Flag curvature of invariant 3-power metrics on homogeneous spaces

Milad L. Zeinali,
University of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran.
E-mail: miladzeinali@gmail.com

AbStract. In this paper, we consider invariant 3-power metric $F=(\alpha+\beta)^{3} / \alpha^{2}$ such that induced by invariant Riemannian metrics \tilde{a} and invariant vector fields \tilde{X} on homogeneous spaces. We give an explicit formula for the flag curvature of invariant 3-power metrics.

Keywords: 3-power (α, β) -metric, Flag curvature, Homogeneous space, Invariant 3 -power metrics.

1. Introduction

Finsler geometry is a natural generalization of Riemannian geometry. A Riemannain metric is quadratic in the fiber coordinates y while a Finsler metric is not necessary be quadratic in y [15]. The geometry of invariant Finsler metrics on homogeneous manifolds is one of the interesting subjects in Finsler geometry which has been studied by some Finsler geometers (see $[1,4,5,6,8$, 11, 12]).

The flag curvature is a generalization of the sectional curvature of Riemannian geometry. Alternatively, ag curvatures can be treated as Jacobi endomorphisms. The ag curvature has also led to a pinching (sphere) theorem for Finsler metrics. Installing a flag on a Finsler manifold (M, F) implies choosing:
(1) a basepoint $x \in M$ at which the flag will be planted,
(2) a flagpole given by a nonzero $y \in T_{x} M$, and
(3) an edge $V \in T_{x} M$ transverse to the flagpole.

Note that the flagpole $y \neq 0$ singles out an inner product

$$
g_{y}:=g_{i j}(x, y) d x^{i} \otimes d x^{j} .
$$

[^0]This g_{y} allows us to measure the angle between V and y. It also enables us to calculate the area of the parallelogram formed by V and $l:=y / F(x, y)$.

The flag curvature is defined as

$$
K(x, y, V):=\frac{V^{i}\left(y^{j} R_{j i k l} y^{l}\right) V^{k}}{g_{y}(y, y) g_{y}(V, V)-g_{y}^{2}(y, V)},
$$

where the index i on $R_{j k l}^{i}$ has been lowered by g_{y}. When the Finsler function F comes from a Riemannian metric, g_{y} is simply the Riemannian metric, $R_{j i k l}$ is the usual Riemann tensor, and $K(x, y, V)$ reduces to the familiar sectional curvature of the 2-plane spanned by $\{y, V\}$.

An (α, β)-metric is a Finsler metric of the form $F=\alpha \varphi(s), s=\frac{\beta}{\alpha}$ where $\alpha=\sqrt{\tilde{a}_{i j}(x) y^{i} y^{j}}$ is induced by a Riemannian metric $\tilde{a}=\tilde{a}_{i j} d x^{i} \otimes d x^{j}$ on a connected smooth n-dimensional manifold M and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. Some important (α, β)-metrics are Randers metric, infinite metric, Matsumoto metric, Kropina metric, etc [10]. For more details about special (α, β)-metrics see $[3,7,9,14,15]$.

The class of p-power (α, β)-metrics on a manifold M is in the following form

$$
\begin{equation*}
F=\alpha\left(1+\frac{\beta}{\alpha}\right)^{p} \tag{1.1}
\end{equation*}
$$

where $p \neq 0$ is a real constant, $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. In (1.1), if $p=1$, then

$$
F=\alpha+\beta,
$$

satisfying $b:=\|\beta\|_{\alpha}<1$ is called a Randers metric. If $p=2$, then

$$
F=\frac{(\alpha+\beta)^{2}}{\alpha}
$$

satisfying $b:=\|\beta\|_{\alpha}<1$ is called a square metric. Square metrics have been shown to have some special geometric properties. If $p=1 / 2$, then

$$
F=\sqrt{\alpha(\alpha+\beta)}
$$

satisfying $b:=\|\beta\|_{\alpha}<1$ is called a square-root metric. For properties of square-root metrics see [15].

