SB-NEUTROSOPHIC STRUCTURES IN BCK/BCI-ALGEBRAS

B. SATYANARAYANA, SHAKE BAJI, AND D. DEVANANDAM

Abstract. This article presents the novel set termed SB - neutrosophic set (SB-NSS), which extends the concept of the Neutrosophic set (NSS). We illustrate its fundamental operations with examples. This concept of SB-NSSs is applied to BCK/BCI-algebras, and we introduce the notion of SB-neutrosophic subalgebra (SB-NSSA), SB-neutrosophic ideal (SB-NSI), and related properties are investigated. Furthermore, we provide conditions for an SB-NSS to be an SB-NSSA, for an SB-NSS to be an SB-NSI, and for an SB-NSSA to be an SB-NSI. In a BCI-algebra, conditions for an SB-NSI to be an SB-NSSA are given.

Key Words: SB-neutrosophic set (SB-NSS), SB-neutrosophic subalgebra (SB-NSSA), SBneutrosophic ideal (SB-NSI).
2020 Mathematics Subject Classification: Primary: 06F35; Secondary: 08A72, 03B52.

1. Introduction

The list of acronyms used in this article is given below with their corresponding extensions to help readers understand the terminology and concepts presented.

- BCK/BCI-Algebra: BCK/BCI-A
- BCK-Algebra: BCK-A
- Fuzzy Set: FS
- Interval-Valued Fuzzy Set: IVFS

[^0] *Address correspondence to Shake Baji; E-mail: shakebaji6@gmail.com.
(c) 2023 University of Mohaghegh Ardabili.

- Fuzzy Subalgebra: FSA
- Fuzzy Ideal: FI
- Intuitionistic Fuzzy Set: IFS
- Neutrosophic Set: NSS
- SB-Neutrosophic Set: SB-NSS
- SB-Neutrosophic Subalgebra: SB-NSSA
- SB-Neutrosophic Ideal: SB-NSI

In 1965, L.A. Zadeh [30] from the University of California introduced FSs, making it possible to analyse the extent to which elements belong to a set and innovate the handling of uncertainty in decisionmaking. In 1986, Atanasov [1] extended the concept further by generalising the FS to an IFS by including an additional function known as the non-membership function. The concept of NSS (NSS), introduced by Smarandache ([25], [26]), represents a more comprehensive framework that extends the concepts of Classical Set, FS, IFS, and Interval Valued Fuzzy (Intuitionistic) Set, providing a more extensive approach to handling indeterminate and inconsistent data. The study of BCK/BCI-As, initiated by Imai and Iseki $([5,6])$ in 1966 , was based on the study of settheoretic difference and propositional calculi, marking a significant advancement in algebraic structures. As part of the broader development of $\mathrm{BCI} / \mathrm{BCK}$ algebras, the study of ideals and their fuzzy extensions holds significant importance. Jun et al. ([17, 18, 19, 11]) examined the fuzzy characteristics of different ideals within $\mathrm{BCI} / \mathrm{BCK}$ algebras. The literature, including articles $[28,2,13,14,15,16,21,22,23,27,24]$, provides a more detailed description of neutrosophic algebraic structures. We have provided an illustration of the process through a framework diagram shown in Figure 1. Our intention is that this visual representation will enhance your understanding of the task.

This article aims to introduce a new generalisation of the NSS, called SB-NSS. A NSS consists of a membership function, an indeterminate membership function, and a non-membership function, each of which can be represented as FSs. When considering the generalisation of an NSS, we utilise an IVFS as a membership function, as it represents a broader generalisation of the FS. SB-neutrosophic structures are particularly beneficial in situations where there is a high degree of uncertainty in the data, especially concerning the membership function. Additionally, in scenarios where there is a low degree of uncertainty in the indeterminate membership function and non-membership function, SB-Neutrosophic structures can also prove valuable.

Moreover, innovative research has led to the introduction of new concepts such as SB-NSSA, SB-NSI, closed SB-NSI, and related properties within the field of $\mathrm{BCK} / \mathrm{BCI}-\mathrm{As}$. We present a comprehensive characterization of SB-NSSA and SB-NSI. Additionally, we discuss the homomorphic pre-image and translation of the SB-NSSA. Our findings demonstrate that every closed SB-NSI is an SB-NSSA in a BCI-A, while in a BCK-A, every SB-NSI is an SB-NSSA. In the context of an (s)-BCK-A, we establish that every SB-NSI can be considered an SB-neutrosophic o-subalgebra. Furthermore, we provide conditions for an SB-NSS to be an SB-NSI in an (s)-BCK-A.

SB-NSS.png

Figure 1.

2. Preliminaries

Definition 2.1. ([4], [7]) Let \mathcal{K} be a non-empty set with a binary operation " $>$ " and a constant " 0 " is called a BCI-A if it satisfies the following axioms for all $\zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K}$

$$
\begin{equation*}
\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond\left(\zeta_{1} \diamond \theta_{1}\right)\right) \diamond\left(\theta_{1} \diamond \eta_{1}\right)=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
\left(\zeta_{1} \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right) \diamond \eta_{1}=0 \tag{2.2}\\
\zeta_{1} \diamond \zeta_{1}=0 \tag{2.3}\\
\zeta_{1} \diamond \eta_{1}=0, \eta_{1} \diamond \zeta_{1}=0 \Rightarrow \zeta_{1}=\eta_{1} \tag{2.4}
\end{gather*}
$$

If the BCI-A \mathcal{K} satisfies the following identity

$$
\begin{equation*}
0 \diamond \zeta_{1}=0 \text { for all } \zeta_{1} \in \mathcal{K} \text {, then } \mathcal{K} \text { is called a BCK-algebra. } \tag{2.5}
\end{equation*}
$$

The following properties hold in any BCK/BCI-A (See [4, 10]),

$$
\begin{gather*}
\zeta_{1} \diamond 0=0 \tag{2.6}\\
\zeta_{1} \leq \eta_{1} \Rightarrow \zeta_{1} \diamond \theta_{1} \leq \eta_{1} \diamond \theta_{1}, \theta_{1} \diamond \eta_{1} \leq \theta_{1} \diamond \zeta_{1} \tag{2.7}\\
\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \theta_{1}=\left(\zeta_{1} \diamond \theta_{1}\right) \diamond \eta_{1} \tag{2.8}\\
\left(\zeta_{1} \diamond \theta_{1}\right) \diamond\left(\eta_{1} \diamond \theta_{1}\right) \leq \zeta_{1} \diamond \eta_{1} \text { for all } \zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K} . \tag{2.9}
\end{gather*}
$$

where $\zeta_{1} \leq \eta_{1}$ if and only if $\zeta_{1} \diamond \eta_{1}=0$.
The following conditions hold in any BCI-A \mathcal{K} (See [4]),

$$
\begin{gather*}
\zeta_{1} \diamond\left(\zeta_{1} \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\zeta_{1} \diamond \eta_{1} \tag{2.10}\\
0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)=\left(0 \diamond \zeta_{1}\right) \diamond\left(0 \diamond \eta_{1}\right) \tag{2.11}
\end{gather*}
$$

Definition 2.2. [4] A BCI-A \mathcal{K} is said to be p-semisimple if

$$
\begin{equation*}
0 \diamond\left(0 \diamond \zeta_{1}\right)=\zeta_{1} \tag{2.12}
\end{equation*}
$$

for all $\zeta_{1} \in \mathcal{K}$. In a p-semisimple BCI-A \mathcal{K}, the following holds for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$

$$
\begin{gather*}
0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)=\eta_{1} \diamond \zeta_{1} \tag{2.13}\\
\zeta_{1} \diamond\left(\zeta_{1} \diamond \eta_{1}\right)=\eta_{1} . \tag{2.14}
\end{gather*}
$$

Definition 2.3. [4] A BCI-A \mathcal{K} is said to be a weakly BCK-A if

$$
\begin{equation*}
0 \diamond \zeta_{1} \leq \zeta_{1} \text { for all } \zeta_{1} \in \mathcal{K} \tag{2.15}
\end{equation*}
$$

Definition 2.4. [4] A BCI-A \mathcal{K} is said to be associative if

$$
\begin{equation*}
\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \theta_{1}=\left(\zeta_{1} \diamond \theta_{1}\right) \diamond \eta_{1} \text { for all } \zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K} . \tag{2.16}
\end{equation*}
$$

Definition 2.5. [10] An (s)-BCK-A, we mean a BCK-A \mathcal{K} such that, for any $\zeta_{1}, \eta_{1} \in \mathcal{K}$, the set $\left\{\theta_{1} \in \mathcal{K} / \theta_{1} \diamond \zeta_{1} \leq \eta_{1}\right\}$ has a greatest element, denoted by $\zeta_{1} \circ \eta_{1}$.

Definition 2.6. A subset $\mathcal{H}(\neq \emptyset)$ of a BCK/BCI-A \mathcal{K} is called a subalgebra of \mathcal{K} if $\zeta_{1} \diamond \eta_{1} \in \mathcal{H}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{H}$.

Definition 2.7. [9] A subset $\mathcal{H}(\neq \emptyset)$ of a BCK/BCI-A \mathcal{K} is called an ideal of \mathcal{K} if
(i) $0 \in \mathcal{H}$,
(ii) $\eta_{1}, \zeta_{1} \diamond \eta_{1} \in \mathcal{H} \Rightarrow \zeta_{1} \in \mathcal{H}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.

Definition 2.8. [4] A subset $\mathcal{H}(\neq \emptyset)$ of a BCI-A \mathcal{K} is called a closed ideal of \mathcal{K} if it is an ideal of \mathcal{K} that satisfies
$\zeta_{1} \in \mathcal{H} \Rightarrow 0 \diamond \zeta_{1} \in \mathcal{H}$ for all $\zeta_{1} \in \mathcal{K}$.
Definition 2.9. [30] Let \mathcal{K} be a non-empty set. A FS in \mathcal{K} is a mapping $\alpha_{t}: \mathcal{K} \rightarrow[0,1]$.
Definition 2.10. [30] The complement of a FS α_{t}, denoted by $\left(\alpha_{t}\right)^{c}$, is also a FS defined as $\left(\alpha_{t}\right)^{c}=1-\alpha_{t}$ for all $\zeta_{1} \in \mathcal{K}$. Also, $\left(\left(\alpha_{t}\right)^{c}\right)^{c}=\alpha_{t}$.
Definition 2.11. [29] A FS $\alpha_{t}: \mathcal{K} \rightarrow[0,1]$ is called a FSA of \mathcal{K} if $\alpha_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{t}\left(\zeta_{1}\right), \alpha_{t}\left(\eta_{1}\right)\right\}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.
Definition 2.12. [20] A FS $\alpha_{t}: \mathcal{K} \rightarrow[0,1]$ of a BCK-A \mathcal{K} is said to be a FI of \mathcal{K} if
(i) $\alpha_{t}(0) \geq \alpha_{t}\left(\zeta_{1}\right)$
(ii) $\alpha_{t}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}\left(\eta_{1}\right)\right\}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.

