Diverse Forms of Generalized Birecurrent Finsler Space

Alaa A. Abdallah ${ }^{a}$, Ahmed A. Hamoud ${ }^{b}$, A. Navlekar ${ }^{c}$, Kirtiwant Ghadle d, Basel Hardan ${ }^{e}$, Homan Emadifar ${ }^{f *}$
${ }^{a}$ Department of Mathematics, Abyan University, Abyan, Yemen.
E-mail: maths.aab@bamu.ac.in
${ }^{b}$ Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen
E-mail: ahmed.hamoud@taiz.edu.ye
${ }^{c}$ Department of Mathematics, Pratishthan Mahavidyalaya, Paithan, India.
E-mail: dr.navlekar@gmail.com
${ }^{d}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.
E-mail: ghadle.maths@bamu.ac.in
${ }^{e}$ Department of Mathematics, Abyan University, Abyan, Yemen. E-mail: bassil2003@gmail.com
${ }^{f}$ Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran. E-mail: homan_emadi@yahoo.com

Abstract

The generalized birecurrent Finsler space have been introduced by the Finslerian geometers. The purpose of the present paper is to study three special forms of $P_{j k h}^{i}$ in generalized $\mathfrak{B} P$-birecurrent space. We use the properties of $P 2$-like space, P^{*}-space and P-reducible space in the main space to get new spaces that will be called a $P 2$-like generalized $\mathfrak{B} P$-birecurrent space, P^{*}-generalized $\mathfrak{B} P$-birecurrent space and P-reducible generalized $\mathfrak{B} P$-birecurrent space, respectively. In addition, we prove that the Cartan's first curvature tensor $S_{j k h}^{i}$ satisfies the birecurrence property. Certain identities belong to these spaces have been obtained. Further, we end up this paper with some demonstrative examples.

[^0]Keywords: Cartan's first curvature tensor $S_{j k h}^{i}, P 2$-like space, P^{*}-space, P-reducible space.

1. Introduction

Various special forms of $h(h v)$-curvature tensor $P_{j k h}^{i}$ and $v(h v)$-torsion tensor $P_{j k}^{i}$ which are called $P 2$-like space, P^{*}-space and P-reducible space have been studied by scientists of Finsler geometry. A review of literature for some special Finsler spaces introduced by Dubey [9]. Tripathi and Pandey [23] discussed a special form of $h(h v)$-torsion tensor $P_{i j k}$ in different Finsler spaces. Wosoughi [24] introduced a new special form in Finsler space and obtained the condition for Finsler space to be a Landsberg space. Furthermore, Narasimhamurthy et al. $[2,16]$ studied hypersurfaces of special Finsler spaces.

The properties of $P 2$-like space, P^{*}-space and P-reducible space in the generalized $\mathfrak{B} P$-recurrent space have been discussed by [2, 4]. Also, Alaa et al. [3] introduced $P 2$-like- $\mathfrak{B} C-R F_{n}, P^{*}-\mathfrak{B} C-R F_{n}$ and P-reducible $-\mathfrak{B} C-R F_{n}$.

Qasem and Hadi [19] and Assallal [7] studied the properties of $P 2$-like space and P^{*}-space in generalized $\mathfrak{B} R$-birecurrent space and generalized P^{h} - birecurrent space, respectively. Otman [18] introduced the $P 2$-like $-P^{h}$-birecurrent space and $P^{*}-P^{h}$-birecurrent space.

Dwivedi [10] obtained every C-reducible Finsler space is P-reducible and converse is not necessarily true. Zamanzadeh et al. [25] introduced a generalized P-reducible Finsler manifolds. In this paper, we merge the generalized $\mathfrak{B} P$-birecurrent space with special spaces in Finser space to get new spaces contain the same properties of the main space.

2. Preliminaries

In this section, some preliminary concepts which are necessary for the discussion of the following sections. An n-dimensional space X_{n} equipped with a function $F(x, y)$ which denoted by $F_{n}=\left(X_{n}, F(x, y)\right)$ called a Finsler space if the function $F(x, y)$ satisfying the request conditions $[1,2,6,8,17,22]$.

