Journal of Hyperstructures 12 (1) (2023), 30-50. https://doi.org/10.22098/jhs.2023.2511 Research Paper

FUZZY α -MODULARITY IN FUZZY α -LATTICES

Payal A. Khubchandani D and Jyoti A. Khubchandani

ABSTRACT. In this paper, we have introduced and studied the notion of a fuzzy independent pair and obtain some properties of fuzzy α -modular pairs and independent pairs.

Key Words: Fuzzy α -lattice, fuzzy α -modular pair, fuzzy atom, fuzzy independent pair, \perp_F -symmetric, fuzzy semi-modular.

2010 Mathematics Subject Classification: Primary: 06D72; Secondary: 03E72.

1. INTRODUCTION

Zadeh [14] in 1971 introduced the concept of fuzzy ordering. The concept of a fuzzy sublattice was introduced by Yuan and Wu [13]. Ajmal and Thomas [1] in 1994 defined a fuzzy lattice and a fuzzy sublattice as a fuzzy algebra. Chon [2] considered Zadeh's fuzzy order [15] and proposed a new notion of a fuzzy lattice and studied level sets of such structures. At the same time, he also proved some results for distributive and modular fuzzy lattices. Mezzomo *et. al.* [4] changed the way to define the fuzzy supremum and the fuzzy infimum of a pair of elements by considering a threshold fixed $\alpha \in [0, 1)$ instead of, as usual, zero.

The concept of a modular pair in a lattice is well investigated by Maeda and Maeda [3]. Wasadikar and Khubchandani [7] defined a fuzzy modular pair in a fuzzy lattice and obtained some properties of fuzzy

Received: 17 April 2023, Accepted: 30 June 2023. Communicated by Mahmood Bakhshi ; *Address correspondence to P.A. Khubchandani; E-mail: payal_khubchandani@yahoo.com.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2023 The Author(s). Published by University of Mohaghegh Ardabili.

modular pairs. Recently, Wasadikar and Khubchandani [12] introduced the notion of a fuzzy α -modular pair in a fuzzy α -lattice and prove some properties analogous to classical theory. In this paper, we introduce and study the notion of a fuzzy independent pair and obtain some properties of fuzzy α -modular pairs and independent pairs in fuzzy α -lattice.

2. Preliminaries

In fuzzy sets, each element of a nonempty set X is mapped to [0,1] by a membership function $\mu: X \to [0,1]$.

A mapping $A: X \times X \to [0, 1]$ is called a fuzzy binary relation on X.

The following definition is from Zadeh [15]. A fuzzy binary relation A on X is called:

- (i) fuzzy reflexive if A(x, x) = 1, for all $x \in X$;
- (ii) fuzzy symmetric if A(x, y) = A(y, x), for all $x, y \in X$;
- (iii) fuzzy transitive if $A(x, z) \ge \sup_{y \in X} \min[A(x, y), A(y, z)];$
- (iv) fuzzy antisymmetric if A(x, y) > 0 and A(y, x) > 0 implies x = y.

Based on the above properties Zadeh [15] introduced the following concepts related to a fuzzy binary relation A on a set X:

- (i) A is called a fuzzy equivalence relation on X if A is fuzzy reflexive, fuzzy symmetric and fuzzy transitive;
- (ii) A is a fuzzy partial order relation if A is fuzzy reflexive, fuzzy antisymmetric and fuzzy transitive and the pair (X, A) is called a fuzzy partially ordered set or a fuzzy poset;
- (iii) A is a fuzzy total order relation if it is a fuzzy partial order relation and A(x, y) > 0 or A(y, x) > 0, for all $x, y \in X$, and the fuzzy poset (X, A) is called of a fuzzy totally ordered set or a fuzzy chain.

Definition 2.1. [2, Definition 3.1] Let (X, A) be a fuzzy poset and let $Y \subseteq X$. An element $u \in X$ is said to be an upper bound for Y iff A(y, u) > 0, for all $y \in Y$. An upper bound u_0 for Y is the least upper bound (or supremum) of Y iff $A(u_0, u) > 0$, for every upper bound u for Y. We then write $u_0 = \sup Y = \lor Y$. If $Y = \{x, y\}$, then we write $\lor Y = x \lor y$.

Similarly, an element $v \in X$ is said to be a lower bound for Y iff A(v, y) > 0, for all $y \in Y$. A lower bound v_0 for Y is the greatest lower bound (or infimum) of Y iff $A(v, v_0) > 0$, for every lower bound v for

Y. We then write $v_0 = \inf Y = \wedge Y$. If $Y = \{x, y\}$, then we write $\wedge Y = x \wedge y$.

3. Fuzzy α -lattices

Mezzomo and Bedregal [4] generalized the concept of a (fuzzy) upper bound as follows.

Definition 3.1. [4, Definition 3.1] Let (X, A) be a fuzzy poset. Let $Y \subseteq X$ and $\alpha \in [0, 1)$. An element $u \in X$ is said to be an α -upper bound for Y whenever $A(x, u) > \alpha$, for all $x \in Y$. An α -upper bound u_0 for Y is called a least α -upper bound (or α -Supremum) of Y iff $A(u_0, u) > \alpha$, for every α -upper bound u of Y.

Dually, an element $v \in X$ is said to be an α -lower bound for Y iff $A(v, x) > \alpha$, for all $y \in Y$. An α -lower bound v_0 for Y is called a greatest α -lower bound (or α -infimum) of Y iff $A(v, v_0) > \alpha$ for every α -lower bound v for Y.

We denote the least α -upper bound of the set $\{x, y\}$ by $x \vee_{\alpha} y$ and the greatest α -lower bound of the set $\{x, y\}$ by $x \wedge_{\alpha} y$.

Remark 3.2. [4, Remark 3.1] Since A is fuzzy antisymmetric, the least α -upper (greatest α -lower) bound, if it exists, is unique.

Proposition 3.3. [4, Proposition 3.1] Let (X, A) be fuzzy poset, $\alpha \in [0,1)$ and $x, y, z \in X$. If $A(x, y) > \alpha$ and $A(y, z) > \alpha$, then $A(x, z) > \alpha$.

Definition 3.4. [4, Definition 3.2] A fuzzy poset (X, A) is a fuzzy α lattice iff $x \vee_{\alpha} y$ and $x \wedge_{\alpha} y$ exists for all $x, y \in X$, for some $\alpha \in [0, 1)$.

Definition 3.5. [4, Definition 3.4] A fuzzy poset (X, A) is called fuzzy sup α -lattice, if each pair of element has α -supremum in X, denoted by $sup_{\alpha} X$.

Dually, it is called fuzzy inf α -lattice, if each pair of element has α -infimum in X, denoted by $inf_{\alpha} X$. A fuzzy semi α -lattice is a fuzzy poset which is a fuzzy sup α -lattice or a fuzzy inf α -lattice.