An interval number, denoted as $\widetilde{\Theta}=\left[\Theta^{-}, \Theta^{+}\right]$, represents a closed subinterval of $[I]$, where $0 \leq \Theta^{-} \leq \Theta^{+} \leq 1$. Here, $[I]$ refers to the set of all interval numbers. The interval $[\Theta, \Theta]$ is indicated by the number $\Theta \in[0,1]$ for whatever follows. Let us define the refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in $[I]$. We also define the symbols $\preccurlyeq, \succcurlyeq$, and $=$ in the case of two elements in $[I]$. Consider two interval numbers $\widetilde{\Theta}_{1}=\left[\Theta_{1}^{-}, \Theta_{1}{ }^{+}\right]$and $\widetilde{\Theta}_{2}=\left[\Theta_{2}{ }^{-}, \Theta_{2}{ }^{+}\right]$. Then
$\circ \operatorname{rmin}\left\{\widetilde{\Theta}_{1}, \widetilde{\Theta}_{2}\right\}=\left[\min \left\{\Theta_{1}{ }^{-}, \Theta_{2}{ }^{-}\right\}, \min \left\{\Theta_{1}{ }^{+}, \Theta_{2}{ }^{+}\right\}\right]$

- $\operatorname{rmax}\left\{\widetilde{\Theta}_{1}, \widetilde{\Theta}_{2}\right\}=\left[\max \left\{\Theta_{1}{ }^{-}, \Theta_{2}{ }^{-}\right\}, \max \left\{\Theta_{1}{ }^{+}, \Theta_{2}{ }^{+}\right\}\right]$
- $\widetilde{\Theta}_{1} \succcurlyeq \widetilde{\Theta}_{2} \Leftrightarrow \Theta_{1}^{-} \geq \Theta_{2}^{-}, \Theta_{1}{ }^{+} \geq \Theta_{2}{ }^{+}$
- $\widetilde{\Theta}_{1} \preccurlyeq \widetilde{\Theta}_{2} \Leftrightarrow \Theta_{1}{ }^{-} \leq \Theta_{2}{ }^{-}, \Theta_{1}{ }^{+} \leq \Theta_{2}{ }^{+}$
- $\widetilde{\Theta}_{1}=\widetilde{\Theta}_{2} \Leftrightarrow \Theta_{1}{ }^{-}=\Theta_{2}{ }^{-}, \Theta_{1}{ }^{+}=\Theta_{2}{ }^{+}$

Let $\widetilde{\Theta}_{i} \in[I]$ where $i \in \Pi$. We define
$\circ \operatorname{rinf}_{i \in \Pi} \widetilde{\Theta}_{i}=\left[\inf _{i \in \Pi} \Theta_{i}^{-}, \inf _{i \in \Pi} \Theta_{i}^{+}\right]$

$$
\circ \underset{i \in \Pi}{\operatorname{rsup}} \widetilde{\Theta}_{i}=\left[\sup _{i \in \Pi} \Theta_{i}^{-}, \sup _{i \in \Pi} \Theta_{i}^{+}\right]
$$

Definition 2.13. [3] Let \mathcal{K} be a non-empty set. A function $\widetilde{\alpha}: \mathcal{K} \rightarrow[I]$ is called an IVFS in \mathcal{K}. Let $[I]^{\mathcal{K}}$ represent the set of all IVFSs in \mathcal{K}. For every $\widetilde{\alpha} \in[I]^{\mathcal{K}}$ and $\zeta_{1} \in \mathcal{K}, \widetilde{\alpha}\left(\zeta_{1}\right)=\left[\alpha^{-}\left(\zeta_{1}\right), \alpha^{+}\left(\zeta_{1}\right)\right]$ is called the membership degree of an element $\zeta_{1} \in \widetilde{\alpha}$, where $\alpha^{-}: \mathcal{K} \rightarrow[I]$ and $\alpha^{+}: \mathcal{K} \rightarrow[I]$ are FSs in \mathcal{K} which are called a lower FS and an upper FS in \mathcal{K}, respectively. For simplicity, we denote $\widetilde{\alpha}=\left[\alpha^{-}, \alpha^{+}\right]$.

Definition 2.14. [26] Let \mathcal{K} be a non-empty set. A NSS in \mathcal{K} is a structure of the form

$$
\mathcal{N}=\left\{\left\langle\zeta_{1} ; \alpha_{t}\left(\zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\rangle: \zeta_{1} \in \mathcal{K}\right\}
$$

where $\alpha_{t}: \mathcal{K} \rightarrow[0,1]$ is a degree of membership, $\alpha_{i}: \mathcal{K} \rightarrow[0,1]$ is a degree of indeterminacy, and $\alpha_{f}: \mathcal{K} \rightarrow[0,1]$ is a degree of a nonmembership.

3. SB-neutrosophic Structures

Definition 3.1. Let \mathcal{K} be a non-empty set. An SB -neutrosophic set (SB-NSS) in \mathcal{K} is a structure of the form

$$
\begin{equation*}
\mathcal{N}=\left\{\left\langle\zeta ; \widetilde{\alpha}_{t}(\zeta), \alpha_{i}(\zeta), \alpha_{f}(\zeta)\right\rangle \mid \zeta \in \mathcal{K}\right\} \tag{3.1}
\end{equation*}
$$

where α_{i} and α_{f} are FSs in \mathcal{K}, which are called a degree of indeterminacy and degree of non-membership, respectively. $\widetilde{\alpha}_{t}$ is an IVFS in \mathcal{K}, which is called an interval valued degree of membership.

For the sake of simplicity, we will denote the SB-NSS as
$\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$.
Remark 3.2. In an SB-NSS $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$, if we take $\widetilde{\alpha}_{t}: \mathcal{K} \rightarrow[I]$, $\zeta \mapsto\left[\alpha_{t}^{-}(\zeta), \alpha_{t}^{+}(\zeta)\right]$ with $\alpha_{t}^{-}(\zeta)=\alpha_{t}^{+}(\zeta)$, then $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is a NSS in \mathcal{K}.

Example 3.3. Let $\mathcal{K}=\{5,15,30,55,85\}$ be a set representing the ages of individuals. We define an SB-NSS \mathcal{N} of \mathcal{K} to represent the Intervalvalued degree of membership, degree of indeterminacy, and degree of non-membership of each age to the category 'young people' as $\mathcal{N}=$ $\left\{\frac{([0.1,0.3], 0.2 .0 .7)}{5}, \frac{([0.9,1], 0.6,0.1)}{15}, \frac{([0.7,1], 0.9,0.1)}{30}, \frac{([0.1,0.6], 0.4,0.9)}{55}, \frac{([0,0.1], 0.2,1)}{85}\right\}$.

Definition 3.4. Let $\mathcal{N}_{1}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ and $\mathcal{N}_{2}=\left(\widetilde{\beta}_{t}, \beta_{i}, \beta_{f}\right)$ be SBNSSs of \mathcal{K}. We say that \mathcal{N}_{1} is a subset of \mathcal{N}_{2}, denoted by $\mathcal{N}_{1} \subseteq \mathcal{N}_{2}$, if it satisfies

$$
\widetilde{\alpha}_{t}(\zeta) \succcurlyeq \widetilde{\beta}_{t}(\zeta), \quad \alpha_{i}(\zeta) \geq \beta_{i}(\zeta), \quad \alpha_{f}(\zeta) \leq \beta_{f}(\zeta) \text { for all } \zeta \in \mathcal{K} .
$$

If $\mathcal{N}_{1} \subseteq \mathcal{N}_{2}$ and $\mathcal{N}_{2} \subseteq \mathcal{N}_{1}$, then we say that $\mathcal{N}_{1}=\mathcal{N}_{2}$.
Definition 3.5. For every two SB-NSSs \mathcal{N}_{1} and \mathcal{N}_{2} of \mathcal{K}, the union, intersection, and complement are defined as follows

$$
\begin{aligned}
\mathcal{N}_{1} \cup \mathcal{N}_{2}= & \left\{\left(\zeta, \operatorname{rmax}\left(\widetilde{\alpha}_{t}(\zeta), \widetilde{\beta}_{t}(\zeta)\right),\right.\right. \\
& \left.\left.\max \left(\alpha_{i}(\zeta), \beta_{i}(\zeta)\right), \min \left(\alpha_{f}(\zeta), \beta_{f}(\zeta)\right)\right)\right\} . \\
\mathcal{N}_{1} \cap \mathcal{N}_{2}= & \left\{\left(\zeta, \operatorname{rmin}\left(\widetilde{\alpha}_{t}(\zeta), \widetilde{\beta}_{t}(\zeta)\right),\right.\right. \\
& \left.\left.\min \left(\alpha_{i}(\zeta), \beta_{i}(\zeta)\right), \max \left(\alpha_{f}(\zeta), \beta_{f}(\zeta)\right)\right)\right\} . \\
\mathcal{N}_{1}^{C}= & \left\{\widetilde{\alpha}_{t}^{c}(\zeta), \alpha_{i}^{c}(\zeta), \alpha_{f}^{c}(\zeta)\right\} .
\end{aligned}
$$

where

$$
\begin{aligned}
\widetilde{\alpha}_{t}^{c}(\zeta) & =\left[1-\alpha_{t}^{+}(\zeta), 1-\alpha_{t}^{-}(\zeta)\right], \\
\alpha_{i}^{c}(\zeta) & =1-\alpha_{i}(\zeta), \\
\alpha_{f}^{c}(\zeta) & =1-\alpha_{f}(\zeta), \text { for all } \zeta \in \mathcal{K} .
\end{aligned}
$$

Example 3.6. Let us consider SB-NSSs \mathcal{N}_{1} and \mathcal{N}_{2} of $\mathcal{K}=\left\{\zeta_{1}, \eta_{1}, \theta_{1}\right\}$. The full description of SB-NSS \mathcal{N}_{1} is

$$
\begin{array}{r}
\mathcal{N}_{1}=\left\{\left(\zeta_{1}, \widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right),\left(\eta_{1}, \widetilde{\alpha}_{t}\left(\eta_{1}\right), \alpha_{i}\left(\eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right)\right. \\
\left.\left(\theta_{1}, \widetilde{\alpha}_{t}\left(\theta_{1}\right), \alpha_{i}\left(\theta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right)\right\} \cdot(\text { or }) \\
\mathcal{N}_{1}=\left\{\frac{\left(\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right)}{\zeta_{1}}, \frac{\left(\widetilde{\alpha}_{t}\left(\eta_{1}\right), \alpha_{i}\left(\eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right)}{\eta_{1}}, \frac{\left(\widetilde{\alpha}_{t}\left(\theta_{1}\right), \alpha_{i}\left(\theta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right)}{\theta_{1}}\right\}
\end{array}
$$

For example,

$$
\begin{aligned}
& \mathcal{N}_{1}=\left\{\frac{([0.3,0.8], 0.5,0.1)}{\zeta_{1}}, \frac{([0.1,0.5], 0.3,0.7)}{\eta_{1}}, \frac{([0.2,0.7], 0.1,0.4)}{\theta_{1}}\right\} \\
& \mathcal{N}_{2}=\left\{\frac{([0.1,0.5], 0.6,0.5)}{\zeta_{1}}, \frac{([0.3,0.9], 0.2,0.6)}{\eta_{1}}, \frac{([0.5,0.7], 0.7,0.8)}{\theta_{1}}\right\}
\end{aligned}
$$

Then
$\mathcal{N}_{1} \cup \mathcal{N}_{2}=\left\{\frac{([0.3,0.8], 0.6,0.1)}{\zeta_{1}}, \frac{([0.3,0.9], 0.3,0.6)}{\eta_{1}}, \frac{([0.5,0.7], 0.7,0.4)}{\theta_{1}}\right\}$
$\mathcal{N}_{1} \cap \mathcal{N}_{2}=\left\{\frac{([0.1,0.5], 0.5,0.5)}{\zeta_{1}}, \frac{([0.1,0.5], 0.2,0.7)}{\eta_{1}}, \frac{([0.2,0.7], 0.1,0.8)}{\theta_{1}}\right\}$

$$
\mathcal{N}_{1}^{C}=\left\{\frac{([0.2,0.7], 0.5,0.9)}{\zeta_{1}}, \frac{([0.5,0.9], 0.7,0.3)}{\eta_{1}}, \frac{([0.3,0.8], 0.9,0.6)}{\theta_{1}}\right\} .
$$