In this paper, we consider $p=3$, then

$$
\begin{equation*}
F=\frac{(\alpha+\beta)^{3}}{\alpha^{2}} \tag{1.2}
\end{equation*}
$$

satisfying $b:=\|\beta\|_{\alpha}<1 / 2$ is called a 3 -power metrics. We give an explicit formula for the flag curvature of invariant 3 -power metrics.

2. Preliminaries

Let M be a n - dimensional C^{∞} manifold and $T M=\cup_{x \in M} T_{x} M$ the tangent bundle. A Finsler metric on a manifold M is a non-negative function F : $T M \rightarrow \mathbb{R}$ with the following properties [2]:
(1) F is smooth on the slit tangent bundle $T M^{0}:=T M \backslash\{0\}$.
(2) $F(x, \lambda y)=\lambda F(x, y)$ for any $x \in M, y \in T_{x} M$ and $\lambda>0$.
(3) The $n \times n$ Hessian matrix

$$
\left[g_{i j}\right]=\frac{1}{2}\left[\frac{\partial^{2} F^{2}}{\partial y^{i} \partial y^{j}}\right]
$$

is positive definite at every point $(x, y) \in T M_{0}$.
The following bilinear symmetric form $g_{y}: T_{x} M \times T_{x} M \longrightarrow R$ is positive definite

$$
g_{y}(u, v)=\left.\frac{1}{2} \frac{\partial^{2}}{\partial s \partial t} F^{2}(x, y+s u+t v)\right|_{s=t=0} .
$$

We recall that, by the homogeneity of F we have

$$
g_{y}(u, v)=g_{i j}(x, y) u^{i} v^{j}, \quad F=\sqrt{g_{i j}(x, y) u^{i} v^{j}}
$$

Definition 2.1. [14] Let $\alpha=\sqrt{\tilde{a}_{i j}(x) y^{i} y^{j}}$ be a norm induced by a Riemannian metric \tilde{a} and $\beta(x, y)=b_{i}(x) y^{i}$ be a 1 -form on an n-dimensional manifold M. Let

$$
\begin{equation*}
\|\beta(x)\|_{\alpha}:=\sqrt{\tilde{a}^{i j}(x) b_{i}(x) b_{j}(x)} \tag{2.1}
\end{equation*}
$$

Now, let the function F is defined as follows

$$
\begin{equation*}
F:=\alpha \phi(s) \quad, \quad s=\frac{\beta}{\alpha}, \tag{2.2}
\end{equation*}
$$

where $\phi=\phi(s)$ is a positive C^{∞} function on $\left(-b_{0}, b_{0}\right)$ satisfying

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0 \quad, \quad|s| \leq b<b_{0} . \tag{2.3}
\end{equation*}
$$

Then F is a Finsler metric if $\|\beta(x)\|_{\alpha}<b_{0}$ for any $x \in M$. A Finsler metric in the form (2.2) is called an (α, β)-metric.

We note that, a Finsler space having the Finsler function:

$$
F=\frac{(\alpha+\beta)^{3}}{\alpha^{2}}
$$

is called a 3 -power space.

The Riemannian metric \tilde{a} induces an inner product on any cotangent space $T_{x}^{*} M$ such that $\left\langle d x^{i}(x), d x^{j}(x)\right\rangle=\tilde{a}^{i j}(x)$. The induced inner product on $T_{x}^{*} M$ induces a linear isomorphism between $T_{x}^{*} M$ and $T_{x} M$. Then the 1-form β corresponds to a vector field \tilde{X} on M such that

$$
\begin{equation*}
\tilde{a}(y, \tilde{X}(x))=\beta(x, y) \tag{2.4}
\end{equation*}
$$

Also we have

$$
\|\beta(x)\|_{\alpha}=\|\tilde{X}(x)\|_{\alpha} .
$$

Therefore we can write 3-power metrics as follows:

$$
\begin{equation*}
F(x, y)=\frac{\left(\sqrt{\tilde{a}(y, y)}+\tilde{a}\left(X_{x}, y\right)\right)^{3}}{\tilde{a}(y, y)} \tag{2.5}
\end{equation*}
$$

where for any $x \in M$, the following holds

$$
\sqrt{\tilde{a}(\tilde{X}(x), \tilde{X}(x))}=\|\tilde{X}(x)\|_{\alpha}<\frac{1}{2}
$$