Definition 3.6. [4, Definition 3.5] Let (X, A) be a fuzzy poset and I be a fuzzy set on X. The α -supremum in I denoted by $sup_{\alpha} I$, is an element of X such that if $x \in X$ and $\mu_I(x) > \alpha$, then $A(x, sup_{\alpha}I) > \alpha$ and if $u \in X$ is such that $A(x, u) > \alpha$ whenever $\mu_I(x) > \alpha$, then $A(sup_{\alpha}I, u) > \alpha$.

Similarly, the α -infimum in I denoted by $inf_{\alpha} I$, is an element of X such that if $x \in X$ and $\mu_I(x) > \alpha$, then $A(inf_{\alpha}I, x) > \alpha$ and if $v \in X$ is such that $A(v, x) > \alpha$ whenever $\mu_I(x) > \alpha$, then $A(v, inf_{\alpha}I) > \alpha$.

Definition 3.7. [4, Definition 3.6] A fuzzy inf α -lattice is called inf complete if all of its nonempty fuzzy sets have α -infimum.

Similarly, a fuzzy sup α -lattice is called sup-complete if all of its nonempty fuzzy set admit α -supremum. A fuzzy α -lattice is complete whenever it is, simultaneously, inf-complete and sup-complete.

Proposition 3.8. [4, Proposition 3.2] Let (X, A) be a complete fuzzy sup α -lattice (inf α -lattice) and I be a fuzzy set on X. Then, $\sup_{\alpha} I$ (inf $_{\alpha} I$) exists and it is unique.

Proposition 3.9. [4, Proposition 3.3] Let $\mathcal{L} = (X, A)$ be a fuzzy sup α -lattice, then there exist an element \top in X, such that $A(x, \top) > \alpha$ for all $x \in X$.

Proposition 3.10. [4, Proposition 3.4] Let $\mathcal{L} = (X, A)$ be a fuzzy inf α -lattice, then there exist an element \perp in X, such that $A(\perp, x) > \alpha$ for all $x \in X$.

Definition 3.11. [4, Definition 3.6] A fuzzy lattice (X, A) is bounded if there exists \top and \bot in X such that for any $x \in X$, $A(\bot, x) > \alpha$ and $A(x, \top) > \alpha$.

Corollary 3.12. [4, Corollary 3.1] Every fuzzy lattice is a fuzzy α -lattice.

We illustrate the concepts of an α -upper bound and α -lower bound with an example.

Example 3.13. Consider the set $X = \{x, y, z, w\}$, let $\alpha = 0.2$ and let $A : X \times X \longrightarrow [0,1]$ be a fuzzy relation defined as follows: A(x,x) = A(y,y) = A(z,z) = A(w,w) = 1.0,A(w,z) = 0.2, A(w,y) = 0.5, A(w,x) = 0.9,A(z,w) = 0.0, A(z,y) = 0.3, A(z,x) = 0.6,A(y,w) = 0.0, A(y,z) = 0.0, A(y,x) = 0.4,A(x,w) = 0.0, A(x,z) = 0.0, A(x,y) = 0.0.Then A is a fuzzy total order relation. Let $Y = \{w, z\}$. Then x, y and z are the α -upper bounds of Y. Since

A(z, w) = 0.0 and $A(w, z) = 0.2 \ge \alpha$, it follows that the α -supremum of Y is z and the α -infimum is w.

The fuzzy α -join and fuzzy α -meet tables are as follows:

P. A. Khubchandani and J. A. Khubchandani

\vee_{α}	x	y	z	w	\wedge_{α}				
x	x	x	x	x	$egin{array}{c} x \\ y \\ z \end{array}$	x	y	z	w
y	$\left \begin{array}{c} x\\ x \end{array}\right $	y	y	y	y	y	y	z	w
z	x	y	z	z	z	z	z	z	w
w	x	y	z	w	w	w	w	w	w

We note that (X, A) is a fuzzy lattice as well as a fuzzy α -lattice for $\alpha = 0.2$.

In Figure 1, we show the related tabular and graphical representations for the fuzzy relation A.

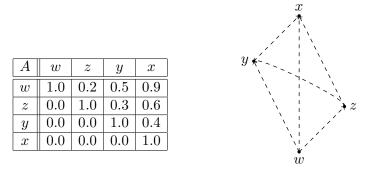
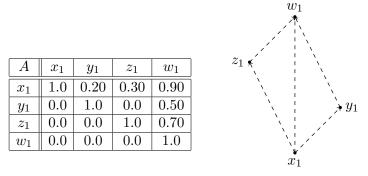


Figure 1

The following example shows that a subset of a fuzzy poset may not have a greatest α -lower bound (least α -upper bound).


Example 3.14. Let $X = \{x_1, y_1, z_1, w_1\}$. Let $A : X \times X \longrightarrow [0, 1]$ be a fuzzy relation defined as follows: $A(x_1, x_1) = A(y_1, y_1) = A(z_1, z_1) = A(w_1, w_1) = 1.0$, $A(x_1, y_1) = 0.20$, $A(x_1, z_1) = 0.30$, $A(x_1, w_1) = 0.90$, $A(y_1, x_1) = 0.0$, $A(y_1, z_1) = 0.0$, $A(y_1, w_1) = 0.50$, $A(z_1, x_1) = 0.0$, $A(z_1, y_1) = 0.0$, $A(z_1, w_1) = 0.70$, $A(w_1, x_1) = 0.0$, $A(w_1, y_1) = 0.0$, $A(w_1, z_1) = 0.0$. Then A is a fuzzy partial order relation. The fuzzy α -join and fuzzy α -meet tables are as follows:

Fuzzy α -modularity in Fuzzy α -Lattices

\vee_{α}	$ x_1 $	y_1	z_1	w_1	\wedge_{α}	x_1	y_1	z_1	w_1
x_1	x_1	y_1	z_1	w_1	x_1				
y_1	y_1	y_1	w_1	w_1		x_1			
z_1	$ z_1 $	w_1	z_1	w_1	z_1	x_1	x_1	z_1	z_1
w_1	$ w_1 $	w_1	w_1	w_1	w_1	x_1	y_1	z_1	w_1

We note that (X, A) is a fuzzy lattice.

In Figure 2, we show the related tabular and graphical representation for the fuzzy relation A.

In Figure 3, we show the related tabular and graphical representations for the fuzzy relation A for $\alpha > 0.30$.

Here $x_1 \vee_{\alpha} w_1 = w_1, x_1 \wedge_{\alpha} w_1 = x_1,$

 $y_1 \vee_{\alpha} w_1 = w_1, y_1 \wedge_{\alpha} w_1 = y_1,$

 $z_1 \vee_\alpha w_1 = w_1, \, z_1 \wedge_\alpha w_1 = z_1,$

 $y_1 \vee_{\alpha} z_1 = w_1, \, y_1 \vee_{\alpha} x_1 = w_1, \, z_1 \vee_{\alpha} x_1 = w_1.$

But $y_1 \wedge_{\alpha} z_1$, $y_1 \wedge_{\alpha} x_1$, $z_1 \wedge_{\alpha} x_1$ does not exist.