Proposition 3.7. Let $\mathcal{N}_{1}, \mathcal{N}_{2}$, and \mathcal{N}_{3} be an SB-NSSs of \mathcal{K}. Then
(i) $\mathcal{N}_{1} \cup \mathcal{N}_{2}=\mathcal{N}_{1} \cup \mathcal{N}_{2}$.
(ii) $\mathcal{N}_{1} \cap \mathcal{N}_{2}=\mathcal{N}_{1} \cap \mathcal{N}_{2}$
(iii) $\mathcal{N}_{1} \cup\left(\mathcal{N}_{2} \cup \mathcal{N}_{3}\right)=\left(\mathcal{N}_{1} \cup \mathcal{N}_{2}\right) \cup \mathcal{N}_{3}$
(iv) $\mathcal{N}_{1} \cap\left(\mathcal{N}_{2} \cap \mathcal{N}_{3}\right)=\left(\mathcal{N}_{1} \cap \mathcal{N}_{2}\right) \cap \mathcal{N}_{3}$

Proposition 3.8. If \mathcal{N} be an $S B-N S S$ of \mathcal{K}, then $\left(\mathcal{N}^{c}\right)^{c}=\mathcal{N}$.
Proposition 3.9. If \mathcal{N}_{1} and \mathcal{N}_{2} be an SB-NSSs of \mathcal{K}, then
(i) $\mathcal{N}_{1} \subseteq \mathcal{N}_{2} \Leftrightarrow \mathcal{N}_{2}{ }^{c} \subseteq \mathcal{N}_{1}{ }^{c}$
(ii) $\mathcal{N}_{1} \cup \mathcal{N}_{2}=\mathcal{N}_{1} \Leftrightarrow \mathcal{N}_{2} \subseteq \mathcal{N}_{1}$
(iii) $\mathcal{N}_{1} \cap \mathcal{N}_{2}=\mathcal{N}_{1} \Leftrightarrow \mathcal{N}_{1} \subseteq \mathcal{N}_{2}$.

4. SB-neutrosophic subalgebra

Definition 4.1. Let \mathcal{K} be a BCK/BCI-A. An SB-NSS $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ in \mathcal{K} is called an SB-neutrosophic subalgebra (SB-NSSA) of \mathcal{K} if it follows (SB-NSSA 1) $\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}$ $\left(\right.$ SB-NSSA 2) $\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}$
$\left(\right.$ SB-NSSA 3) $\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}$
for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.
Example 4.2. Let us consider a set $\mathcal{K}=\left\{0, \zeta_{1}, \eta_{1}, \theta_{1}\right\}$ with the binary operation ' \diamond ' as given in the Table 1. Then, ($\mathcal{K} ; \diamond, 0)$ is a BCK-A.

Table 1. BCK-algebra.

\diamond	0	ζ_{1}	η_{1}	θ_{1}
0	0	0	0	0
ζ_{1}	ζ_{1}	0	0	ζ_{1}
η_{1}	η_{1}	ζ_{1}	0	η_{1}
θ_{1}	θ_{1}	θ_{1}	θ_{1}	0

Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS in \mathcal{K} defined by Table 2. It is routine to verify that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.

Proposition 4.3. If $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}, then

$$
\widetilde{\alpha}_{t}(0) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}(0) \geq \alpha_{i}\left(\zeta_{1}\right), \text { and } \alpha_{f}(0) \leq \alpha_{f}\left(\zeta_{1}\right)
$$

for all $\zeta_{1} \in \mathcal{K}$.

Table 2. SB-NSS

\mathcal{K}	$\widetilde{\alpha}_{t}(\zeta)$	$\alpha_{i}(\zeta)$	$\alpha_{f}(\zeta)$
0	$[0.5,0.9]$	0.8	0.3
ζ_{1}	$[0.4,0.7]$	0.6	0.5
η_{1}	$[0.2,0.8]$	0.7	0.4
θ_{1}	$[0.3,0.6]$	0.3	1

Proof. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSSA. Then, for any $\zeta_{1} \in \mathcal{K}$, we have

$$
\begin{aligned}
\widetilde{\alpha}_{t}(0) & =\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right],\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right]\right\} \\
& =\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right]=\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \\
\alpha_{i}(0) & =\alpha_{i}\left(\zeta_{1} \diamond \zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right) \alpha_{i}\left(\zeta_{1}\right)\right\}=\alpha_{i}\left(\zeta_{1}\right), \\
\alpha_{f}(0) & =\alpha_{f}\left(\zeta_{1} \diamond \zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\}=\alpha_{f}\left(\zeta_{1}\right) .
\end{aligned}
$$

Hence, the proof is completed.
Proposition 4.4. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}. If there exists a sequence $\left\{\left(\zeta_{1}\right)_{n}\right\}$ in \mathcal{K} such that

$$
\lim _{n \rightarrow \infty} \widetilde{\alpha}_{t}\left(\zeta_{1 n}\right)=[1,1], \lim _{n \rightarrow \infty} \alpha_{i}\left(\zeta_{1 n}\right)=1 \text { and } \lim _{n \rightarrow \infty} \alpha_{f}\left(\zeta_{1_{n}}\right)=0
$$

then $\widetilde{\alpha}_{t}(0)=[1,1], \alpha_{i}(0)=1$, and $\alpha_{f}(0)=0$.
Proof. Using the Proposition 4.3, we have $\widetilde{\alpha}_{t}(0) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1 n}\right), \alpha_{i}(0) \geq$ $\alpha_{i}\left(\zeta_{1 n}\right)$, and $\alpha_{f}(0) \leq \alpha_{f}\left(\zeta_{1 n}\right)$ for every positive integer n. Note that

$$
\begin{gathered}
{[1,1] \succcurlyeq \widetilde{\alpha}_{t}(0) \succcurlyeq \lim _{n \rightarrow \infty} \widetilde{\alpha}_{t}\left(\zeta_{1_{n}}\right)=[1,1]} \\
1 \geq \alpha_{i}(0) \geq \lim _{n \rightarrow \infty} \alpha_{i}\left(\zeta_{1_{n}}\right)=1 \\
0 \leq \alpha_{f}(0) \leq \lim _{n \rightarrow \infty} \alpha_{f}\left(\zeta_{1 n}\right)=0 .
\end{gathered}
$$

Therefore, $\widetilde{\alpha}_{t}(0)=[1,1], \alpha_{i}(0)=1$, and $\alpha_{f}(0)=0$.
Theorem 4.5. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS of \mathcal{K}. Then $\mathcal{N}=$ $\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K} if and only if $\widetilde{\alpha}_{t}^{-}, \widetilde{\alpha}_{t}^{+}, \alpha_{i}$, and α_{f}^{c} are FSAs of \mathcal{K}.

Proof. Suppose that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}, then

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) & \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) & \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}
\end{aligned}
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Now

$$
\begin{aligned}
& {\left[\alpha_{t}^{-}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1} \diamond \eta_{1}\right)\right] } \\
& \succcurlyeq \operatorname{rmin}\left\{\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right],\left[\alpha_{t}^{-}\left(\eta_{1}\right), \alpha_{t}^{+}\left(\eta_{1}\right)\right]\right\} \\
&=\left[\min \left\{\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{-}\left(\eta_{1}\right)\right\}, \min \left\{\alpha_{t}^{+}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\eta_{1}\right)\right\}\right] \\
& \Rightarrow \alpha_{t}^{-}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{-}\left(\eta_{1}\right)\right\} \text { and } \\
& \alpha_{t}^{+}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{t}^{+}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Also, $\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}$
$\Rightarrow 1-\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \geq 1-\max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}$
$\Rightarrow \alpha_{f}^{c}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{1-\alpha_{f}\left(\zeta_{1}\right), 1-\alpha_{f}\left(\eta_{1}\right)\right\}$
$\Rightarrow \alpha_{f}{ }^{c}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{f}^{c}\left(\zeta_{1}\right), \alpha_{f}{ }^{c}\left(\eta_{1}\right)\right\}$
Hence, $\alpha_{t}^{-}, \alpha_{t}{ }^{+}, \alpha_{i}$, and α_{f}^{c} are FSAs of \mathcal{K}. The converse part is obvious.

Definition 4.6. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS of \mathcal{K}. We define the following level sets

$$
\begin{aligned}
\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right) & =\left\{\zeta_{1} \in \mathcal{K}: \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq\left[l_{1}, l_{2}\right]\right\} \\
\mathcal{U}\left(\alpha_{i} ; m\right) & =\left\{\zeta_{1} \in \mathcal{K}: \alpha_{i}\left(\zeta_{1}\right) \geq m\right\} \\
\mathcal{L}\left(\alpha_{f} ; n\right) & =\left\{\zeta_{1} \in \mathcal{K}: \alpha_{f}\left(\zeta_{1}\right) \leq n\right\}
\end{aligned}
$$

where $m, n \in[0,1]$ and $\left[l_{1}, l_{2}\right] \in[I]$.
Theorem 4.7. An $\operatorname{SB}-\mathrm{NSS} \mathcal{\mathcal { N }}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ of \mathcal{K} is an SB-NSSA of \mathcal{K} if and only if the non-empty level sets $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), \mathcal{U}\left(\alpha_{i} ; m\right)$, and $\mathcal{L}\left(\alpha_{f} ; n\right)$ are subalgebras of \mathcal{K} for all $m, n \in[0,1]$ and $\left[l_{1}, l_{2}\right] \in[I]$.

Proof. Suppose that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}. Let $m, n \in$ $[0,1]$ and $\left[l_{1}, l_{2}\right] \in[I]$ be such that $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), \mathcal{U}\left(\alpha_{i} ; m\right)$, and $\mathcal{L}\left(\alpha_{f} ; n\right)$ are non-empty. For any $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathcal{K}$ if $a_{1}, a_{2} \in \mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right)$,
$b_{1}, b_{2} \in \mathcal{U}\left(\alpha_{i} ; m\right)$, and $c_{1}, c_{2} \in \mathcal{L}\left(\alpha_{f} ; n\right)$, then

$$
\widetilde{\alpha}_{t}\left(a_{1} \diamond a_{2}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(a_{1}\right), \widetilde{\alpha}_{t}\left(a_{2}\right)\right\} \succcurlyeq \operatorname{rmin}\left\{\left[l_{1}, l_{2}\right],\left[l_{1}, l_{2}\right]\right\}=\left[l_{1}, l_{2}\right]
$$

$$
\alpha_{i}\left(b_{1} \diamond b_{2}\right) \geq \min \left\{\alpha_{i}\left(b_{1}\right), \alpha_{i}\left(b_{2}\right)\right\} \geq \min \{m, m\}=m
$$

$\alpha_{f}\left(c_{1} \diamond c_{2}\right) \leq \max \left\{\alpha_{f}\left(c_{1}\right), \alpha_{f}\left(c_{2}\right)\right\} \leq \max \{n, n\}=n$
Therefore, $a_{1} \diamond a_{2} \in \mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), b_{1} \diamond b_{2} \in \mathcal{U}\left(\alpha_{i} ; m\right)$, and $c_{1} \diamond c_{2} \in$ $\mathcal{L}\left(\alpha_{f} ; n\right)$. Hence, $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), \mathcal{U}\left(\alpha_{i} ; m\right)$, and $\mathcal{L}\left(\alpha_{f} ; n\right)$ are subalgebras of \mathcal{K}.

