F b holds. Let c ∈ X be such that A(b, c) >
0 and A(c, a ∨F b) > 0. Since b ≺F a ∨F b we conclude that either b = c
or c = a ∨F b.
If c = b, then

(c ∧F a) ∨F b = (b ∧F a) ∨F b = b

and
c ∧F (a ∨F b) = b ∧F (a ∨F b) = b.

If c = a ∨F b, then

(c ∧F a) ∨F b = [(a ∨F b) ∧F a] ∨F b = a ∨F b

and
c ∧F (a ∨F b) = (a ∨F b) ∨F (a ∨F b) = a ∨F b.

Hence in either case (a, b)FMj holds. �

Definition 5.6. Let L = (X,A) be a fuzzy lattice with ⊥.
We call the following property as the fuzzy covering property:
If p is a fuzzy atom and a ∧F p = ⊥, then a ≺F a ∨F p.

Lemma 5.7. Let L = (X,A) be a fuzzy lattice with ⊥.
The following statements are equivalent:
(i) L = (X,A) has the fuzzy covering property;
(ii) If p is a fuzzy atom of L = (X,A), then (p, x)FMm for every x ∈ X;
(iii) If p is a fuzzy atom of L = (X,A), then (p, x)FMj for every x ∈ X.

Proof. By Lemma 2.9, (ii) and (iii) are equivalent.

(i) ⇒ (iii): Let p be a fuzzy atom.
If x ∧F p 6= ⊥, then since A(p, x) > 0, we have (p, x)FMj .
If x ∧F p = ⊥, then by (i) we have x ≺F p ∨F x by Lemma 5.5,
we have (p, x)FMj .

(iii) ⇒ (i): Let a ∧F p = ⊥.
Since p ∧F a = ⊥, ⊥ ≺F p and (p, a)FMj by (iii).
We have a ≺F p ∨F a by Lemma 2.11. �

Corollary 5.8. Let L = (X,A) be a ⊥F symmetric lattice. Then L has
the fuzzy covering property.

Proof. Let L = (X,A) be a ⊥F symmetric lattice and p be a fuzzy atom
in X.
To show that L has fuzzy covering property,
by Lemma 5.7, it is sufficient to prove that (p, a)FMm for every a ∈ X.
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If A(p, a) > 0, then (p, a)FMm holds.
If A(p, a) = 0, then a∧F p = ⊥. Since p is a fuzzy atom implies ⊥ ≺F p
hence by Lemma 5.4, we have (a, p)FMm. Therefore, we have (p, a)FMm,
as L is ⊥F -symmetric fuzzy lattice. �

Definition 5.9. Let L = (X,A) be a fuzzy lattice with ⊥.
The following property is called the fuzzy exchange property:
If p and q are fuzzy atoms and if a ∧F p = ⊥, A(p, a ∨F q) > 0 implies
A(q, a ∨F p) > 0 (hence implies a ∨F p = a ∨F q).

Lemma 5.10. If a fuzzy lattice L = (X,A) with ⊥ has the fuzzy covering
property, then L has the fuzzy exchange property.

Proof. Suppose that L has the covering property. Let a ∈ X and p, q be
fuzzy atoms satisfying a ∧F p = ⊥ and A(p, q ∨F a) > 0. From this we
have a∧F q = ⊥, since otherwise A(q, a) > 0. This imply that A(p, q∨F
a) > 0 and a∨F q = a. Then A(p, a) > 0, a contradiction. Therefore, by
fuzzy covering property we have a ≺F a∨F q. But 0 < A(a, a∨F p) < 1,
which implies that a ∨F p = a ∨F q, that is, A(q, a ∨F p) > 0. Thus, L
has the fuzzy exchange property. �

Theorem 5.11. Let fuzzy lattice L = (X,A) be a fuzzy atomistic lattice.
The following statements are equivalent:
(i) L has the fuzzy covering property;
(ii) L has the fuzzy exchange property;
(iii) a ∧F b ≺F a implies b ≺F a ∨F b in L;
(iv) a ∧F b ≺F a implies (a, b)FMm in L.

Proof. (i)⇒ (ii): This implication is shown in Lemma 5.10.

(ii)⇒ (iii): Let a ∧F b ≺F a. It follows from A(a ∧F b, a) > 0 and
A(b, a∨F b) > 0 that there exists a fuzzy atom p such that A(p, a∧F b) = 0
and A(p, a) > 0. Since A(a∧F b, (a∧F b)∨F p) > 0 and A(a∧F b, a) > 0,
that is, by (ii) of Proposition 2.2, we have A((a ∧F b) ∨F p, a ∨F p) > 0,
that is, A((a ∧F b) ∨F p, a) > 0 since A(p, a) > 0. We have
A(a ∧F b, (a ∧F b) ∨F p) > 0 and A((a ∧F b) ∨F p, a) > 0. Since
a ∧F b ≺F a we have either a ∧F b = (a ∧F b) ∨F p or (a ∧F b) ∨F p = a.
If a ∧F b = (a ∧F b) ∨F p, then A(p, a ∧F b) > 0, this is contradiction to
A(p, a ∧F b) = 0. Therefore, (a ∧F b) ∨F p = a.
Taking fuzzy join b on both sides we get

(5.1) b ∨F p = a ∨F b
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To show that b ≺F a∨F b holds. Let c ∈ X be such that 0 < A(b, c) < 1,

(5.2) A(c, a ∨F b) > 0

Since A(b, c) > 0 by Lemma 5.3 there exists a fuzzy atom q such that
A(q, b) = 0 and A(q, c) > 0.
Since A(q, c) > 0 and A(c, a ∨F b) > 0 from (5.2), by fuzzy transitivity
of A we get A(q, a ∨F b) > 0. Putting b ∨F p = a ∨F b from (5.1) we get
A(q, b ∨F p) > 0. By fuzzy exchange property we have A(p, b ∨F q) > 0.
As A(q, c) > 0 by (ii) of Proposition 2.2, we have A(b ∨F q, b ∨F c) > 0,
that is, A(b ∨F q, c) > 0 as A(b, c) > 0. Therefore, A(p, b ∨F q) > 0
and A(b ∨F q, c) > 0. By fuzzy transitivity of A we get A(p, c) > 0.
By (ii) of Proposition 2.2, we have A(p ∨F b, c ∨F b) > 0 so, we have
A(p ∨F b, c) > 0 but a ∨F b = p ∨F b. Therefore, we have

(5.3) A(a ∨F b, c) > 0

From (5.2) and (5.3) by fuzzy antisymmerty of A we get a ∨F b = c.
Thus, we have b ≺F a ∨F b.

(iii)⇒ (iv): This implication is shown in Lemma 5.5.

(iv)⇒ (iii): This implication is shown in Lemma 2.11.

(iii)⇒ (i): Suppose that p is a fuzzy atom such that a ∧F p = ⊥ and
a ≺F a∨F p then ⊥ = a∧F p ≺F p this implies by (iii) that a ≺F a∨F p.
Thus, L has the fuzzy covering property. �

6. Conclusion and Future work

In this article, we have propose the definition of a fuzzy semi-ortholattice
and fuzzy semi-orthocomplemented lattice. Moreover, we have investi-
gated some algebraic properties of these lattices such as a sufficient con-
dition of a fuzzy semi-lattice and the equivalent relationship between
fuzzy covering property and fuzzy exchange property in fuzzy lattices.
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