Suppose $W=W^{i} \frac{\partial}{\partial x^{i}}$ be a non-vanishing vector field on an open subset D of M. We can introduce a Riemannian metric g_{W} and a linear connection ∇^{W} on the tangent bundle over D as following:

$$
\begin{gathered}
g_{W}(X, Y)=X^{i} Y^{j} g_{i j}(x, W), \quad \forall X=X^{i} \frac{\partial}{\partial x^{i}}, \quad Y=Y^{j} \frac{\partial}{\partial x^{j}}, \\
\nabla_{\frac{\partial}{\partial x^{i}}}^{W} \frac{\partial}{\partial x^{i}}=\Gamma_{i j}^{k}(x, V) \frac{\partial}{\partial x^{k}} .
\end{gathered}
$$

Now since the Chern connection is torsion free and g-compatible we have:

$$
\begin{gathered}
\nabla_{X}^{W} Y-\nabla_{Y}^{W} X=[X, Y] \\
X_{g_{W}}(Y, Z)=g_{W}\left(\nabla_{X}^{W} Y, Z\right)+g_{W}\left(Y, \nabla_{X}^{W} Z\right)+2 C_{W}\left(\nabla_{X}^{W} V, Y, Z\right),
\end{gathered}
$$

where C denotes the Cartan tensor.

The curvature tensor $R^{W}(X, Y) Z$ for vector fields X, Y, Z on D is defined by

$$
R^{W}(X, Y) Z=\nabla_{X}^{W} \nabla_{Y}^{W} Z-\nabla_{Y}^{W} \nabla_{X}^{W} Z-\nabla_{[X, Y]}^{W} Z .
$$

For a Finsler manifold (M, F) and a flag $(X ; P)$ consisting of a nonzero tangent vector $X \in T_{x} M$ and a plane $P \subset T_{x} M$ spanned by the tangent vector X and Y, the flag curvature defined as

$$
\begin{equation*}
K(X ; P):=\frac{g_{X}\left(R^{X}(Y, X) X, Y\right)}{g_{X}(X, X) g_{X}(Y, Y)-g_{X}(X, Y)} . \tag{2.6}
\end{equation*}
$$

We note that in [11], Parhizkar and Latifi gives a formula for the flag curvature of a left invariant (α, β)-metrics.

3. Flag curvature of invariant 3-power metrics on homogeneous spaces

Let G be a compact Lie group, H a closed subgroup, and $\lll-,-\gg$ a bi-invariant Riemannian metric on G. Assume that \mathfrak{g} and \mathfrak{h} are the Lie algebras of G and H respectively. The tangent space of the homogeneous space G / H is given by the orthogonal complement \mathfrak{m} of \mathfrak{h} in \mathfrak{g} with respect to $\lll-,>$. Each invariant metric \mathfrak{g} on G / H is determined by its restriction to \mathfrak{m}. The arising $A d_{H}$-invariant inner product from g on \mathfrak{m} can extend to an $A d_{H}$-invariant inner product on \mathfrak{g} by taking $\lll-,-\gg$ for the components in \mathfrak{h}. In this way the invariant metric g on G / H determines a unique left invariant metric on G that we also denote by g. The values of $\lll-,-\gg$ and g at the identity are inner products on \mathfrak{g}, we denote them by $\lll-,-\ggg$ and $\ll-,-\gg$ respectively. The inner product $\ll-,-\gg$ determines a positive definite endomorphism ϕ of \mathfrak{g} such that

$$
\ll X, Y \gg=\lll \phi X, Y \ggg, \quad \forall X, Y \in \mathfrak{g} .
$$

Püttmann has shown that the curvature tensor of the invariant metric \ll ,$--\gg$ on the compact homogeneous space G / H is given by [13]:

$$
\begin{align*}
\ll R(X, Y) Z, W \gg= & \frac{1}{2}\left(\lll B_{-}(X, Y),[Z, W] \ggg+\lll[X, Y], B_{-}(Z, W) \ggg\right) \\
& +\frac{1}{4}\left(\ll[X, W],[Y, Z]_{\mathfrak{m}} \gg-\ll[X, Z],[Y, W]_{\mathfrak{m}} \ggg\right. \\
& \left.-2 \ll[X, Y],[Z, W]_{\mathfrak{m}} \gg\right) \\
& +\left(\lll B_{+}(X, W), \phi^{-1} B_{+}(Y, Z) \ggg\right. \\
& \left.-\lll B_{+}(X, Z), \phi^{-1} B_{+}(Y, W) \ggg\right) \tag{3.1}
\end{align*}
$$

where

$$
\begin{aligned}
B_{+}(X, Y) & =\frac{1}{2}([X, \phi Y]+[Y, \phi X]), \\
B_{-}(X, Y) & =\frac{1}{2}([\phi X, Y]+[X, \phi Y]) .
\end{aligned}
$$

In this section, we are going to study the flag curvature of invariant 3-power metrics on homogeneous spaces.

Theorem 3.1. Assume that G be a compact Lie group, H a closed subgroup, $\lll-, \ggg$ a bi-invariant metric on G and \mathfrak{g} and \mathfrak{h} the Lie algebras of G and H respectively. Further, assume that \tilde{a} be any invariant Riemannian metric on the homogeneous space G / H such that $\tilde{a}(Y, Z)=\lll \phi Y, Z \ggg$ where $\phi: \mathfrak{g} \rightarrow \mathfrak{g}$ is a positive definite endomorphism and $Y, Z \in \mathfrak{g}$. Also suppose that \tilde{X} is an invariant vector field on G / H where is parallel with respect to \tilde{a} and $\tilde{X}_{H}=X$. Let $F=\frac{(\alpha+\beta)^{3}}{\alpha^{2}}$ be the 3-power metric arising from \tilde{a} and \tilde{X} and (P, Y) be a
flag in $T_{n} \frac{G}{H}$ such that $\{U, Y\}$ is an orthonormal basis of P with respect to \tilde{a}. Then the flag curvature of the flag (P, Y) is given by

$$
\begin{equation*}
K(P, Y):=\frac{Q \tilde{a}(R(U, Y) Y, U)+N \tilde{a}(X, U) \tilde{a}(R(U, Y) Y, X)}{(1+s)^{3}\left(Q+\left(6+24 r+36 r^{2}+24 r^{3}+6 r^{4}\right) \tilde{a}^{2}(X, U)\right)} \tag{3.2}
\end{equation*}
$$

where

$$
r:=\frac{\tilde{a}(X, Y)}{\sqrt{\tilde{a}(Y, Y)}}
$$

and
$Q=-2 r^{6}-9 r^{5}-15 r^{4}-10 r^{3}+3 r+1, \quad N=15 r^{4}+60 r^{3}+90 r^{2}+60 r+15$,

$$
\begin{aligned}
\tilde{a}(R(U, Y) Y, U)= & \frac{1}{2} \lll[\phi U, Y]+[U, \phi Y],[Y, U] \ggg \\
& +\frac{3}{4} \tilde{a}([Y, U],[Y, U] \mathfrak{m})+\lll[U, \phi U], \phi^{-1}([Y, \phi Y]) \ggg \\
& -\frac{1}{4} \lll[U, \phi Y]+[Y, \phi U], \phi^{-1}([Y, \phi U]+[U, \phi Y]) \ggg,
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{a}(R(U, Y) Y, X)= & \frac{1}{4}(\lll[\phi U, Y]+[U, \phi Y],[Y, X] \ggg \\
& +\lll[U, Y],[\phi Y, X]+[Y, \phi X] \ggg) \\
& +\frac{3}{4} \tilde{a}([Y, U],[Y, X] \mathfrak{m}) \\
& +\frac{1}{2} \lll[U, \phi X]+[X, \phi U], \phi^{-1}[Y, \phi Y] \ggg \\
& -\frac{1}{4} \lll[U, \phi Y]+[Y, \phi U], \phi^{-1}([Y, \phi X]+[X, \phi Y]) \ggg .
\end{aligned}
$$

Proof. Since \tilde{X} is parallel with respect to \tilde{a}, then β is parallel with respect to α. Therefore F is a Berwald metric, i.e. the Chern connection of F coincide with the Riemannian connection of \tilde{a}. Therefore, F has the same curvature tensor as that of the Riemannian metric \tilde{a} and we denote it by R.