Conversely, assume that the non-empty sets $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), \mathcal{U}\left(\alpha_{i} ; m\right)$, and $\mathcal{L}\left(\alpha_{f} ; n\right)$ are subalgebras of \mathcal{K} for all $m, n \in[0,1]$ and $\left[l_{1}, l_{2}\right] \in[I]$. Suppose that

$$
\widetilde{\alpha}_{t}\left(a_{0} \diamond b_{0}\right) \prec \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(a_{0}\right), \widetilde{\alpha}_{t}\left(b_{0}\right)\right\}
$$

for some $a_{0}, b_{0} \in \mathcal{K}$. Let $\widetilde{\alpha}_{t}\left(a_{0}\right)=\left[\delta_{1}, \delta_{2}\right], \widetilde{\alpha}_{t}\left(b_{0}\right)=\left[\delta_{3}, \delta_{4}\right]$ and $\widetilde{\alpha}_{t}\left(a_{0} \diamond\right.$ $\left.b_{0}\right)=\left[l_{1}, l_{2}\right]$. Then,

$$
\begin{aligned}
{\left[l_{1}, l_{2}\right] } & \prec \operatorname{rmin}\left\{\left[\delta_{1}, \delta_{2}\right],\left[\delta_{3}, \delta_{4}\right]\right\} \\
& =\left[\min \left\{\delta_{1}, \delta_{3}\right\}, \min \left\{\delta_{2}, \delta_{4}\right\}\right] \\
\Rightarrow l_{1}<\min \left\{\delta_{1}, \delta_{3}\right\} & \text { and } l_{2}<\min \left\{\delta_{2}, \delta_{4}\right\} .
\end{aligned}
$$

Taking,

$$
\begin{aligned}
{\left[\eta_{1}, \eta_{2}\right] } & =\frac{1}{2}\left[\widetilde{\alpha}_{t}\left(a_{0} \diamond b_{0}\right)+\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(a_{0}\right), \widetilde{\alpha}_{t}\left(b_{0}\right)\right\}\right] \\
& =\frac{1}{2}\left[\left[l_{1}, l_{2}\right]+\left[\min \left\{\delta_{1}, \delta_{3}\right\}, \min \left\{\delta_{2}, \delta_{4}\right\}\right]\right] \\
& =\left[\frac{1}{2}\left(l_{1}+\min \left\{\delta_{1}, \delta_{3}\right\}\right), \frac{1}{2}\left(l_{2}+\min \left\{\delta_{2}, \delta_{4}\right\}\right)\right] .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& l_{1}<\eta_{1}=\frac{1}{2}\left(l_{1}+\min \left\{\delta_{1}, \delta_{3}\right\}\right)<\min \left\{\delta_{1}, \delta_{3}\right\} \text { and } \\
& l_{2}<\eta_{2}=\frac{1}{2}\left(l_{2}+\min \left\{\delta_{2}, \delta_{4}\right\}\right)<\min \left\{\delta_{2}, \delta_{4}\right\} .
\end{aligned}
$$

Hence, $\left[\min \left\{\delta_{1}, \delta_{3}\right\}, \min \left\{\delta_{2}, \delta_{4}\right\}\right] \succ\left[\eta_{1}, \eta_{2}\right] \succ\left[l_{1}, l_{2}\right]=\widetilde{\alpha}_{t}\left(a_{0} \diamond b_{0}\right)$. Therefore, $a_{0} \diamond b_{0} \notin \mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right)$. On the other hand, we have

$$
\begin{gathered}
\widetilde{\alpha}_{t}\left(a_{0}\right)=\left[\delta_{1}, \delta_{2}\right] \succcurlyeq\left[\min \left\{\delta_{1}, \delta_{3}\right\}, \min \left\{\delta_{2}, \delta_{4}\right\}\right] \succ\left[\eta_{1}, \eta_{2}\right] \\
\widetilde{\alpha}_{t}\left(b_{0}\right)=\left[\delta_{3}, \delta_{4}\right] \succcurlyeq\left[\min \left\{\delta_{1}, \delta_{3}\right\}, \min \left\{\delta_{2}, \delta_{4}\right\}\right] \succ\left[\eta_{1}, \eta_{2}\right] .
\end{gathered}
$$

that is $a_{0}, b_{0} \in \mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right)$. This is a contradiction and, therefore, we have $\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.

Also, if $\alpha_{i}\left(a_{0} \diamond b_{0}\right)<\min \left\{\alpha_{i}\left(a_{0}\right), \alpha_{i}\left(b_{0}\right)\right\}$ for some $a_{0}, b_{0} \in \mathcal{K}$, then $a_{0}, b_{0} \in \mathcal{U}\left(\alpha_{i} ; m_{0}\right)$ but $a_{0} \diamond b_{0} \notin \mathcal{U}\left(\alpha_{i} ; m_{0}\right)$ for $m_{0}=\min \left\{\alpha_{i}\left(a_{0}\right), \alpha_{i}\left(b_{0}\right)\right\}$. This is a contradiction, and thus $\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Similarly, we can show that $\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Consequently, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.

Corollary 4.8. If $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}, then the sets $\mathcal{K}_{\widetilde{\alpha}_{t}}=\left\{\zeta_{1} \in \mathcal{K} \mid \widetilde{\alpha}_{t}\left(\zeta_{1}\right)=\widetilde{\alpha}_{t}(0)\right\}, \mathcal{K}_{\alpha_{i}}=\left\{\zeta_{1} \in \mathcal{K} \mid \alpha_{i}\left(\zeta_{1}\right)=\alpha_{i}(0)\right\}$, and $\mathcal{K}_{\alpha_{f}}=\left\{\zeta_{1} \in \mathcal{K} \mid \alpha_{f}\left(\zeta_{1}\right)=\alpha_{f}(0)\right\}$ are subalgebras of \mathcal{K}.

We say that the subalgebras $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), \mathcal{U}\left(\alpha_{i} ; m\right)$ and $\mathcal{L}\left(\alpha_{f} ; n\right)$ are SB-subalgebras of $\mathcal{N}=\left(\widetilde{\alpha} t, \alpha_{i}, \alpha_{f}\right)$.

Theorem 4.9. Every subalgebra of \mathcal{K} can be realized as an SB-subalgebra of an SB-NSSA of \mathcal{K}.

Proof. Let \mathcal{J} be a subalgebra of \mathcal{K}, and let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be a SB-NSS in \mathcal{K} defined by

$$
\widetilde{\alpha}_{t}\left(\zeta_{1}\right)=\left\{\begin{array}{l}
{\left[\eta_{1}, \eta_{2}\right], \text { if } \zeta_{1} \in \mathcal{J}} \tag{4.1}\\
{[0,0], \text { otherwise }}
\end{array} \quad, \alpha_{i}\left(\zeta_{1}\right)=\left\{\begin{array}{l}
m, \text { if } \zeta_{1} \in \mathcal{J} \\
0, \text { otherwise }
\end{array} \quad\right. \text {, and }\right.
$$

$\alpha_{f}\left(\zeta_{1}\right)=\left\{\begin{array}{l}n, \text { if } \zeta_{1} \in \mathcal{J} \\ 1, \text { otherwise }\end{array} \quad\right.$ where η_{1}, η_{2}, and $m \in(0,1]$ with $\eta_{1}<\eta_{2}$, and $n \in[0,1)$. It is clear that $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[\eta_{1}, \eta_{2}\right]\right)=\mathcal{J}, \mathcal{U}\left(\alpha_{i} ; m\right)=\mathcal{J}$, and $\mathcal{L}\left(\alpha_{f} ; n\right)=\mathcal{J}$.
Let $\zeta_{1}, \eta_{1} \in \mathcal{K}$. If $\zeta_{1}, \eta_{1} \in \mathcal{J}$, then $\zeta_{1} \diamond \eta_{1} \in \mathcal{J}$ and so

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) & =\left[\eta_{1}, \eta_{2}\right]=\operatorname{rmin}\left\{\left[\eta_{1}, \eta_{2}\right],\left[\eta_{1}, \eta_{2}\right]\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) & =m=\min \{m, m\}=\min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) & =n=\max \{n, n\}=\max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

If any one of ζ_{1} and η_{1} is contained in \mathcal{J}, say $\zeta_{1} \in \mathcal{J}$, then $\widetilde{\alpha}_{t}\left(\zeta_{1}\right)=$ $\left[\eta_{1}, \eta_{2}\right], \alpha_{i}\left(\zeta_{1}\right)=m, \alpha_{f}\left(\zeta_{1}\right)=n, \widetilde{\alpha}_{t}\left(\eta_{1}\right)=[0,0], \alpha_{i}\left(\eta_{1}\right)=0$, and $\alpha_{f}\left(\eta_{1}\right)=1$. Hence,

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq[0,0]=\operatorname{rmin}\left\{\left[\eta_{1}, \eta_{2}\right],[0,0]\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) \geq 0=\min \{\operatorname{mos}, 0\}=\min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq 1=\max \{n, 1\}=\max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

If $\zeta_{1}, \eta_{1} \notin \mathcal{J}$, then $\widetilde{\alpha}_{t}\left(\zeta_{1}\right)=[0,0], \alpha_{i}\left(\zeta_{1}\right)=0, \alpha_{f}\left(\zeta_{1}\right)=1, \widetilde{\alpha}_{t}\left(\eta_{1}\right)=[0,0]$, $\alpha_{i}\left(\eta_{1}\right)=0$, and $\alpha_{f}\left(\eta_{1}\right)=1$. It follows that

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq[0,0]=\operatorname{rmin}\{[0,0],[0,0]\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) \geq 0=\min \{0,0\}=\min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq 1=\max \{1,1\}=\max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.
Theorem 4.10. For any non-empty set \mathcal{J} of \mathcal{K}, let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS in \mathcal{K} as defined in (4.1). If $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}, then \mathcal{J} is a subalgebra of \mathcal{K}.
Proof. Let $\zeta_{1}, \eta_{1} \in \mathcal{J}$. Then $\widetilde{\alpha}_{t}\left(\zeta_{1}\right)=\left[\eta_{1}, \eta_{2}\right], \alpha_{i}\left(\zeta_{1}\right)=m, \alpha_{f}\left(\zeta_{1}\right)=n$, $\widetilde{\alpha}_{t}\left(\eta_{1}\right)=\left[\eta_{1}, \eta_{2}\right], \alpha_{i}\left(\eta_{1}\right)=m$, and $\alpha_{f}\left(\eta_{1}\right)=n$. Thus

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}=\left[\eta_{1}, \eta_{2}\right] \\
& \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}=m \\
& \alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}=n
\end{aligned}
$$