The covariant vector y_{i} is defined by

$$
\begin{equation*}
y_{i}=g_{i j}(x, y) y^{j} \tag{2.1}
\end{equation*}
$$

where the metric tensor $g_{i j}(x, y)$ is positively homogeneous of degree zero in y^{i} and symmetric in its indices which is defined by

$$
g_{i j}(x, y)=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} F^{2}(x, y)
$$

The metric tensor $g_{i j}$ and its associative $g^{i j}$ are related by

$$
g_{i j} g^{i k}=\delta_{j}^{k}=\left\{\begin{array}{l}
1 \text { if } j=k \tag{2.2}\\
0 \text { if } j \neq k
\end{array}\right.
$$

In view of (2.1) and (2.2), we have
a) $\delta_{j}^{i} g_{i r}=g_{j r}$,
b) $\delta_{j}^{i} y_{i}=y_{j}$ and
c) $\delta_{j}^{i} y^{j}=y^{i}$.

Matsumoto [14] introduced the (h)hv-torsion tensor $C_{i j k}$ that is positively homogeneous of degree -1 in y^{i} and defined by

$$
C_{i j k}=\frac{1}{2} \dot{\partial}_{i} g_{j k}=\frac{1}{4} \dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} F^{2}
$$

This tensor satisfies the following
a) $C_{j k}^{i} y_{i}=0$,
b) $C_{i k}^{h}=g^{h j} C_{i j k}$,
c) $C_{r i}^{i}=C_{r}, \quad$ d) $C_{i j k}=g_{h j} C_{i k}^{h}$,
e) $\left.\delta_{j}^{i} C_{i k l}=C_{j k l}, f\right) \delta_{j}^{i} C_{k h}^{j}=C_{k h}^{i}$ and $\left.g\right) C_{i j k} y^{i}=C_{k i j} y^{i}=C_{j k i} y^{i}=0$, where $C_{j k}^{i}$ is called associate tensor of the $(h) h v$-torsion tensor $C_{i j k}$.

The unit vector l^{i} and associate vector l_{i} with the direction of y^{i} are given by

$$
\begin{equation*}
\text { a) } l^{i}=\frac{y^{i}}{F} \text { and b) } l_{i}=\frac{y_{i}}{F} \tag{2.5}
\end{equation*}
$$

Cartan h-covariant differentiation with respect to x^{k} is given by [20]

$$
X_{\mid k}^{i}=\partial_{k} X^{i}-\left(\dot{\partial}_{r} x^{i}\right) G_{k}^{r}+X^{r} \Gamma_{r k}^{* i}
$$

The h-covariant derivative of the vector y^{i} and associate metric tensor $g^{i j}$ are vanish identically i.e.

$$
\begin{equation*}
\text { a) } y_{\mid k}^{i}=0, \quad \text { and } \quad \text { b) } g_{\mid k}^{i j}=0 \tag{2.6}
\end{equation*}
$$

Berwald covariant derivative $\mathfrak{B}_{k} T_{j}^{i}$ of an arbitrary tensor field T_{j}^{i} with respect to x^{k} is given by [20]

$$
\mathfrak{B}_{k} T_{j}^{i}=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r}
$$

Berwald covariant derivative of the vector y^{i} vanish identically i.e.

$$
\begin{equation*}
\mathfrak{B}_{k} y^{i}=0 . \tag{2.7}
\end{equation*}
$$

The tensor $P_{j k h}^{i}$ is called $h v$-curvature tensor (Cartan's second curvature tensor) which is positively homogeneous of degree - 1 in y^{i} and defined by

$$
P_{j k h}^{i}=\dot{\partial}_{h} \Gamma_{j k}^{* i}+C_{j r}^{i} P_{k h}^{r}-C_{j h \mid k}^{i}
$$

and satisfies the relation

$$
\begin{equation*}
P_{j k h}^{i} y^{j}=\Gamma_{j k h}^{* i} y^{j}=P_{k h}^{i}=C_{k h \mid r}^{i} y^{r}, \tag{2.8}
\end{equation*}
$$

where $P_{k h}^{i}$ is called the $(v) h v$-torsion tensor. This tensor and its associative tensor $P_{r k h}$ are related by

$$
\begin{equation*}
P_{k h}^{i}=g^{i r} P_{r k h} \tag{2.9}
\end{equation*}
$$

The associate tensor $P_{i j k h}$ is given by

$$
\begin{equation*}
P_{j k h}^{r}=g^{i r} P_{i j k h} . \tag{2.10}
\end{equation*}
$$