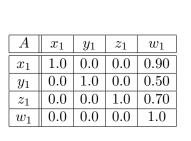


Figure 3

Remark 3.15. We note that Example 3.13 is an example of a fuzzy α -lattice for $\alpha = 0.2$ whereas Example 3.14, is not a fuzzy α -lattice for $\alpha > 0.30$.

Proposition 3.16. [4, Proposition 3.7] Let (X, A) be a fuzzy α -lattice, $\alpha \in [0,1)$ and let $x, y, z \in X$. The following statements hold: (i) $A(x, x \lor_{\alpha} y) > \alpha$, $A(y, x \lor_{\alpha} y) > \alpha$, $A(x \land_{\alpha} y, x) > \alpha$, $A(x \land_{\alpha} y, y) > \alpha$; (ii) $A(x, z) > \alpha$ and $A(y, z) > \alpha$ implies $A(x \lor_{\alpha} y, z) > \alpha$; (iii) $A(z, x) > \alpha$ and $A(z, y) > \alpha$ implies $A(z, x \land_{\alpha} y) > \alpha$; (iv) $A(x, y) > \alpha$ iff $x \lor_{\alpha} y = y$; (v) $A(x, y) > \alpha$ iff $x \land_{\alpha} y = x$; (vi) If $A(y, z) > \alpha$, then $A(x \land_{\alpha} y, x \land_{\alpha} z) > \alpha$ and $A(x \lor_{\alpha} y, x \lor_{\alpha} z) > \alpha$; (vii) If $A(x \lor_{\alpha} y, z) > \alpha$, then $A(x, z) > \alpha$ and $A(y, z) > \alpha$; (viii) If $A(x, y \land_{\alpha} z) > \alpha$, then $A(x, y) > \alpha$ and $A(x, z) > \alpha$.

Proposition 3.17. [4, Proposition 3.8] Let (X, A) be a fuzzy α -lattice and let $x, y, z \in X$. Then (i) $x \vee_{\alpha} x = x$ and $x \wedge_{\alpha} x = x$;

(*ii*) $x \vee_{\alpha} y = y \vee_{\alpha} x$ and $x \wedge_{\alpha} y = y \wedge_{\alpha} x$;

(*iii*) $(x \lor_{\alpha} y) \lor_{\alpha} z = x \lor_{\alpha} (y \lor_{\alpha} z)$ and $(x \land_{\alpha} y) \land_{\alpha} z = x \land_{\alpha} (y \land_{\alpha} z);$

(iv) $(x \vee_{\alpha} y) \wedge_{\alpha} x = x$ and $(x \wedge_{\alpha} y) \vee_{\alpha} x = x$.

Lemma 3.18. [12, Lemma 3.18] Let (X, A) be a fuzzy α -lattice and $x, y, x', y' \in X$. If $A(x', x) > \alpha$ and $A(y', y) > \alpha$, then $A(x' \wedge_{\alpha} y', x \wedge_{\alpha} y) > \alpha$ and $A(x' \vee_{\alpha} y', x \vee_{\alpha} y) > \alpha$.

Definition 3.19. [4, Definition 3.8] Let (X, A) be a fuzzy α -lattice. (X, A) is fuzzy distributive iff $x \wedge_{\alpha} (y \vee_{\alpha} z) = (x \wedge_{\alpha} y) \vee_{\alpha} (x \wedge_{\alpha} z)$ and $(x \vee_{\alpha} y) \wedge_{\alpha} (x \vee_{\alpha} z) = x \vee_{\alpha} (y \wedge_{\alpha} z)$.

Note that (X, A) is fuzzy distributive iff $A(x \wedge_{\alpha} (y \vee_{\alpha} z), (x \wedge_{\alpha} y) \vee_{\alpha} (x \wedge_{\alpha} z)) > \alpha$ and $A((x \vee_{\alpha} y) \wedge_{\alpha} (x \vee_{\alpha} z), x \vee_{\alpha} (y \wedge_{\alpha} z)) > \alpha$.

Proposition 3.20. [12, Proposition 3.20] (Modular inequality) Let (X, A) be a fuzzy α -lattice and let $x, y, z \in X$. Then $A(x, z) > \alpha$ implies $A(x \lor_{\alpha} (y \land_{\alpha} z), (x \lor_{\alpha} y) \land_{\alpha} z) > \alpha$.

Definition 3.21. [12, Definition 3.21] Let (X, A) be a fuzzy α -lattice. (X, A) is fuzzy α -modular iff $A(x, z) > \alpha$ implies $x \lor_{\alpha} (y \land_{\alpha} z) = (x \lor_{\alpha} y) \land_{\alpha} z$ for all $x, y, z \in X$.

By the modular inequality, a fuzzy α -lattice (X, A) is fuzzy α -modular iff $A(x, z) > \alpha$ implies $A((x \lor_{\alpha} y) \land_{\alpha} z, x \lor_{\alpha} (y \land_{\alpha} z)) > \alpha$ for $x, y, z \in X$.

Proposition 3.22. [12, Proposition 3.22] Let (X, A) be a fuzzy α -lattice. (X, A) be a fuzzy distributive lattice, then (X, A) is fuzzy α -modular lattice.

We recall the Definition of a fuzzy α -modular pair in fuzzy α -lattice from paper [12]

Definition 3.23. [12, Definition 4.2] Let (X, A) be a fuzzy α -lattice. We say that (x, y) is a fuzzy α -modular pair and we write $(x, y)FM_{\alpha}$, if whenever $A(z, y) > \alpha$ for some $z \in X$, $\alpha \in [0, 1)$, then $(z \lor_{\alpha} x) \land_{\alpha} y = z \lor_{\alpha} (x \land_{\alpha} y)$.

We say that (x, y) is a fuzzy dual α -modular pair and we write $(x, y)FM_{\alpha}^*$, if whenever $A(y, z) > \alpha$ for some $z \in X$, then $(z \wedge_{\alpha} x) \vee_{\alpha} y = z \wedge_{\alpha} (x \vee_{\alpha} y)$.

We write $(x, y)\overline{FM_{\alpha}}$ when the pair (x, y) is not a fuzzy α -modular pair.

4. Fuzzy α -modularity in fuzzy α -lattice

The following lemma gives a sufficient condition for a pair to be fuzzy α -modular in fuzzy α -lattice.

Lemma 4.1. If $A(x,y) > \alpha$ or $A(y,x) > \alpha$, then $(x,y)FM_{\alpha}$.