Now by using the formula

$$
g_{Y}(U, V)=\left.\frac{1}{2} \frac{\partial^{2}}{\partial s \partial t}\left[F^{2}(Y+s U+t V)\right]\right|_{s=t=0}
$$

and some computations for the 3-power metric F defined by the following

$$
F(x, y)=\frac{\left(\sqrt{\tilde{a}(y, y)}+\tilde{a}\left(X_{x}, y\right)\right)^{3}}{\tilde{a}(y, y)}
$$

we get:

$$
\begin{align*}
g_{Y}(U, V)= & \left(1+3 r+3 r^{2}+r^{3}\right)^{2} \tilde{a}(U, V) \\
& +\left(3 r^{5}+15 r^{4}+30 r^{3}+30 r^{2}+15 r+3\right) \tilde{a}(Y, U) \\
& \times\left(\frac{\tilde{a}(X, V)}{\left.\sqrt{\tilde{a}(Y, Y)}-\frac{\tilde{a}(X, Y) \tilde{a}(Y, V)}{(\tilde{a}(Y, Y))^{3 / 2}}\right)}\right. \\
& +\left(15 r^{4}+60 r^{3}+90 r^{2}+60 r+15\right)\left(\frac{\tilde{a}(X, V)}{\sqrt{\tilde{a}(Y, Y)}}-\frac{\tilde{a}(X, Y) \tilde{a}(Y, V)}{(\tilde{a}(Y, Y))^{3 / 2}}\right) \\
& \times\left(\tilde{a}(X, U) \sqrt{\tilde{a}(Y, Y)}-\frac{\tilde{a}(Y, U) \tilde{a}(X, Y)}{\sqrt{\tilde{a}(Y, Y)}}\right) \\
& +\frac{\left(3 r^{5}+15 r^{4}+30 r^{3}+30 r^{2}+15 r+3\right)}{\sqrt{\tilde{a}(Y, Y)}} \\
& \times(\tilde{a}(X, U) \tilde{a}(Y, V)-\tilde{a}(U, V) \tilde{a}(X, Y)), \tag{3.3}
\end{align*}
$$

where

$$
r=\frac{\tilde{a}(X, Y)}{\sqrt{\tilde{a}(Y, Y)}} .
$$

From equation (3.3) we have:

$$
\begin{gather*}
g_{Y}(U, U)=\left(15 r^{4}+60 r^{3}+90 r^{2}+60 r+15\right) \tilde{a}^{2}(X, U)+\left(-2 r^{6}-9 r^{5}-15 r^{4}-10 r^{3}+3 r+1\right) \tag{3.4}\\
g_{Y}(Y, Y)=(1+r)^{6}=\left(1+3 r+3 r^{2}+r^{3}\right)^{2} \tag{3.5}
\end{gather*}
$$

and

$$
\begin{equation*}
g_{Y}(Y, U)=\left(3 r^{5}+15 r^{4}+30 r^{3}+30 r^{2}+15 r+3\right) \tilde{a}(X, U) . \tag{3.6}
\end{equation*}
$$

So we get

$$
\begin{align*}
g_{Y}(Y, Y) \cdot g_{Y}(U, U)-g_{Y}^{2}(Y, U)= & \left(1+3 r+3 r^{2}+r^{3}\right)^{2} \\
& \times\left(\left(-2 r^{6}-9 r^{5}-15 r^{4}-10 r^{3}+3 r+1\right)\right. \\
& \left.+\left(6+24 r+36 r^{2}+24 r^{3}+6 r^{4}\right) \tilde{a}^{2}(X, U)\right) . \tag{3.7}
\end{align*}
$$