The P-Ricci tensor $P_{j k}$, curvature vector P_{k} and curvature scalar P are given by

$$
\begin{equation*}
\text { a) } P_{j k}=P_{j k i}^{i}, \text { b) } P_{k}=P_{k i}^{i} \text { and c) } P=P_{k} y^{k} \tag{2.11}
\end{equation*}
$$

respectively. Cartans second curvature tensor $P_{j k h}^{i}$ satisfies the identity

$$
P_{j k h}^{i}-P_{j h k}^{i}=-S_{j k h \mid r}^{i} y^{r},
$$

where $S_{j k h}^{i}$ is called v-curvature tensor (Cartan's first curvature tensor) which is defined by [20]

$$
\begin{equation*}
S_{j k h}^{i}=C_{r k}^{i} C_{j h}^{r}-C_{r h}^{i} C_{j k}^{r} . \tag{2.12}
\end{equation*}
$$

The associate curvature tensor $S_{p j k h}$ of v-curvature tensor $S_{j k h}^{i}$ is given by

$$
\begin{equation*}
S_{p j k h}=g_{i p} S_{j k h}^{i} . \tag{2.13}
\end{equation*}
$$

In contracting the indices i and h in (2.12), we get

$$
\begin{equation*}
S_{j k i}^{i}=S_{j k}=C_{r k}^{s} C_{j s}^{r}-C_{r} C_{j k}^{r} . \tag{2.14}
\end{equation*}
$$

Definition 2.1. A Finsler space F_{n} is called a P2-like space if the Cartan's secend curvature tensor $P_{j k h}^{i}$ is characterized by the condition [15]

$$
\begin{equation*}
P_{j k h}^{i}=\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h}, \tag{2.15}
\end{equation*}
$$

where φ_{j} and φ^{i} are non - zero covariant and contravariant vectors field, respectively.

Definition 2.2. A Finsler space F_{n} is called a $P^{*}-$ Finsler space if the $(v) h v$ torsion tensor $P_{k h}^{i}$ is characterized by the condition [13]

$$
\begin{equation*}
P_{k h}^{i}=\varphi C_{k h}^{i}, \varphi \neq 0 \tag{2.16}
\end{equation*}
$$

where $P_{j k h}^{i} y^{j}=P_{k h}^{i}=C_{k h \mid s}^{i} y^{s}$.
Definition 2.3. A Finsler space F_{n} is called a P-reducible space if the associate tensor $P_{j k h}$ of $(v) h v$-torsion tensor $P_{k h}^{i}$ is characterized by one of the following conditions [10, 21]

$$
\begin{equation*}
P_{j k h}=\lambda C_{j k h}+\varphi\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right) \tag{2.17}
\end{equation*}
$$

where λ and φ are scalar vectors positively homogeneous of degree one in y^{j} and $h_{j k}$ is the angular metric tensor.

$$
\begin{equation*}
P_{j k h}=\frac{1}{(n+1)}\left(h_{j k} P_{h}+h_{k h} P_{j}+h_{h j} P_{k}\right), \tag{2.18}
\end{equation*}
$$

where $P_{j k h}=C_{j k h \mid m} y^{m}, P_{i k}^{i}=P_{k}$ and $h_{i j}=g_{i j}-l_{i} l_{j}$.
Definition 2.4. Let the current coordinates in the tangent space at the point x_{0} be x^{i}, then the indicatrix I_{n-1} is a hypersurface defined by $F\left(x_{0}, x^{i}\right)=1$ or by the parametric form defined by $x^{i}=x^{i}\left(u^{a}\right), a=1,2, \ldots, n-1$.