Proof. (i): Suppose that $A(x, y) > \alpha$ and $A(z, y) > \alpha$. Then by Proposition 3.16(ii), we get

$$A(z \vee_{\alpha} x, y) > \alpha.$$

As $A(x, y) > \alpha$ by Proposition 3.16(v), we get

$$(4.1) x \wedge_{\alpha} y = x.$$

We note that

$$A((z \lor_{\alpha} x) \land_{\alpha} y, z \lor_{F} (x \land_{\alpha} y))$$

= $A((z \lor_{\alpha} x) \land_{\alpha} y, z \lor_{\alpha} x)$, by (4.1)
= $A(z \lor_{\alpha} x, z \lor_{\alpha} x)$, since $A(z \lor_{\alpha} x, y) > \alpha$
= $1 > 0$

Therefore,

$$A((z \lor_{\alpha} x) \land_{\alpha} y, z \lor_{F} (x \land_{\alpha} y)) > \alpha.$$

We know that

$$A(z \lor_{\alpha} (x \land_{\alpha} y), (z \lor_{\alpha} x) \land_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y).$$

(ii): Suppose that $A(y, x) > \alpha$ and $A(z, y) > \alpha$. By fuzzy transitivity of A we have

$$A(z,x) > \alpha.$$

We have

$$\begin{aligned} A((z \lor_{\alpha} x) \land_{\alpha} y, z \lor_{\alpha} (x \land_{\alpha} y)) \\ &\geq sup_{k \in X} \min[A((z \lor_{\alpha} x) \land_{\alpha} y, k), A(k, z \lor_{F} (x \land_{\alpha} y))] \\ &\geq \min[A((z \lor_{\alpha} x) \land_{\alpha} y, y), A(y, z \lor_{\alpha} (x \land_{\alpha} y))] \\ &\geq \min[A(x \land_{\alpha} y, y), A(y, z \lor_{\alpha} y)] \\ &\geq \min[A(y, y), A(y, y)] \end{aligned}$$

Therefore,

$$A((z \lor_{\alpha} x) \land_{\alpha} y, z \lor_{\alpha} (x \land_{\alpha} y)) > \alpha.$$

We know that

$$A(z \lor_{\alpha} (x \land_{\alpha} y), (z \lor_{\alpha} x) \land_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y).$$

Thus, $(x, y)FM_{\alpha}$ holds in either case.

Remark 4.2. If X has the elements \bot and \top , then for every $x \in X$, $(\bot, x)FM_{\alpha}$, $(x, \top)FM_{\alpha}$ and $(\bot, \top)FM_{\alpha}$ hold.

Remark 4.3. If $x, y \in X$, then, $(x \wedge_{\alpha} y, x)FM_{\alpha}$, $(x \wedge_{\alpha} y, y)FM_{\alpha}$, $(x, x \vee_{\alpha} y)FM_{\alpha}$, $(y, x \vee_{\alpha} y)FM_{\alpha}$ and $(x \wedge_{\alpha} y, x \vee_{\alpha} y)FM_{\alpha}$ hold.

We now prove some properties of fuzzy α -modular pairs.

Lemma 4.4. If $(x, y)FM_{\alpha}$, $A(x \wedge_{\alpha} y, z) > \alpha$, then $(x \wedge_{\alpha} z, y)FM_{\alpha}$.

Proof. Let $A(u, y) > \alpha$. To show that $A([u \lor_{\alpha} (x \land_{\alpha} z)] \land_{\alpha} y, u \lor_{\alpha} [(x \land_{\alpha} z) \land_{\alpha} y]) > \alpha$ holds. We know that

$$A(x \wedge_{\alpha} z, x) > \alpha$$

By applying Proposition 3.16 (vi), repeatedly we have

$$A(u \vee_{\alpha} (x \wedge_{\alpha} z), u \vee_{\alpha} x) > \alpha$$

and

(4.2)
$$A([u \lor_{\alpha} (x \land_{\alpha} z)] \land_{\alpha} y, (u \lor_{\alpha} x) \land_{\alpha} y) > \alpha.$$

As $(x, y)FM_{\alpha}$ holds so we have

(

$$u \vee_{\alpha} x) \wedge_{\alpha} y = u \vee_{\alpha} (x \wedge_{\alpha} y).$$

Therefore, (4.2) reduces to

$$(4.3) A([u \lor_{\alpha} (x \land_{\alpha} z)] \land_{\alpha} y, u \lor_{\alpha} (x \land_{\alpha} y)) > \alpha.$$

As $A(x \wedge_{\alpha} y, z) > \alpha$ we have

$$(x \wedge_{\alpha} y) \wedge_{\alpha} z = x \wedge_{\alpha} y.$$

Therefore, (4.3) reduces to

$$A([u \lor_{\alpha} (x \land_{\alpha} z)] \land_{\alpha} y, u \lor_{\alpha} [(x \land_{\alpha} y) \land_{\alpha} z]) > \alpha.$$

Thus,

$$A([u \lor_F (x \land_{\alpha} z)] \land_{\alpha} y, u \lor_{\alpha} [(x \land_{\alpha} z) \land_{\alpha} y]) > \alpha.$$

We know that

$$A(u \vee_{\alpha} [(x \wedge_{\alpha} z) \wedge_{\alpha} y], [u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y = u \vee_{\alpha} [(x \wedge_{\alpha} z) \wedge_{\alpha} y]$$

Thus, $(x \wedge_{\alpha} z, y)_F M_m$ holds.

Definition 4.5. Let $x, y \in X$. We say that (x, y) is a fuzzy independent pair and we write $(x, y) \perp FM_{\alpha}$ if $(x, y)FM_{\alpha}$ and $x \wedge_{\alpha} y = \bot$ hold.

Corollary 4.6. Let $x_1 \in X$. If $(x, y) \perp FM_{\alpha}$ and $A(x_1, x) > \alpha$, then $(x_1, y)FM_{\alpha}$.

Proof. Suppose that $(x, y) \perp FM_{\alpha}$ holds. Then $(x, y)FM_{\alpha}$ holds with $x \wedge_{\alpha} y = \bot$. As $A(\bot, x_1) > \alpha$ always holds we have

$$A(x \wedge_{\alpha} y, x_1) > \alpha.$$

Hence by Lemma 4.4, we have

$$(x \wedge_{\alpha} x_1, y) F M_{\alpha}.$$

As $A(x_1, x) > \alpha$, Proposition 3.16(v), we have

$$x \wedge_{\alpha} x_1 = x_1.$$

Thus, $(x_1, y)FM_{\alpha}$ holds.

Theorem 4.7. If $(x, y) \perp FM_{\alpha}$, $A(x_1, x) > \alpha$ and $A(y_1, y) > \alpha$, then $(x_1, y_1) \perp FM_{\alpha}$.

Proof. Suppose that $(x, y) \perp FM_{\alpha}$ holds. Then $(x, y)FM_{\alpha}$ holds with $x \wedge_{\alpha} y = \bot$. Let $A(x_1, x) > \alpha$ and $A(y_1, y) > \alpha$ for some $x_1, y_1 \in X$. Then by Proposition 3.16(vi), we have

$$A(x_1 \wedge_\alpha y, x \wedge_\alpha y) > \alpha.$$

Therefore,

$$(4.4) A(x_1 \wedge_{\alpha} y, \bot) > \alpha.$$

Similarly, $A(y_1, y) > \alpha$ by Proposition 3.16(vi), we have

(4.5)
$$A(x_1 \wedge_{\alpha} y_1, x_1 \wedge_{\alpha} y) > \alpha$$

By fuzzy transitivity of A from (4.4) and (4.5) we get

(4.6)
$$A(x_1 \wedge_{\alpha} y_1, \bot) > \alpha$$

As

always holds.