Therefore, $\zeta_{1} \diamond \eta_{1} \in \mathcal{J}$. Hence, \mathcal{J} is a subalgebra of \mathcal{K}.
Theorem 4.11. Given an SB-NSSA $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ of a BCI-A K , let $\mathcal{N}^{\diamond}=\left(\widetilde{\alpha}_{t}^{\diamond}, \alpha_{i}^{\diamond}, \alpha_{f}^{\diamond}\right)$ be an SB-NSS defined by $\widetilde{\alpha}_{t}^{\diamond}\left(\zeta_{1}\right)=\widetilde{\alpha}_{t}\left(0 \diamond \zeta_{1}\right)$, $\alpha_{i}^{\diamond}\left(\zeta_{1}\right)=\alpha_{i}\left(0 \diamond \zeta_{1}\right)$, and $\alpha_{f}{ }^{\circ}\left(\zeta_{1}\right)=\alpha_{f}\left(0 \diamond \zeta_{1}\right)$ for all $\zeta_{1} \in \mathcal{K}$. Then $\mathcal{N}^{\diamond}=\left(\widetilde{\alpha}_{t}^{\diamond}, \alpha_{i}^{\diamond}, \alpha_{f}^{\diamond}\right)$ is an SB-NSSA of \mathcal{K}.
Proof. In a BCI-A, we have that $0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)=\left(0 \diamond \zeta_{1}\right) \diamond\left(0 \diamond \eta_{1}\right)$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Then

$$
\begin{aligned}
\widetilde{\alpha}_{t}^{\diamond}\left(\zeta_{1} \diamond \eta_{1}\right) & =\widetilde{\alpha}_{t}\left(0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\widetilde{\alpha}_{t}\left(\left(0 \diamond \zeta_{1}\right) \diamond\left(0 \diamond \eta_{1}\right)\right) \\
& \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(0 \diamond \zeta_{1}\right), \widetilde{\alpha}_{t}\left(0 \diamond \eta_{1}\right)\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}^{\diamond}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}^{\diamond}\left(\eta_{1}\right)\right\}, \\
\alpha_{i}^{\diamond}\left(\zeta_{1} \diamond \eta_{1}\right) & =\alpha_{i}\left(0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\alpha_{i}\left(\left(0 \diamond \zeta_{1}\right) \diamond\left(0 \diamond \eta_{1}\right)\right) \\
& \geq \min \left\{\alpha_{i}\left(0 \diamond \zeta_{1}\right), \alpha_{i}\left(0 \diamond \eta_{1}\right)\right\}=\min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}{ }^{\circ}\left(\eta_{1}\right)\right\}, \\
\alpha_{f}^{\diamond}\left(\zeta_{1} \diamond \eta_{1}\right) & =\alpha_{f}\left(0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\alpha_{f}\left(\left(0 \diamond \zeta_{1}\right) \diamond\left(0 \diamond \eta_{1}\right)\right) \\
& \leq \max \left\{\alpha_{f}\left(0 \diamond \zeta_{1}\right), \alpha_{f}\left(0 \diamond \eta_{1}\right)\right\}=\max \left\{\alpha_{f}^{\diamond}\left(\zeta_{1}\right), \alpha_{f}^{\diamond}\left(\eta_{1}\right)\right\}
\end{aligned}
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Therefore, $\mathcal{N}^{\triangleright}=\left(\widetilde{\alpha}_{t}^{\diamond}, \alpha_{i}^{\diamond}, \alpha_{f}{ }^{\diamond}\right)$ is an SB-NSSA of \mathcal{K}.
Theorem 4.12. Let $\phi: \mathcal{K} \rightarrow \mathcal{Y}$ be a homomorphism of a BCK/BCIA. If $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{Y}, then $\phi^{-1}(\mathcal{N})=\left(\phi^{-1}\left(\widetilde{\alpha}_{t}\right)\right.$, $\left.\phi^{-1}\left(\alpha_{i}\right), \phi^{-1}\left(\alpha_{f}\right)\right)$ is an SB-NSSA of \mathcal{K}, where $\phi^{-1}\left(\widetilde{\alpha}_{t}\right)\left(\zeta_{1}\right)=\widetilde{\alpha}_{t}\left(\phi\left(\zeta_{1}\right)\right)$, $\phi^{-1}\left(\alpha_{i}\right)\left(\zeta_{1}\right)=\alpha_{i}\left(\phi\left(\zeta_{1}\right)\right)$, and $\phi^{-1}\left(\alpha_{f}\right)\left(\zeta_{1}\right)=\alpha_{f}\left(\phi\left(\zeta_{1}\right)\right)$ for all $\zeta_{1} \in \mathcal{K}$.

Proof. Let $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Then

$$
\begin{aligned}
\phi^{-1}\left(\widetilde{\alpha}_{t}\right)\left(\zeta_{1} \diamond \eta_{1}\right) & =\widetilde{\alpha}_{t}\left(\phi\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\widetilde{\alpha}_{t}\left(\phi\left(\zeta_{1}\right) \diamond \phi\left(\eta_{1}\right)\right) \\
& \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\phi\left(\zeta_{1}\right)\right), \widetilde{\alpha}_{t}\left(\phi\left(\eta_{1}\right)\right)\right\} \\
& =\operatorname{rmin}\left\{\phi^{-1}\left(\widetilde{\alpha}_{t}\right)\left(\zeta_{1}\right), \phi^{-1}\left(\widetilde{\alpha}_{t}\right)\left(\eta_{1}\right)\right\}, \\
\phi^{-1}\left(\alpha_{i}\right)\left(\zeta_{1} \diamond \eta_{1}\right) & =\alpha_{i}\left(\phi\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\alpha_{i}\left(\phi\left(\zeta_{1}\right) \diamond \phi\left(\eta_{1}\right)\right) \\
& \geq \min \left\{\alpha_{i}\left(\phi\left(\zeta_{1}\right)\right), \alpha_{i}\left(\phi\left(\eta_{1}\right)\right)\right\} \\
& =\min \left\{\phi^{-1}\left(\alpha_{i}\right)\left(\zeta_{1}\right), \phi^{-1}\left(\alpha_{i}\right)\left(\eta_{1}\right)\right\}, \\
\phi^{-1}\left(\alpha_{f}\right)\left(\zeta_{1} \diamond \eta_{1}\right) & =\alpha_{f}\left(\phi\left(\zeta_{1} \diamond \eta_{1}\right)\right)=\alpha_{f}\left(\phi\left(\zeta_{1}\right) \diamond \phi\left(\eta_{1}\right)\right) \\
& \leq \max \left\{\alpha_{f}\left(\phi\left(\zeta_{1}\right)\right), \alpha_{f}\left(\phi\left(\eta_{1}\right)\right)\right\} \\
& =\max \left\{\phi^{-1}\left(\alpha_{f}\right)\left(\zeta_{1}\right), \phi^{-1}\left(\alpha_{f}\right)\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Hence, $\phi^{-1}(\mathcal{N})=\left(\phi^{-1}\left(\widetilde{\alpha}_{t}\right), \phi^{-1}\left(\alpha_{i}\right), \phi^{-1}\left(\alpha_{f}\right)\right)$ is an SB-NSSA of \mathcal{K}.
Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS in \mathcal{K}. We denote

$$
\begin{aligned}
\mathfrak{b} & =[1,1]-\operatorname{rsup}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \mid \zeta_{1} \in \mathcal{K}\right\} \\
\mathfrak{s} & =1-\sup \left\{\alpha_{i}\left(\zeta_{1}\right) \mid \zeta_{1} \in \mathcal{K}\right\} \\
\mathfrak{n} & =\inf \left\{\alpha_{f}\left(\zeta_{1}\right) \mid \zeta_{1} \in \mathcal{K}\right\} .
\end{aligned}
$$

For any $\hat{a} \in[[0,0], \mathfrak{b}], b \in[0, \mathfrak{s}]$, and $c \in[0, \mathfrak{n}]$ we define $\widetilde{\alpha}_{t}^{\hat{a}}\left(\zeta_{1}\right)=\widetilde{\alpha}_{t}\left(\zeta_{1}\right)+$ $\hat{a}, \alpha_{i}{ }^{b}\left(\zeta_{1}\right)=\alpha_{i}\left(\zeta_{1}\right)+b$, and $\alpha_{f}{ }^{c}=\alpha_{f}\left(\zeta_{1}\right)-c$ then $\mathcal{N}^{T}=\left(\widetilde{\alpha}_{t}^{\hat{a}}, \alpha_{i}{ }^{b}, \alpha_{f}{ }^{c}\right)$ is an SB-NSS in \mathcal{K}, which is called a (\hat{a}, b, c)-translative SB-NSS of \mathcal{K}.

Theorem 4.13. If $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}, then the ($\hat{a}, b, c)$-translative $S B$-NSS of $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is also an SB-NSSA of \mathcal{K}.

Proof. For any $\zeta_{1}, \eta_{1} \in \mathcal{K}$, we have,

$$
\begin{aligned}
\widetilde{\alpha}_{t}^{\hat{a}}\left(\zeta_{1} \diamond \eta_{1}\right) & =\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right)+\hat{a} \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}+\hat{a} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right)+\hat{a}, \widetilde{\alpha}_{t}\left(\eta_{1}\right)+\hat{a}\right\}=\min \left\{\widetilde{\alpha}_{t}^{\hat{a}}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}^{\hat{a}}\left(\eta_{1}\right)\right\}, \\
\alpha_{i}^{b}\left(\zeta_{1} \diamond \eta_{1}\right) & \left.=\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right)+b \alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}+b \\
& =\min \left\{\alpha_{i}\left(\zeta_{1}\right)+b, \alpha_{i}\left(\eta_{1}\right)+b\right\}=\min \left\{\alpha_{i}^{b}\left(\zeta_{1}\right), \alpha_{i}^{b}\left(\eta_{1}\right)\right\}, \\
\alpha_{f}^{c}\left(\zeta_{1} \diamond \eta_{1}\right) & =\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right)-c \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}-c \\
& =\max \left\{\alpha_{f}\left(\zeta_{1}\right)-c, \alpha_{f}\left(\eta_{1}\right)-c\right\}=\max \left\{\alpha_{f}^{c}\left(\zeta_{1}\right), \alpha_{f}^{c}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Therefore, $\mathcal{N}^{T}=\left(\widetilde{\alpha}_{t}^{\hat{a}}, \alpha_{i}^{b}, \alpha_{f}{ }^{c}\right)$ is an SB-NSSA of \mathcal{K}.

Theorem 4.14. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an $S B-N S S$ in \mathcal{K} such that its (\hat{a}, b, c)-translative $S B-N S S$ is an $S B-N S S A$ of \mathcal{K} for $\hat{a} \in[[0,0], \mathfrak{b}]$, $b \in[0, \mathfrak{s}]$, and $c \in[0, \mathfrak{n}]$. Then $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.

Proof. Assume that $\mathcal{N}^{T}=\left(\widetilde{\alpha}_{t}^{\hat{a}}, \alpha_{i}{ }^{b}, \alpha_{f}{ }^{c}\right)$ is an SB-NSSA of \mathcal{K} for $\hat{a} \in$ $[[0,0], \mathfrak{b}], b \in[0, \mathfrak{s}]$, and $c \in[0, \mathfrak{n}]$. Let $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Then

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right)+\hat{a} & =\widetilde{\alpha}_{t}^{\hat{a}}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}^{\hat{a}}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}^{\hat{a}}\left(\eta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right)+\hat{a}, \widetilde{\alpha}_{t}\left(\eta_{1}\right)+\hat{a}\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}+\hat{a}, \\
\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right)+b & =\alpha_{i}{ }^{b}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{i}^{b}\left(\zeta_{1}\right), \alpha_{i}^{b}\left(\eta_{1}\right)\right\} \\
& =\min \left\{\alpha_{i}\left(\zeta_{1}\right)+b, \alpha_{i}\left(\eta_{1}\right)+b\right\} \\
& =\min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}+b, \\
\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right)-c & =\alpha_{f}^{c}\left(\zeta_{1} \diamond \eta_{1}\right) \leq \max \left\{\alpha_{f}^{c}\left(\zeta_{1}\right), \alpha_{f}^{c}\left(\eta_{1}\right)\right\} \\
& =\max \left\{\alpha_{f}\left(\zeta_{1}\right)-c, \alpha_{f}\left(\eta_{1}\right)-c\right\} \\
& =\max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}-c .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}
\end{aligned}
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Hence, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.