Furthermore, we have

$$
\begin{align*}
g_{Y}(R(U, Y) Y, U)= & \left(-2 r^{6}-9 r^{5}-15 r^{4}-10 r^{3}+3 r+1\right) \tilde{a}(R(U, Y) Y, U) \\
& \left(\left(3 r^{5}+15 r^{4}+30 r^{3}+30 r^{2}+15 r+3\right) \tilde{a}(X, U)\right. \\
- & \left.\left(15 r^{4}+60 r^{3}+90 r^{2}+60 r+15\right) \tilde{a}(X, U) r\right) \\
& \times \tilde{a}(R(U, Y) Y, Y) \\
+ & \left(\left(15 r^{4}+60 r^{3}+90 r^{2}+60 r+15\right)\right) \tilde{a}(X, U) \tilde{a}(R(U, Y) Y, X) . \tag{3.8}
\end{align*}
$$

Now by using Püttmann's formula and some computations we get:

$$
\begin{align*}
\tilde{a}(R(U, Y) Y, U)= & \frac{1}{2} \lll[\phi U, Y]+[U, \phi Y],[Y, U] \ggg \\
& +\frac{3}{4} \tilde{a}\left([Y, U],[Y, U]_{\mathfrak{m}}\right)+\lll[U, \phi U], \phi^{-1}([Y, \phi Y]) \ggg \tag{3.9}\\
& -\frac{1}{4} \lll[U, \phi Y]+[Y, \phi U], \phi^{-1}([Y, \phi U]+[U, \phi Y]) \ggg \\
& \tilde{a}(R(U, Y) Y, Y)=0, \tag{3.10}
\end{align*}
$$

and

$$
\begin{align*}
\tilde{a}(R(U, Y) Y, X)= & \frac{1}{4}(\lll[\phi U, Y]+[U, \phi Y],[Y, X] \ggg \\
& +\lll[U, Y],[\phi Y, X]+[Y, \phi X] \ggg) \\
& +\frac{3}{4} \tilde{a}([Y, U],[Y, X] \mathfrak{m}) \\
& +\frac{1}{2} \lll[U, \phi X]+[X, \phi U], \phi^{-1}[Y, \phi Y] \ggg \\
& -\frac{1}{4} \lll[U, \phi Y]+[Y, \phi U], \phi^{-1}([Y, \phi X]+[X, \phi Y]) \ggg . \tag{3.11}
\end{align*}
$$

Substituting the equations (3.4)-(3.11) in (2.6) give us the proof.

References

1. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β) - spaces,Int. J. Geom. Methods Mod. Phys. 17 (8), (2020), 2050117.
2. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, SpringerVerlag, NEWYORK,(2000).
3. M. Ebrahimi and D. Latifi, On flag curvature and homogeneous geodesics of left invariant Randers metrics on the semi-direct product $a \oplus_{p} r$, Journal of Lie Theory, 29, (2019), 619-627.
4. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57, (2007), 14211433.
5. D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57, (2006) 357366. Erratum: Rep. Math. Phys. 60, (2007), 347.
6. D. Latifi, Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen., 76 1-2, (2010), 219226.
7. D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math Sci., 6 63, (2012).
8. D. Latifi, Bi-invariant (α, β) - metrics on Lie groups, Acta Universitatis Apulensis 65, (2021), 121-131.
9. D. Latifi, On generalized symmetric square metrics, Acta Universitatis Apulensis, 68, (2021), 63-70.
10. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31, (1992), 43-83.
11. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β) - metrics, Int. J.Geom. Methods Mod. Phys., 13, (2016), 1650039, 1-11.
12. M. Parhizkar and D. Latifi, On invariant Matsumoto metrics, Vietnam J. Math., 47, (2019), 355365.
13. T. Püttmann, Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., 138, (1999), 631684.
14. M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β)-metrics, Journal of Finsler Geometry and its Applications, 1, No. 1, (2020), 45-53.
15. M. L. Zeinali, Some results in generalized symmetric square-root spaces, Journal of Finsler Geometry and its Applications, 3, No. 2, (2022), 13-19.

Received: 14-07-2023
Accepted: 28-07-2023

[^0]: AMS 2020 Mathematics Subject Classification: 53C30, 53C60.