From (4.6) and (4.7) by fuzzy antisymmetry of A we have

$$x_1 \wedge_{\alpha} y_1 = x_1 \wedge_{\alpha} y = \bot$$

40

Fuzzy $\alpha\text{-modularity}$ in Fuzzy $\alpha\text{-Lattices}$

Now, it remains to show that $(x_1, y_1)FM_{\alpha}$ holds. By Corollary 4.6, we have

$$(x_1, y)FM_{\alpha}.$$

Now, let $A(y_2, y_1) > \alpha$ for some $y_2 \in X$. Then by (iv) and (v) of Proposition 3.16, we have

$$y_2 \vee_{\alpha} y_1 = y_1$$
 and $y_2 \wedge_{\alpha} y_1 = y_2$.

Since $A(y_2, y_1) > \alpha$ and $A(y_1, y) > \alpha$ by fuzzy transitivity of A we get

$$A(y_2, y) > \alpha$$

As $A(y_1, y) > \alpha$, by (iv) and (v) of Proposition 3.16, we have

$$y_1 \vee_{\alpha} y = y$$
 and $y_1 \wedge_{\alpha} y = y_1$.

Hence

$$\begin{aligned} A((y_2 \lor_{\alpha} x_1) \land_{\alpha} y_1, y_2 \lor_{\alpha} (x_1 \land_{\alpha} y_1)) \\ &= A((y_2 \lor_{\alpha} x_1) \land_{\alpha} (y \land_{\alpha} y_1), y_2 \lor_{\alpha} (x_1 \land_{\alpha} y_1)) \\ &= A([(y_2 \lor_{\alpha} x_1) \land_{\alpha} y] \land_{\alpha} y_1, y_2 \lor_{\alpha} (x_1 \land_{\alpha} y_1)) \\ &= A([y_2 \lor_{\alpha} (x_1 \land_{\alpha} y)] \land_{\alpha} y_1, y_2 \lor_{\alpha} (x_1 \land_{\alpha} y_1)), \text{ by } (x_1, y)FM_{\alpha} \\ &= A((y_2 \lor_{\alpha} \bot) \land_{\alpha} y_1, y_2 \lor_{\alpha} \bot) \\ &= A(y_2 \land_{\alpha} y_1, y_2) \\ &= A(y_2, y_2) = 1 > 0. \end{aligned}$$

Therefore,

$$A((y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y_1, y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1)) > \alpha.$$

We know that

$$A(y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1), (y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y_1) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$(y_2 \vee_\alpha x_1) \wedge_\alpha y_1 = y_2 \vee_\alpha (x_1 \wedge_\alpha y_1).$$

Thus, $(x_1, y_1)FM_{\alpha}$ holds. Also, we have

$$x_1 \wedge_{\alpha} y_1 = \bot$$

Hence $(x_1, y_1) \perp FM_{\alpha}$ holds.

Lemma 4.8. If $(x, y)FM_{\alpha}$ and if $(z, x \vee_{\alpha} y)FM_{\alpha}$, $A(z \wedge_{\alpha} (x \vee_{\alpha} y), x) > \alpha$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$ and $(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y$.

Proof. We have

$$\begin{aligned} (z \lor_{\alpha} x) \land_{\alpha} y \\ &= (z \lor_{\alpha} x) \land_{\alpha} (x \lor_{\alpha} y) \land_{\alpha} y, \text{ by absorption identity} \\ &= (x \lor_{\alpha} z) \land_{\alpha} (x \lor_{\alpha} y) \land_{\alpha} y, \\ &= [x \lor_{\alpha} [z \land_{\alpha} (x \lor_{\alpha} y)]] \land_{\alpha} y, \text{ as } (z, x \lor_{\alpha} y) FM_{\alpha} \\ &= x \land_{\alpha} y, \text{ as } A(z \land_{\alpha} (x \lor_{\alpha} y), x) > 0. \end{aligned}$$

Thus, we get

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y.$$

We now show that $(z \vee_{\alpha} x, y)FM_{\alpha}$ holds, that is, to show that $A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) > \alpha$. Let $A(y_1, y) > \alpha$ for some $y_1 \in X$. We have

$$\begin{split} &A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) \\ &= A([(y_1 \vee_{\alpha} x) \vee_{\alpha} z] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) \\ &= A([(y_1 \vee_{\alpha} x) \vee_{\alpha} z] \wedge_{\alpha} (x \vee_{\alpha} y) \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]), \\ &\text{ as } y = (x \vee_{\alpha} y) \wedge_{\alpha} y \\ &= A(y_1 \vee_{\alpha} [x \vee_F [z \wedge_{\alpha} (x \vee_{\alpha} y)]] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) \\ &= A((y_1 \vee_{\alpha} x) \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]), \\ &\text{ as } A(z \wedge_{\alpha} (x \vee_{\alpha} y), x) > \alpha \\ &= A(y_1 \vee_{\alpha} (x \wedge_{\alpha} y), y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]), \\ &\text{ as } (x, y)_F M_m \\ &= A(y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y], y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]), \\ &\text{ as } x \wedge_{\alpha} y = (z \vee_{\alpha} x) \wedge_{\alpha} y \\ &= 1 > 0. \end{split}$$

Hence

$$A([y_1 \vee_\alpha (z \vee_\alpha x)] \wedge_\alpha y, y_1 \vee_\alpha [(z \vee_\alpha x) \wedge_\alpha y]) > \alpha.$$

We know that

$$A(y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y], [y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$[y_1 \vee_\alpha (z \vee_\alpha x)] \wedge_\alpha y = y_1 \vee_\alpha [(z \vee_\alpha x) \wedge_\alpha y].$$

Thus, $(z \vee_{\alpha} x, y) F M_{\alpha}$ holds.

Theorem 4.9. If $(x, y)FM_{\alpha}$ and $(z, x \vee_{\alpha} y) \perp FM_{\alpha}$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$ and $(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y$.

Proof. Suppose that $(x, y)FM_{\alpha}$ and $(z, x \vee_{\alpha} y) \perp FM_{\alpha}$ hold. Then $(z, x \vee_{\alpha} y)FM_{\alpha}$ holds with $z \wedge_{\alpha} (x \vee_{\alpha} y) = \bot$. Therefore, by Lemma 4.8, we have $(z \vee_{\alpha} x, y)FM_{\alpha}$ and $(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y$.

Theorem 4.10. If $(x, y)FM_{\alpha}$ and $A(z, y) > \alpha$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$.