5. SB-NEUTROSOPHIC IDEAL

Definition 5.1. Let \mathcal{K} be a BCK/BCI-A. An SB-NSS $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ in \mathcal{K} is called an SB-neutrosophic ideal (SB-NSI) of \mathcal{K} if it satisfies
(SB-NSI 1) $\widetilde{\alpha}_{t}(0) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}(0) \geq \alpha_{i}\left(\zeta_{1}\right)$, and $\alpha_{f}(0) \leq \alpha_{f}(x)$
$\left(\right.$ SB-NSI 2) $\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}$
(SB-NSI 3) $\alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}$
(SB-NSI 4) $\alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.
Example 5.2. Consider a set $\mathcal{K}=\left\{0, \zeta_{1}, \eta_{1}, \theta_{1}\right\}$ with the binary operation ' \diamond ' as given in the Table 3. Then $(\mathcal{K} ; \diamond, 0)$ is a BCI-A.

Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS in \mathcal{K} as defined in the Table 4. It is routine to verify that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}.

Table 3. BCI-algebra

\diamond	0	ζ_{1}	η_{1}	θ_{1}
0	0	0	0	θ_{1}
ζ_{1}	ζ_{1}	0	0	θ_{1}
η_{1}	η_{1}	η_{1}	0	θ_{1}
θ_{1}	θ_{1}	θ_{1}	θ_{1}	0

Table 4. SB-Neutrosophic set

\mathcal{K}	$\widetilde{\alpha}_{t}(\zeta)$	$\alpha_{i}(\zeta)$	$\alpha_{f}(\zeta)$
0	$[0.8,1]$	0.9	0.1
ζ_{1}	$[0.7,0.8]$	0.7	0.3
η_{1}	$[0.4,0.6]$	0.5	0.6
θ_{1}	$[0.2,0.5]$	0.1	0.8

Proposition 5.3. Let \mathcal{K} be a $B C K / B C I-A$. Then every $S B-N S I \mathcal{N}=$ $\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ of \mathcal{K} satisfies the following assertion

$$
\zeta_{1} \diamond \eta_{1} \leq \theta_{1} \Rightarrow\left(\begin{array}{c}
\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\} \tag{5.1}\\
\alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\theta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right\}
\end{array}\right)
$$

for all $\zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K}$.
Proof. Let $\zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K}$ be such that $\zeta_{1} \diamond \eta_{1} \leq \theta_{1}$. Then

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) & \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \theta_{1}\right), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\}=\widetilde{\alpha}_{t}\left(\theta_{1}\right), \\
\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) & \geq \min \left\{\alpha_{i}\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \theta_{1}\right), \alpha_{i}\left(\theta_{1}\right)\right\} \\
& =\min \left\{\alpha_{i}(0), \alpha_{i}\left(\theta_{1}\right)\right\}=\alpha_{i}\left(\theta_{1}\right), \\
\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \theta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right\} \\
& =\max \left\{\alpha_{f}(0), \alpha_{f}\left(\theta_{1}\right)\right\}=\alpha_{f}\left(\theta_{1}\right) .
\end{aligned}
$$

It follows that for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$, we have

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\theta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \geq \min \left\{\alpha_{i}\left(\theta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} \leq \max \left\{\alpha_{f}\left(\theta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Hence, the proof is completed.

Theorem 5.4. Every $S B$-NSS in a BCK/BCI-A K satisfying (SB-NSI 1) and assertion (5.1) in Proposition 5.3 is an SB-NSI of \mathcal{K}.

Proof. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS in \mathcal{K} satisfying (SB-NSI 1) and assertion (5.1). Since $\zeta_{1} \diamond\left(\zeta_{1} \diamond \eta_{1}\right) \leq \eta_{1}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$, we have,

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}.
Theorem 5.5. Given an $S B-N S S \mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ in a BCK/BCI-A \mathcal{K}. Then $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K} if and only if $\alpha_{t}{ }^{-}, \alpha_{t}{ }^{+}$, α_{i}, and $\alpha_{f}{ }^{c}$ are FIs of \mathcal{K}.

Proof. Suppose that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}. Then we have, for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.

$$
\begin{aligned}
& \widetilde{\alpha}_{t}(0) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}(0) \geq \alpha_{i}\left(\zeta_{1}\right), \text { and } \alpha_{f}(0) \leq \alpha_{f}\left(\zeta_{1}\right) \\
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} . \\
& \widetilde{\alpha}_{t}(0) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \Rightarrow\left[\alpha_{t}^{-}(0), \alpha_{t}^{+}(0)\right] \succcurlyeq\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right] \\
& \Rightarrow \alpha_{t}^{-}(0) \geq \alpha_{t}^{-}\left(\zeta_{1}\right) \text { and } \alpha_{t}^{+}(0) \geq \alpha_{t}^{+}\left(\zeta_{1}\right) . \\
& \alpha_{f}(0) \leq \alpha_{f}\left(\zeta_{1}\right) \Rightarrow 1-\alpha_{f}(0) \geq 1-\alpha_{f}\left(\zeta_{1}\right) \Rightarrow \alpha_{f}^{c}(0) \geq \alpha_{f}^{c}\left(\zeta_{1}\right) .
\end{aligned}
$$

Now $\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}$
$\Rightarrow\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right]$

$$
\succcurlyeq \operatorname{rmin}\left\{\left[\alpha_{t}^{-}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1} \diamond \eta_{1}\right)\right],\left[\alpha_{t}^{-}\left(\eta_{1}\right), \alpha_{t}^{+}\left(\eta_{1}\right)\right]\right\}
$$

$$
=\left[\min \left\{\alpha_{t}^{-}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}^{-}\left(\eta_{1}\right)\right\}, \min \left\{\alpha_{t}^{+}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}^{+}\left(\eta_{1}\right)\right\}\right]
$$

Therefore, $\alpha_{t}{ }^{-}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{t}{ }^{-}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}{ }^{-}\left(\eta_{1}\right)\right\}$,

$$
\alpha_{t}^{+}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{t}^{+}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{t}^{+}\left(\eta_{1}\right)\right\} .
$$

$$
\begin{aligned}
\text { Also } \alpha_{f}\left(\zeta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} \\
\Rightarrow 1-\alpha_{f}\left(\zeta_{1}\right) & \geq 1-\max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} \\
\Rightarrow \alpha_{f}^{c}\left(\zeta_{1}\right) & \geq \min \left\{1-\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), 1-\alpha_{f}\left(\eta_{1}\right)\right\} \\
\Rightarrow \alpha_{f}^{c}\left(\zeta_{1}\right) & \geq \min \left\{\alpha_{f}^{c}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}{ }^{c}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Therefore, $\alpha_{t}{ }^{-}, \alpha_{t}{ }^{+}, \alpha_{i}$, and $\alpha_{f}{ }^{c}$ are FIs of \mathcal{K}. The converse part is obvious.

Theorem 5.6. An SB-NSS $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ of \mathcal{K} is an SB-NSI of \mathcal{K} if and only if the non-empty sets $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[l_{1}, l_{2}\right]\right), \mathcal{U}\left(\alpha_{i} ; m\right)$, and $\mathcal{L}\left(\alpha_{f} ; n\right)$ are ideals of \mathcal{K} for all $m, n \in[0,1]$ and $\left[l_{1}, l_{2}\right] \in[I]$.

Proof. The proof of theorem follows a similar approach to the proof presented in the Theorem 4.7.

Theorem 5.7. Given an ideal \mathcal{J} of a BCK/BCI-A \mathcal{K}, let $\mathcal{N}=\left(\widetilde{\alpha}_{t}\right.$, α_{i}, α_{f}) be an SB-NSS of \mathcal{K} as defined in Equation (4.1). Then $\mathcal{N}=$ $\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K} such that $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[\eta_{1}, \eta_{2}\right]\right)=\mathcal{J}, \mathcal{U}\left(\alpha_{i} ; m\right)=$ \mathcal{J}, and $\mathcal{L}\left(\alpha_{f} ; n\right)=\mathcal{J}$.
Proof. Let $\zeta_{1}, \eta_{1} \in \mathcal{K}$. If $\zeta_{1} \diamond \eta_{1} \in \mathcal{J}$ and $\eta_{1} \in \mathcal{J}$, then $\zeta_{1} \in \mathcal{J}$ and so $\widetilde{\alpha}_{t}\left(\zeta_{1}\right)=\left[\eta_{1}, \eta_{2}\right]=\operatorname{rmin}\left\{\left[\eta_{1}, \eta_{2}\right],\left[\eta_{1}, \eta_{2}\right]\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}$
$\alpha_{i}\left(\zeta_{1}\right)=m=\min \{m, m\}=\min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}$
$\alpha_{f}\left(\zeta_{1}\right)=n=\max \{n, n\}=\max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}$.
If any one of $\zeta_{1} \diamond \eta_{1}$ and η_{1} is contained in \mathcal{J}, say $\zeta_{1} \diamond \eta_{1} \in \mathcal{J}$, then $\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right)=\left[\eta_{1}, \eta_{2}\right], \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right)=m, \alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right)=n, \widetilde{\alpha}_{t}\left(\eta_{1}\right)=[0,0]$, $\alpha_{i}\left(\eta_{1}\right)=0$, and $\alpha_{f}\left(\eta_{1}\right)=1$. Hence,

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq[0,0]=\operatorname{rmin}\left\{\left[\eta_{1}, \eta_{2}\right],[0,0]\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1}\right) \geq 0=\min \{\operatorname{m}, 0\}=\min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1}\right) \leq 1=\max \{n, 1\}=\max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

If $\zeta_{1} \diamond \eta_{1} \notin \mathcal{J}$ and $\eta_{1} \notin \mathcal{J}$, then $\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right)=[0,0], \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right)=0$, $\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right)=1, \widetilde{\alpha}_{t}\left(\eta_{1}\right)=[0,0], \alpha_{i}\left(\eta_{1}\right)=0$, and $\alpha_{f}\left(\eta_{1}\right)=1$. It follows that

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq[0,0]=\operatorname{rmin}\{[0,0],[0,0]\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1}\right) \geq 0=\min \{0,0\}=\min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1}\right) \leq 1=\max \{1,1\}=\max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

It is obvious that $\widetilde{\alpha}_{t}(0) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}(0) \geq \alpha_{i}\left(\zeta_{1}\right)$, and $\alpha_{f}(0) \leq \alpha_{f}\left(\zeta_{1}\right)$ for all $\zeta_{1} \in \mathcal{K}$. Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}. Obviously, we have $\mathcal{U}\left(\widetilde{\alpha}_{t} ;\left[\eta_{1}, \eta_{2}\right]\right)=\mathcal{J}, \mathcal{U}\left(\alpha_{i} ; m\right)=\mathcal{J}$, and $\mathcal{L}\left(\alpha_{f} ; n\right)=\mathcal{J}$.

Theorem 5.8. For any non-empty subset \mathcal{J} of \mathcal{K}, let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS of \mathcal{K} as defined in Equation (4.1). If $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}, then \mathcal{J} is an ideal of \mathcal{K}.