Proof. Let $A(y_1, y) > \alpha$. As $A(y_1, y) > \alpha$ and $A(z, y) > \alpha$ by Proposition 3.16(ii), we have

$$A(y_1 \vee_\alpha z, y) > \alpha$$

Also, $(x, y)FM_{\alpha}$ holds so we have

$$(4.8) \qquad \qquad [(y_1 \vee_{\alpha} z) \vee_{\alpha} x] \wedge_{\alpha} y = (y_1 \vee_{\alpha} z) \vee_{\alpha} (x \wedge_{\alpha} y).$$

To show that $A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_F y]) > \alpha$. Consider

$$\begin{aligned} A([y_1 \lor_{\alpha} (z \lor_{\alpha} x)] \land_{\alpha} y, y_1 \lor_{\alpha} [(z \lor_{\alpha} x) \land_{\alpha} y]) \\ &= A([(y_1 \lor_{\alpha} z) \lor_{\alpha} x] \land_{\alpha} y, y_1 \lor_{\alpha} [(z \lor_{\alpha} x) \land_{\alpha} y]) \\ &= A((y_1 \lor_{\alpha} z) \lor_{\alpha} (x \land_{\alpha} y), y_1 \lor_{\alpha} [(z \lor_{\alpha} x) \land_{\alpha} y]), \quad \text{by (4.8)} \\ &= A(y_1 \lor_{\alpha} [z \lor_{\alpha} (x \land_{\alpha} y)], y_1 \lor_{\alpha} [(z \lor_{\alpha} x) \land_{\alpha} y]) \\ &= A(y_1 \lor_{\alpha} [(z \lor_{\alpha} x) \land_{\alpha} y], y_1 \lor_{\alpha} [(z \lor_{\alpha} x) \land_{\alpha} y]), \quad \text{as } (x, y)FM_{\alpha} \\ &= 1 > 0 \end{aligned}$$

Hence

$$A([y_1 \vee_\alpha (z \vee_\alpha x)] \wedge_\alpha y, y_1 \vee_\alpha [(z \vee_\alpha x) \wedge_\alpha y]) > \alpha$$

We know that

$$A(y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y], [y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$[y_1 \vee_\alpha (z \vee_\alpha x)] \wedge_\alpha y = y_1 \vee_\alpha [(z \vee_\alpha x) \wedge_\alpha y].$$

Thus, $(z \vee_{\alpha} x, y) F M_{\alpha}$ holds.

Corollary 4.11. If $(x, y) \perp FM_{\alpha}$ and $A(z, y) > \alpha$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$ and $(z \vee_{\alpha} x) \wedge_{\alpha} y = z$.

Proof. Suppose that $(x, y) \perp FM_{\alpha}$ holds. Then $(x, y)FM_{\alpha}$ holds with $x \wedge_{\alpha} y = \bot$. Also, given $A(z, y) > \alpha$. Therefore, by Theorem 4.10, we have

 $(z \vee_{\alpha} x, y)FM_{\alpha}.$

Now, it remains to show that $(z \lor_{\alpha} x) \land_{\alpha} y = z$. By $(x, y)FM_{\alpha}$ and $A(z, y) > \alpha$ we have $(z \lor_{\alpha} x) \land_{\alpha} y = z \lor_{\alpha} (x \land_{\alpha} y) = z \lor_{\alpha} \bot = z$.

Lemma 4.12. If $(x, y) \perp FM_{\alpha}$ and $(z, x \vee_{\alpha} y) \perp FM_{\alpha}$, then $(z \vee_{\alpha} x, y) \perp FM_{\alpha}$.

Proof. Suppose that $(x, y) \perp FM_{\alpha}$ and $(z, x \vee_{\alpha} y) \perp FM_{\alpha}$ hold. Then $(x, y)FM_{\alpha}$ and $(z, x \vee_{\alpha} y)FM_{\alpha}$ hold with

$$x \wedge_{\alpha} y = \bot$$
 and $z \wedge_{\alpha} (x \vee_{\alpha} y) = \bot$.

By Theorem 4.9, we get

$$(z \lor_{\alpha} x, y)FM_{\alpha}$$
 and $(z \lor_{\alpha} x) \land_{\alpha} y = x \land_{\alpha} y = \bot$

Hence $(z \vee_{\alpha} x, y) \perp FM_{\alpha}$ holds.

Definition 4.13. Let $\mathcal{L} = (X, A)$ be a fuzzy α -lattice. Let $x, y \in X$, then $y \prec_F^{\alpha} x$ (x "fuzzy covers" y) if $\alpha < A(y, x) < 1$, $A(y, c) > \alpha$ and $A(c, x) > \alpha$ imply c = y or c = x.

Definition 4.14. Let *P* denote the set of all $x \in X$ such that $\perp \prec_F^{\alpha} x$. The elements of *P* are called fuzzy atoms.

Corollary 4.15. Let $\mathcal{L} = (X, A)$ be a fuzzy α -lattice with \perp . If $p \in P$, $y \in X$, then $(y, p)FM_{\alpha}$.

Proof. If $A(x,p) > \alpha$, then $x = \bot$ or x = p. Case (1): If $x = \bot$, then

$$(x \vee_{\alpha} y) \wedge_{\alpha} p = (\perp \vee_{\alpha} y) \wedge_{\alpha} p = y \wedge_{\alpha} p = x \vee_{\alpha} (y \wedge_{\alpha} p).$$

Case (2): If x = p, then

 $(x \vee_{\alpha} y) \wedge_{\alpha} p = (p \vee_{\alpha} y) \wedge_{\alpha} p = p = p \vee_{\alpha} (y \wedge_{\alpha} p) = x \vee_{\alpha} (y \wedge_{\alpha} p).$ Thus, $(y, p) F M_{\alpha}$ holds.

44

5. Fuzzy semi-modular in α -lattices

In this section, we introduce the notion of a fuzzy semi-modular fuzzy α -lattice.

Definition 5.1. A fuzzy α -lattice $\mathcal{L} = (X, A)$ with \perp is called fuzzy weakly α -modular when in $\mathcal{L} = (X, A), x \wedge_{\alpha} y \neq \perp$ implies $(x, y)FM_{\alpha}$.

Definition 5.2. A fuzzy α -lattice (X, A) with \perp is called \perp_F -symmetric fuzzy α -lattice when in (X, A), $(x, y) \perp FM_{\alpha}$ implies $(y, x)FM_{\alpha}$.

Definition 5.3. A fuzzy weakly modular α -lattice with \perp_F -symmetric fuzzy α -lattice is called as a fuzzy semi-modular α -lattice.

Throughout this section, we assume $\mathcal{L} = (X, A)$ as a fuzzy semimodular α -lattice.

Lemma 5.4. If $x \wedge_{\alpha} y \prec_{F}^{\alpha} x$, then $y \prec_{F}^{\alpha} x \vee_{\alpha} y$.

Proof. Suppose that $A(y, z) > \alpha$ and (5.1) $A(z, x \lor_{\alpha} y) > \alpha$.

To show that y = z or $x \vee_F y = z$. Define $u = z \wedge_{\alpha} x$. Then

$$A(x \wedge_{\alpha} y, u) > \alpha$$
 and $A(u, x) > \alpha$.

Hence

$$x \wedge_{\alpha} y = u \text{ or } u = x \text{ as } x \wedge_{\alpha} y \prec_{F}^{\alpha} x.$$

Case (1): If u = x, then $z \wedge_{\alpha} x = x$, that is, $A(x, z) > \alpha$ by Proposition 3.16(v). So, by Proposition 3.16(vi), we have

$$A(x \vee_{\alpha} y, z \vee_{\alpha} y) > \alpha.$$

Therefore, by (5.1) we get

From (5.1) and (5.2), by fuzzy antisymmetry of A we get

$$x \vee_{\alpha} y = z.$$

Case (2): Let $u = x \wedge_{\alpha} y$, i.e., $z \wedge_{\alpha} x = x \wedge_{\alpha} y$. Now, if $x \wedge_{\alpha} y \neq \bot$, then $z \wedge_{\alpha} x \neq \bot$. By the definition of fuzzy weakly modular α -lattice we have $(x, z)FM_{\alpha}$. If $x \wedge_{\alpha} z = x \wedge_{\alpha} y = \bot$, then $\bot \prec_{F}^{\alpha} x$, that is, $x \in P$ and $(z, x)FM_{\alpha}$ by Corollary 4.15. Thus we have $(x, z)FM_{\alpha}$ as \mathcal{L} is \bot_{F} -symmetric fuzzy α -lattice. Now, $(x, z)FM_{\alpha}$ and $A(y, z) > \alpha$ imply that

$$z = (y \lor_{\alpha} x) \land_{\alpha} z = y \lor_{\alpha} (x \land_{\alpha} z) = y \lor_{\alpha} (x \land_{\alpha} y) = y \lor_{\alpha} \bot = y$$

From Case (1) and Case (2) we have either

$$y = z \text{ or } z = x \vee_{\alpha} y.$$

Therefore, $y \prec_F^{\alpha} x \vee_{\alpha} y$.

Lemma 5.5. If $y \prec_F^{\alpha} x \vee_{\alpha} y$ and if $(y, x)FM_{\alpha}$, then $x \wedge_{\alpha} y \prec_F^{\alpha} x$.

Proof. If $x \wedge_{\alpha} y = x$, then $x \vee_{\alpha} y = y$, contrary to $y \prec_{F}^{\alpha} x \vee_{\alpha} y$. Hence $\alpha < A(x \wedge_{\alpha} y, x) < 1$.

Now, suppose that

$$A(x \wedge_{\alpha} y, z) > \alpha$$

and

Define $u = z \vee_{\alpha} y$.

Then $A(y, u) > \alpha$ and $A(u, x \lor_{\alpha} y) > \alpha$. Hence u = y or $u = x \lor_{\alpha} y$ as $y \prec_{F}^{\alpha} x \lor_{\alpha} y$. Case (1): If u = y, then $y = z \lor_{\alpha} y$, that is, $A(z, y) > \alpha$ by Proposition 3.16(iv). Therefore, by Proposition 3.16(vi), we get

(5.4)
$$A(z \wedge_{\alpha} x, y \wedge_{\alpha} x) > \alpha.$$

As $A(z, x) > \alpha$ so by Proposition 3.16(v), we have

$$z \wedge_{\alpha} x = z.$$

Therefore, (5.4) reduces to

$$(5.5) A(z, y \wedge_{\alpha} x) > \alpha.$$

Hence from (5.3) and (5.5) by fuzzy antisymmetry of A we get

$$x \wedge_{\alpha} y = z.$$

Case (2): On the other hand if $u = x \vee_{\alpha} y$, then $z \vee_{\alpha} y = x \vee_{\alpha} y$. Hence by $(y, x)FM_{\alpha}$ we get

$$x = (x \vee_{\alpha} y) \wedge_{\alpha} x = (z \vee_{\alpha} y) \wedge_{\alpha} x = z \vee_{\alpha} (y \wedge_{\alpha} x) = z.$$

Hence from Case (1) and Case (2) we have either

46

$$x \wedge_{\alpha} y = z \text{ or } z = x.$$

Thus, $x \wedge_{\alpha} y \prec_{F}^{\alpha} x$ holds.

Lemma 5.6. If $x \prec_F^{\alpha} y$ and $z \in X$, then either (i) $x \lor_{\alpha} z = y \lor_{\alpha} z$ or (ii) $x \lor_{\alpha} z \prec_F^{\alpha} y \lor_{\alpha} z$.

Proof. Clearly $x \vee_{\alpha} z = y \vee_{\alpha} z$ or $\alpha < A(x \vee_{\alpha} z, y \vee_{\alpha} z) < 1$. Suppose that $A(x \vee_{\alpha} z, u) > \alpha$ and $A(u, y \vee_{\alpha} z) > \alpha$. Then by Proposition 3.16(vi), we get

$$A((x \vee_{\alpha} z) \wedge_{\alpha} y, u \wedge_{\alpha} y) > \alpha \text{ and } A(u \wedge_{\alpha} y, (y \vee_{\alpha} z) \wedge_{\alpha} y) > \alpha,$$

i.e.,

$$A((x \lor_{\alpha} z) \land_{\alpha} y, u \land_{\alpha} y) > \alpha$$
, and $A(u \land_{\alpha} y, y) > \alpha$.

As $A(x, x \vee_{\alpha} z) > \alpha$ always holds by Proposition 3.16(vi), we get

 $A(x \wedge_{\alpha} y, (x \vee_{\alpha} z) \wedge_{\alpha} y) > \alpha.$

As $x \prec_F^{\alpha} y$ we get

(5.6) $A(x, (x \vee_{\alpha} z) \wedge_{\alpha} y) > \alpha.$

Also,

(5.7) $A((x \vee_{\alpha} z) \wedge_{\alpha} y, y \wedge_{\alpha} u) > \alpha.$

From (5.6) and (5.7) by fuzzy transitivity of A we get

 $A(x, y \wedge_{\alpha} u) > \alpha$

and

 $A(y \wedge_{\alpha} u, y) > \alpha$

always holds.

If $y \wedge_{\alpha} u = \bot$, then for $x = \bot$ and $y \in P$ we get

$$(y, u)FM_{\alpha}.$$

If $y \wedge_{\alpha} u \neq \bot$, then $(y, u)FM_{\alpha}$ by the definition of fuzzy weakly α -modular.

Therefore, we get $(y, u)FM_{\alpha}$ in either case. Hence

 $z \vee_{\alpha} (y \wedge_{\alpha} u) = (z \vee_{\alpha} y) \wedge_{\alpha} u = u.$ Since $A(z, x \vee_{\alpha} z) > \alpha$ and $A(x \vee_{\alpha} z, u) > \alpha$.

Now, since $x \prec_F^{\alpha} y$, we have

$$x = y \wedge_{\alpha} u$$
 or $y \wedge_{\alpha} u = y$.

If $y \wedge_{\alpha} u = x$, then

$$z \vee_{\alpha} x = z \vee_{\alpha} (y \wedge_{\alpha} u) = u,$$

if $y \wedge_{\alpha} u = y$, then

$$z \vee_{\alpha} y = z \vee_{\alpha} (y \wedge_{\alpha} u) = u.$$

This shows that either

$$x \vee_{\alpha} z = u \text{ or } u = y \vee_{\alpha} z.$$

Hence we have

$$x \vee_{\alpha} z \prec_F^{\alpha} y \vee_{\alpha} z.$$

Thus, (ii) holds.