Proof. Obviously, $0 \in \mathcal{J}$. Let $\zeta_{1}, \eta_{1} \in \mathcal{K}$ be such that $\zeta_{1} \diamond \eta_{1}$ and $\eta_{1} \in \mathcal{J}$. Then $\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right)=\left[\eta_{1}, \eta_{2}\right], \alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right)=m, \alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right)=n$, $\widetilde{\alpha}_{t}\left(\eta_{1}\right)=\left[\eta_{1}, \eta_{2}\right], \alpha_{i}\left(\eta_{1}\right)=m$, and $\alpha_{f}\left(\eta_{1}\right)=n$. Thus,

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}=\left[\eta_{1}, \eta_{2}\right] \\
& \alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}=m \\
& \alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}=n
\end{aligned}
$$

and therefore, $\zeta_{1} \in \mathcal{J}$. Hence, \mathcal{J} is an ideal of \mathcal{K}.
Theorem 5.9. In a BCK-A \mathcal{K}, every $\operatorname{SB-NSI}$ is an $S B-N S S A$ of \mathcal{K}.
Proof. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSI of a BCK-A \mathcal{K}. Since $\left(\zeta_{1} \diamond\right.$ $\left.\eta_{1}\right) \diamond \zeta_{1} \leq \eta_{1}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$, it follows from Proposition 5.3 that

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) & \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) & \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}
\end{aligned}
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Hence, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of a BCK-A \mathcal{K}.

The converse of the Theorem 5.9 may not be true, as shown in the following example.

Example 5.10. Consider a BCK-A $\mathcal{K}=\left\{0, \zeta_{1}, \eta_{1}, \theta_{1}\right\}$ with a binary operation ' \diamond ' as shown in the Table 5. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SBNSS of \mathcal{K} as defined in the Table 6. Then $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K} However, it is not an SB-NSI of a BCK-A \mathcal{K} because $\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \preccurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}$.

In the following theorem, we provide a condition for an SB-NSSA to be an SB-NSI of a BCK-A.

TABLE 5. BCK-algebra

\diamond	0	ζ_{1}	η_{1}	θ_{1}
0	0	0	0	0
ζ_{1}	ζ_{1}	0	0	ζ_{1}
η_{1}	η_{1}	ζ_{1}	0	η_{1}
θ_{1}	θ_{1}	θ_{1}	θ_{1}	0

Table 6. SB-Neutrosophic set

\mathcal{K}	$\widetilde{\alpha}_{t}(\zeta)$	$\alpha_{i}(\zeta)$	$\alpha_{f}(\zeta)$
0	$[0.5,0.9]$	0.8	0.3
ζ_{1}	$[0.4,0.7]$	0.3	0.4
η_{1}	$[0.5,0.9]$	0.3	0.5
θ_{1}	$[0.1,0.3]$	0.7	1

Theorem 5.11. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an $S B-N S S A$ of a $B C K-A \mathcal{K}$ satisfying the conditions

$$
\zeta_{1} \diamond \eta_{1} \leq \theta_{1} \Rightarrow\left(\begin{array}{c}
\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\} \tag{5.2}\\
\alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\theta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right\}
\end{array}\right)
$$

for all $\zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K}$. Then, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an $S B-N S I$ of \mathcal{K}.
Proof. For any $\zeta_{1} \in \mathcal{K}$, we get

$$
\begin{aligned}
\widetilde{\alpha}_{t}(0) & =\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \\
& \succcurlyeq \operatorname{rmin}\left\{\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right],\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right]\right\} \\
& =\left[\alpha_{t}^{-}\left(\zeta_{1}\right), \alpha_{t}^{+}\left(\zeta_{1}\right)\right]=\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \\
\alpha_{i}(0) & =\alpha_{i}\left(\zeta_{1} \diamond \zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\}=\alpha_{i}\left(\zeta_{1}\right) \\
\alpha_{f}(0) & =\alpha_{f}\left(\zeta_{1} \diamond \zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\}=\alpha_{f}\left(\zeta_{1}\right) .
\end{aligned}
$$

Since $\zeta_{1} \diamond\left(\zeta_{1} \diamond \eta_{1}\right) \leq \eta_{1}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$, it follows that

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}
\end{aligned}
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}.

Definition 5.12. An SB-NSI of $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ of a BCI-A \mathcal{K} is said to be closed if $\widetilde{\alpha}_{t}\left(0 \diamond \zeta_{1}\right) \succcurlyeq \widetilde{\alpha}_{t}\left(\zeta_{1}\right), \alpha_{i}\left(0 \diamond \zeta_{1}\right) \geq \alpha_{i}\left(\zeta_{1}\right)$, and $\alpha_{f}\left(0 \diamond \zeta_{1}\right) \leq \alpha_{f}\left(\zeta_{1}\right)$ for all $\zeta_{1} \in \mathcal{K}$.

Theorem 5.13. In a BCI-A \mathcal{K}, every closed SB-NSI is an SB-NSSA.
Proof. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be a closed SB-NSI of a BCI-A \mathcal{K}. By using Definition 5.1, (2.8), (2.2), and Definition 5.12, we obtain for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right) & \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\left(\zeta_{1} \diamond \zeta_{1}\right) \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(0 \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\}, \\
\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right) & \geq \min \left\{\alpha_{i}\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\} \\
& =\min \left\{\alpha_{i}\left(\left(\zeta_{1} \diamond \zeta_{1}\right) \diamond \eta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\} \\
& =\min \left\{\alpha_{i}\left(0 \diamond \eta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\} \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\}, \\
\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\left(\zeta_{1} \diamond \eta_{1}\right) \diamond \zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} \\
& =\max \left\{\alpha_{f}\left(\left(\zeta_{1} \diamond \zeta_{1}\right) \diamond \eta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} \\
& =\max \left\{\alpha_{f}\left(0 \diamond \eta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} .
\end{aligned}
$$

Hence, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.
Theorem 5.14. In a weakly BCK-A \mathcal{K}, every SB-NSI is closed.
Proof. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSI of a weakly BCK-A \mathcal{K}. By using Definition 5.1 and (2.15), for any $\zeta_{1} \in \mathcal{K}$, we obtain

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(0 \diamond \zeta_{1}\right) & \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\left(0 \diamond \zeta_{1}\right) \diamond \zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\}=\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \\
\alpha_{i}\left(0 \diamond \zeta_{1}\right) & \geq \min \left\{\alpha_{i}\left(\left(0 \diamond \zeta_{1} \diamond \zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\}\right. \\
& =\min \left\{\alpha_{i}(0), \alpha_{i}\left(\zeta_{1}\right)\right\}=\alpha_{i}\left(\zeta_{1}\right), \\
\alpha_{f}\left(0 \diamond \zeta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\left(0 \diamond \zeta_{1}\right) \diamond \zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} \\
& =\max \left\{\alpha_{f}(0), \alpha_{f}\left(\zeta_{1}\right)\right\}=\alpha_{f}\left(\zeta_{1}\right) .
\end{aligned}
$$

Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is a closed SB-NSI of \mathcal{K}.
Corollary 5.15. In a weakly BCK-A, every SB-NSI is an SB-NSSA of \mathcal{K}.

In the following example, we show that any SB-NSSA may not be an SB-NSI of a BCI-A.

Example 5.16. Consider a BCI-A $\mathcal{K}=\left\{0, \zeta_{1}, \eta_{1}, \theta_{1}, \zeta_{4}, \zeta_{5}\right\}$ with binary operation ' \diamond ' as shown in the Table 7. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS of \mathcal{K} defined in the Table 8. It is routine to verify that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}. However, it is not an SB-NSI of \mathcal{K} since $\widetilde{\alpha}_{t}\left(\zeta_{4}\right) \prec$ $r \min \left\{\widetilde{\alpha}_{t}\left(\zeta_{4} \diamond \theta_{1}\right), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\}$.

Table 7. BCI-algebra

\diamond	0	ζ_{1}	η_{1}	θ_{1}	ζ_{4}	ζ_{5}
0	0	0	θ_{1}	η_{1}	θ_{1}	θ_{1}
ζ_{1}	ζ_{1}	0	θ_{1}	η_{1}	θ_{1}	θ_{1}
η_{1}	η_{1}	η_{1}	0	θ_{1}	0	0
θ_{1}	θ_{1}	θ_{1}	η_{1}	0	η_{1}	η_{1}
ζ_{4}	ζ_{4}	η_{1}	ζ_{1}	θ_{1}	0	ζ_{1}
ζ_{5}	ζ_{5}	η_{1}	ζ_{1}	θ_{1}	ζ_{1}	0

Table 8. SB-Neutrosophic set

\mathcal{K}	$\widetilde{\alpha}_{t}\left(\zeta_{1}\right)$	$\alpha_{i}\left(\zeta_{1}\right)$	$\alpha_{f}\left(\zeta_{1}\right)$
0	$[0.5,0.8]$	0.9	0.1
ζ_{1}	$[0.1,0.3]$	0.3	0.7
η_{1}	$[0.5,0.8]$	0.9	0.1
θ_{1}	$[0.5,0.8]$	0.9	0.1
ζ_{4}	$[0.1,0.3]$	0.3	0.7
ζ_{5}	$[0.1,0.3]$	0.3	0.7

Theorem 5.17. In a p-semisimple BCI-A \mathcal{K}, the following are equivalent
(i) $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is a closed SB-NSI of \mathcal{K}.
(ii) $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.

Proof. (i) \Rightarrow (ii) See Theorem 5.13.
(ii) $\Rightarrow(i)$

Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}. For any $\zeta_{1} \in \mathcal{K}$, we obtain

$$
\begin{aligned}
\widetilde{\alpha}_{t}(0) & =\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\}=\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \\
\alpha_{i}(0) & =\alpha_{i}\left(\zeta_{1} \diamond \zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\}=\alpha_{i}\left(\zeta_{1}\right) \\
\alpha_{f}(0) & =\alpha_{f}\left(\zeta_{1} \diamond \zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\}=\alpha_{f}\left(\zeta_{1}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(0 \diamond \zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\}=\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \\
& \alpha_{i}\left(0 \diamond \zeta_{1}\right) \geq \min \left\{\alpha_{i}(0), \alpha_{i}\left(\zeta_{1}\right)\right\}=\alpha_{i}\left(\zeta_{1}\right) \\
& \alpha_{f}\left(0 \diamond \zeta_{1}\right) \leq \max \left\{\alpha_{f}(0), \alpha_{f}\left(\zeta_{1}\right)\right\}=\alpha_{f}\left(\zeta_{1}\right)
\end{aligned}
$$

for all $\zeta_{1} \in \mathcal{K}$. Let $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Then

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1}\right) & =\widetilde{\alpha}_{t}\left(\eta_{1} \diamond\left(\eta_{1} \diamond \zeta_{1}\right)\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1} \diamond \zeta_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)\right\} \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}, \\
\alpha_{i}\left(\zeta_{1}\right) & =\alpha_{i}\left(\eta_{1} \diamond\left(\eta_{1} \diamond \zeta_{1}\right)\right) \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\eta_{1} \diamond \zeta_{1}\right)\right\} \\
& =\min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)\right\} \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}, \\
\alpha_{f}\left(\zeta_{1}\right) & =\alpha_{f}\left(\eta_{1} \diamond\left(\eta_{1} \diamond \zeta_{1}\right)\right) \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\eta_{1} \diamond \zeta_{1}\right)\right\} \\
& =\max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(0 \diamond\left(\zeta_{1} \diamond \eta_{1}\right)\right)\right\} \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} .
\end{aligned}
$$

Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is a closed SB-NSI of \mathcal{K}.
Since every associative BCI-A is a p-semisimple, we have the following corollary
Corollary 5.18. In an associative BCI-A \mathcal{K}, the following are equivalent
(i) $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is a closed SB-NSI of \mathcal{K}.
(ii) $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSSA of \mathcal{K}.