Lemma 5.7. If $y \prec_F^{\alpha} z$, $(x, z)FM_{\alpha}$ and $(x, y)FM_{\alpha}$, then either (i) $x \vee_{\alpha} y \prec_F^{\alpha} x \vee_{\alpha} z$ and $x \wedge_{\alpha} y = x \wedge_{\alpha} z$ or (ii) $x \vee_{\alpha} y = x \vee_{\alpha} z$ and $x \wedge_{\alpha} y \prec_F^{\alpha} x \wedge_{\alpha} z$.

Proof. As $(x, z)FM_{\alpha}$ holds, we have

$$(y \vee_{\alpha} x) \wedge_{\alpha} z = y \vee_{\alpha} (x \wedge_{\alpha} z).$$

Let $u = (y \vee_{\alpha} x) \wedge_{\alpha} z = y \vee_{\alpha} (x \wedge_{\alpha} z)$. Then by (iv) and (v) of Proposition 3.16 we have

$$A(y, u) > \alpha$$
 and $A(u, z) > \alpha$.

As $y \prec_F^{\alpha} z$ either y = u or u = z. Case (1): Suppose that y = u. Then $y = y \lor_{\alpha} (x \land_{\alpha} z)$, by Proposition 3.16(iv) we get

 $A(x \wedge_{\alpha} z, y) > \alpha.$

By Proposition 3.16(vi), we get

(5.8)
$$A(x \wedge_{\alpha} z, y \wedge_{\alpha} x) > \alpha.$$

As $y \prec_F^{\alpha} z$ we have $\alpha < A(y, z) < 1$. Hence

(5.9)
$$A(x \wedge_{\alpha} y, x \wedge_{\alpha} z) > \alpha$$

From (5.8) and (5.9) by fuzzy antisymmetry of A we get

$$x \wedge_{\alpha} z = x \wedge_{\alpha} y.$$

Moreover $u \prec_F^{\alpha} z$, that is,

$$(x \vee_{\alpha} y) \wedge_{\alpha} z \prec_{F}^{\alpha} z.$$

48

Hence by Lemma 5.4, we get

(5.10)
$$x \vee_{\alpha} y \prec^{\alpha}_{F} (x \vee_{\alpha} y) \vee_{\alpha} z$$

As $\alpha < A(y, z) < 1$ by Proposition 3.16(vi), we get $y \lor_{\alpha} z = z$. Therefore (5.10) reduces to

$$x \vee_{\alpha} y \prec_F^{\alpha} x \vee_{\alpha} z.$$

Thus, (i) holds.

Case (2): Now let us suppose that u = z. Then $(y \vee_{\alpha} x) \wedge_{\alpha} z = z$, by Proposition 3.16(iv) we get

$$A(z, y \vee_{\alpha} x) > \alpha.$$

By Proposition 3.16(vi), we get

$$A(x \vee_{\alpha} z, y \vee_{\alpha} x) > \alpha.$$

Also, $\alpha < A(y, z) < 1$ by Proposition 3.16(vi), we have

 $A(x \vee_{\alpha} y, x \vee_{\alpha} z) > \alpha.$

Thus, by fuzzy antisymmetry of A we get

$$x \vee_{\alpha} z = x \vee_{\alpha} y.$$

Now, $y \prec_F^{\alpha} z = u = y \lor_{\alpha} (x \land_{\alpha} z) = (y \lor_{\alpha} x) \land_{\alpha} z$. Now, $\alpha < A(y, z) < 1$ by Proposition 3.16(vi), we have

$$A(x \wedge_{\alpha} y, x \wedge_{\alpha} z) > \alpha.$$

As $A(x \wedge_{\alpha} z, z) > \alpha$ always holds, so by fuzzy transitivity of A we have

$$A(x \wedge_{\alpha} y, z) > \alpha.$$

Since $(x, y)_F M_m$, $A(x \wedge_{\alpha} y, z) > \alpha$, then by Lemma 4.4, we have

$$(x \wedge_{\alpha} z, y)_F M_m.$$

Thus, by Lemma 5.5, we get

$$x \wedge_{\alpha} z \wedge_{\alpha} y \prec_{F}^{\alpha} x \wedge_{\alpha} z,$$

or equivalently,

$$x \wedge_{\alpha} y \prec_{F}^{\alpha} x \wedge_{\alpha} z.$$

Thus, (ii) holds.

49

6. Conclusion

In this paper, we have studied the notion of a fuzzy independent pair and obtained some properties of fuzzy α -modular pairs and independent pairs in fuzzy α -lattice.

7. Acknowledgement

The authors are thankful to the referee for fruitful suggestions, which enhanced the quality of the paper.

References

- N. Ajmal and K. V. Thomas, *Fuzzy lattices*, Information Science, **79** (1994), 271–291.
- [2] I. Chon, Fuzzy partial order relations and fuzzy lattices, Korean J. Math., 17(4) (2009), 361–374.
- [3] F. Maeda and S. Maeda, *Theory of Symmetric Lattices*, Springer-verlag, Berlin, 1970.
- [4] I. Mezzomo and B. Bedregal, On fuzzy α -lattices, IEEE World Congress on Computational Intelligence - WCCI (2016), 775–781. doi:10.1109/FUZZ-IEEE.2016.7737766.
- [5] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy essential-small sub-modules and fuzzy small-essential submodules, Journal of Hyperstructures, 9(2) (2020), 52–67.
- [6] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy weakly irreducible ideals of a ring, Journal of Hyperstructures, 10(2) (2021), 118–128.
- [7] M. P. Wasadikar and P. A. Khubchandani, *Fuzzy modularity in fuzzy lattices*, The Journal of Fuzzy Mathematics, 27(4) (2019), 985–998.
- [8] M. P. Wasadikar and P. A. Khubchandani, Fuzzy modularity and complement in fuzzy lattices, TWMS J. App. and Eng. Math., 12(4) (2022), 1368–1379.
- [9] M. P. Wasadikar and P. A. Khubchandani, *Fuzzy semi-orthogonality in fuzzy lattices*, (Communicated).
- [10] M. P. Wasadikar and P. A. Khubchandani, 'Del' Relation and parallelism in fuzzy lattices, TWMS J. App. and Eng. Math., 12(3) (2022), 864–875.
- [11] M. P. Wasadikar and P. A. Khubchandani, Fuzzy distributive pairs in fuzzy lattices Discussiones Mathematicae General Algebra and Applications, 42(1) (2022), 179–199.
- [12] M. P. Wasadikar and P. A. Khubchandani, Fuzzy pairs in fuzzy α -lattices, Journal of Hyper structures, **9**(2) (2020), 68–80.
- [13] B. Yaun and W. Wu, Fuzzy ideals on distributive lattices, Fuzzy sets and Systems, 35 (1990), 231–240.
- [14] L. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338–353.
- [15] L. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3 (1971), 177–200.

Fuzzy $\alpha\text{-modularity}$ in Fuzzy $\alpha\text{-Lattices}$

Payal A. Khubchandani

Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune 411037, India Email: payal_khubchandani@yahoo.com

Jyoti A. Khubchandani

Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune 411037, India Email: khubchandani_jyoti@yahoo.com