Definition 5.19. Let \mathcal{K} be an (s)-BCK-A. An SB-NSS $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is called an SB-neutrosophic o-subalgebra of \mathcal{K} if the following assertions are valid

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1} \circ \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1} \circ \eta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1} \circ \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\} \text { for all } \zeta_{1}, \eta_{1} \in \mathcal{K} .
\end{aligned}
$$

Lemma 5.20. Every SB-NSI of a BCK/BCI-A \mathcal{K} satisfies the following assertion

$$
\zeta_{1} \leq \eta_{1} \Rightarrow \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \widetilde{\alpha}_{t}\left(\eta_{1}\right), \alpha_{i}\left(\zeta_{1}\right) \geq \alpha_{i}\left(\eta_{1}\right), \text { and } \alpha_{f}\left(\zeta_{1}\right) \leq \alpha_{f}\left(\eta_{1}\right)
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.
Proof. Assume that $\zeta_{1} \leq \eta_{1}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$. Then $\zeta_{1} \diamond \eta_{1}=0$ and so

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\}=\widetilde{\alpha}_{t}\left(\eta_{1}\right) \\
& \alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\}=\min \left\{\alpha_{i}(0), \alpha_{i}\left(\eta_{1}\right)\right\}=\alpha_{i}\left(\eta_{1}\right) \\
& \alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}=\max \left\{\alpha_{f}(0), \alpha_{f}\left(\eta_{1}\right)\right\}=\alpha_{f}\left(\eta_{1}\right) .
\end{aligned}
$$

for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$.
Theorem 5.21. In an (s)-BCK-A, every $S B-N S I$ is an $S B$ - neutrosophic 0-subalgebra.

Proof. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSI of an (s)-BCK-A \mathcal{K}. Since $\left(\zeta_{1} \circ \eta_{1}\right) \diamond \zeta_{1} \leq \eta_{1}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$, we obtain

$$
\begin{aligned}
& \widetilde{\alpha}_{t}\left(\zeta_{1} \circ \eta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\left(\zeta_{1} \circ \eta_{1}\right) \diamond \zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\} \\
& \alpha_{i}\left(\zeta_{1} \circ \eta_{1}\right) \geq \min \left\{\alpha_{i}\left(\left(\zeta_{1} \circ \eta_{1}\right) \diamond \zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\} \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\} \\
& \alpha_{f}\left(\zeta_{1} \circ \eta_{1}\right) \leq \max \left\{\alpha_{f}\left(\left(\zeta_{1} \circ \eta_{1}\right) \diamond \zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\} .
\end{aligned}
$$

Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-neutrosophic o-subalgebra of \mathcal{K}.
Theorem 5.22. Let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ be an SB-NSS in an (s)-BCK-A \mathcal{K}. Then $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K} if and only if the following assertion is valid

$$
\zeta_{1} \leq \eta_{1} \circ \theta_{1} \Rightarrow\left(\begin{array}{c}
\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\} \tag{5.3}\\
\alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\theta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right\}
\end{array}\right)
$$

for all $\zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K}$.
Proof. Assume that $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K} Let $\zeta_{1}, \eta_{1}, \theta_{1} \in \mathcal{K}$ be such that $\zeta_{1} \leq \eta_{1} \circ \theta_{1}$. Then we have

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1}\right) & \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond\left(\eta_{1} \circ \theta_{1}\right)\right), \widetilde{\alpha}_{t}\left(\eta_{1} \circ \theta_{1}\right)\right\}=\operatorname{rmin}\left\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}\left(\eta_{1} \circ \theta_{1}\right)\right\} \\
& =\widetilde{\alpha}_{t}\left(\eta_{1} \circ \theta_{1}\right) \succcurlyeq \min \left\{\widetilde{\alpha}_{t}\left(\eta_{1}\right), \widetilde{\alpha}_{t}\left(\theta_{1}\right)\right\}, \\
\alpha_{i}\left(\zeta_{1}\right) & \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond\left(\eta_{1} \circ \theta_{1}\right)\right), \alpha_{i}\left(\eta_{1} \circ \theta_{1}\right)\right\}=\min \left\{\alpha_{i}(0), \alpha_{i}\left(\eta_{1} \circ \theta_{1}\right)\right\} \\
& =\alpha_{i}\left(\eta_{1} \circ \theta_{1}\right) \geq \min \left\{\alpha_{i}\left(\eta_{1}\right), \alpha_{i}\left(\theta_{1}\right)\right\}, \\
\alpha_{f}\left(\zeta_{1}\right) & \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond\left(\eta_{1} \circ \theta_{1}\right)\right), \alpha_{f}\left(\eta_{1} \circ \theta_{1}\right)\right\}=\max \left\{\alpha_{f}(0), \alpha_{f}\left(\eta_{1} \circ \theta_{1}\right)\right\} \\
& =\alpha_{f}\left(\eta_{1} \circ \theta_{1}\right) \leq \max \left\{\alpha_{f}\left(\eta_{1}\right), \alpha_{f}\left(\theta_{1}\right)\right\} .
\end{aligned}
$$

Conversely, let $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSS in an (s)-BCK-A \mathcal{K} satisfying the condition (5.3). Since $0 \leq \zeta_{1} \circ \zeta_{1}$ for all $\zeta_{1} \in \mathcal{K}$, we have

$$
\begin{aligned}
& \widetilde{\alpha}_{t}(0) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1}\right), \widetilde{\alpha}_{t}\left(\zeta_{1}\right)\right\}=\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \\
& \alpha_{i}(0) \geq \min \left\{\alpha_{i}\left(\zeta_{1}\right), \alpha_{i}\left(\zeta_{1}\right)\right\}=\alpha_{i}\left(\zeta_{1}\right) \\
& \alpha_{f}(0) \leq \max \left\{\alpha_{f}\left(\zeta_{1}\right), \alpha_{f}\left(\zeta_{1}\right)\right\}=\alpha_{f}\left(\zeta_{1}\right) .
\end{aligned}
$$

Since $\zeta_{1} \leq\left(\zeta_{1} \diamond \eta_{1}\right) \circ \eta_{1}$ for all $\zeta_{1}, \eta_{1} \in \mathcal{K}$, we obtain

$$
\begin{aligned}
\widetilde{\alpha}_{t}\left(\zeta_{1}\right) \succcurlyeq \operatorname{rmin}\left\{\widetilde{\alpha}_{t}\left(\zeta_{1} \diamond \eta_{1}\right), \widetilde{\alpha}_{t}\left(\eta_{1}\right)\right\} \\
\alpha_{i}\left(\zeta_{1}\right) \geq \min \left\{\alpha_{i}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{i}\left(\eta_{1}\right)\right\} \\
\alpha_{f}\left(\zeta_{1}\right) \leq \max \left\{\alpha_{f}\left(\zeta_{1} \diamond \eta_{1}\right), \alpha_{f}\left(\eta_{1}\right)\right\}
\end{aligned}
$$

Therefore, $\mathcal{N}=\left(\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f}\right)$ is an SB-NSI of \mathcal{K}.
6. CONCLUSION

In this research, we introduced the new concept of SB-neutrosophic sets (SB-NSS), a powerful extension of the NSS, and illustrated its basic operations with examples. The application of SB-NSS to BCK/BCI-As led us to the definition of SB-NSSA and SB-NSI, where we thoroughly explored their properties. In particular, we established crucial conditions for identifying various relationships between SB-NSS, SB-NSSA, and SB-NSI within the context of BCK/BCI-As. Our study also included a comprehensive discussion of homomorphic pre-image and translation of an SB-NSSA, which provided valuable insights into the practical implications of these concepts. The study opens possibilities for future research extending the application of SB-NSS to implicative, positive implicative, and commutative ideals, as well as to the field of soft SB-neutrosophic ideals. These extensions have the potential to provide valuable insights and solutions to complex real-world challenges and improve our understanding of algebraic-structures.

Acknowledgments

The authors would like to thank the reviewers for their valuable feedback, which played a crucial role in refining this article.

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986), 87-96.
[2] R. A. Borzooei, X. Zhang, F. Smarandache and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry, 10 (2018), 350.
[3] M. B. Gorzaczany, A method of inference in approximate reasoning based on interval valued fuzzys ets, Fuzzy Sets and Systems, 21 (1987), 1-17.
[4] Y. S. Huang, BCI-algebra, Science Press, Beijing, (2006), 21.
[5] Y. Imai and K. Iski, On Axiom Systems of Propositional Calculi XIV, in Proceedings of the Japan Academy, (1966), 19-22.
[6] K. Iski, An algebra related with a propositional calculus , Proceedings of the Japan Academy, Series A, Mathematical Sciences, 42 (2009), doi: 10.3792/pja/1195522171.
[7] K. Iseki, On BCI-algebras, Math. Semin. Notes, 8 (1980), 125-130.
[8] K. Iseki, On ideals in BCK-algebras, Math. Seminar Notes (presently Kobe J. Math.), 3 (1975), 1-12.
[9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366.
[10] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Republic of Korea, (1994).
[11] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems, 89 (1997), 243-248.
[12] Y. B. Jun and E. H. Roh, MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Mathematics, 17 (2019), 588-601.
[13] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann.Fuzzy Math.Inform., 14 (2017), 75-86.
[14] Y. B. Jun, S. Kim, and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 7 (2018), 23.
[15] Y. B. Jun, F. Smarandache and H. Bordbar, Neutrosophic \mathcal{N}-Structures Applied to BCK/BCI-Algebras Information, 8 (2017), 128.
[16] Y. B. Jun, F. Smarandache, S. Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK-algebras, Axioms, 7 (2018), 3.
[17] Y. B. Jun and S. Z. Song, Fuzzy set theory applied to implicative ideals in BCKalgebras, Bulletin of the Korean Mathematical Society, 43 (2006), 461-470. 2006.
[18] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK algebras, Fuzzy Sets and Systems, 117 (2001), 463-469.
[19] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI algebras, Communications of the Korean Mathematical Society, 9 (1994), 19-25.
[20] Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK/BCI algebras, Math. Japonica, 38 (1993), 67-71.
[21] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic N-structures in semigroups and their applications, Collected Papers. Volume XIII: On various scientific topics, (2022) 353.
[22] M. A. Ozt rk and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J.Int.Math.Virtual Inst., 8 (2018), 1-17.
[23] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann.Fuzzy Math.Inform., 14 (2017), 87-97.
[24] S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information, 8 (2017), 130.
[25] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, In 2006 IEEE international conference on granular computing, (2006), 38-42.
[26] F. Smarandache, A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, Infinite Study, (2005).
[27] F. Smarandache and P. Surapati, New Trends in Neutrosophic Theory and Application, Brussels, Belgium, EU: Pons editions, (2016).
[28] M. M. Takallo, R. A. Borzooei and Y. B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Syst., 23 (2018), 72-84.
[29] O. G. Xi, Fuzzy BCK-algebras, Math. Japonica, 36 (1991), 935-942.
[30] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353.
[31] L. A. Zadeh, The Concept of a linguistic variable and its applications to approximate reasoning-I, Information.Sci Control, 8 (1975), 199-249.

B. Satyanarayana

Department of Mathematics, Acharya Nagarjuna University, Guntur-522 510, Andhra
Pradesh, India
Email:drbsn63@yahoo.co.in

Shake Baji

Department of Mathematics, Sir C. R. Reddy college of Engineering, Eluru-534 007, Andhra Pradesh, India
Email:shakebaji6@gmail.com

D. Devanandam

Government degree college, Chintalpudi-534 460, Eluru, Andhra Pradesh, India
Email:ddn1998in@gmail.com

[^0]: Received: 02 March 2023, Accepted: 22 April 2023. Communicated by Mahmood Bakhshi;