The projection of any tensor T_{j}^{i} on indicatrix I_{n-1} is given by [11]

$$
\begin{equation*}
p \cdot T_{j}^{i}=T_{b}^{a} h_{a}^{i} h_{j}^{b}, \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{c}^{i}=\delta_{c}^{i}-l^{i} l_{c} . \tag{2.20}
\end{equation*}
$$

Then, the projection of the vector y^{i}, unit vector l^{i} and metric tensor $g_{i j}$ on the indicatrix are given by $p \cdot y^{i}=0, p . l^{i}=0$ and $p \cdot g_{i j}=h_{i j}$, where $h_{i j}=g_{i j}-l_{i} l_{j}$.

Alaa et al. [5] introduced the generalized $\mathfrak{B P}$-birecurrent space which Cartan's second curvature tensor $P_{j k h}^{i}$ satisfies the condition

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}=a_{l m} P_{j k h}^{i}+b_{l m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(\delta_{j}^{i} C_{k h l}-\delta_{k}^{i} C_{j h l}\right) . \tag{.2.21}
\end{equation*}
$$

This space is denoted by $G(\mathfrak{B} P)-B R F_{n}$.

Let us consider a $G(\mathfrak{B} P)-B R F_{n}$.
Transvecting the condition (2.21) by y^{j}, using (2.1), (2.3), (2.4), (2.7) and (2.8), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i}+b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) \tag{2.22}
\end{equation*}
$$

Contracting the indices i and h in the condition (2.21), using (2.3), (2.4) and (2.11), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k}=a_{l m} P_{j k} \tag{2.23}
\end{equation*}
$$

Contracting the indices i and h in (2.22) and using (2.1), (2.3), (2.4) and (2.11), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}=a_{l m} P_{k} . \tag{2.24}
\end{equation*}
$$

Transvecting (2.24) by y^{k}, using (2.7), (2.11) and put $\left(y_{k} y^{k}=1\right)$, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P=a_{l m} P . \tag{2.25}
\end{equation*}
$$

Berwald's covariant derivative of first and second order for the (h) $h v$-torsion tensor $C_{i j k}$ and its associative $C_{j k}^{i}$ satisfy $[3,12]$

$$
\left\{\begin{array}{l}
\text { a) } \mathfrak{B}_{m} C_{k h}^{i}=\lambda_{m} C_{k h}^{i}+\mu_{m}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \\
\text { b) } \mathfrak{B}_{m} C_{j k h}=\lambda_{m} C_{j k h}+\mu_{m}\left(g_{j k} y_{h}-g_{j h} y_{k}\right) \tag{2.26}\\
\text { c) } \mathfrak{B}_{l} \mathfrak{B}_{m} C_{k h}^{i}=a_{l m} C_{k h}^{i}+b_{l m}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right) \\
\text { d) } \mathfrak{B}_{l} \mathfrak{B}_{m} C_{j k h}=a_{l m} C_{j k h}+b_{l m}\left(g_{j k} y_{h}-g_{j h} y_{k}\right) .
\end{array}\right.
$$

3. A $P 2$-Like-Generalized $\mathfrak{B} P$-Birecurrent Space

Definition 3.1. The generalized $\mathfrak{B P}$-birecurrent space which is $P 2$-like space i.e. satisfies the condition (2.15), will be called a $P 2$-like generalized $\mathfrak{B} P$-birecurrent space and will be denoted briefly by $P 2-$ like $-G(\mathfrak{B} P)-B R F_{n}$.

Remark 3.2. It will be sufficient to call the tensor which satisfies the condition of $P 2-$ like $-G(\mathfrak{B} P)-B R F_{n}$ as a generalized \mathfrak{B}-birecurrent.

Let us consider a $P 2-$ like $-G(\mathfrak{B} P)-B R F_{n}$.
In next theorem we obtain the tensor $\left(\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h}\right)$ satisfies the generalized birecurrence property.

Theorem 3.3. The tensor $\left(\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h}\right)$ is generalized \mathfrak{B}-birecurrent in $P 2$ - like $-G(\mathfrak{B} P)-B R F_{n}$.

Proof. Taking \mathfrak{B}-covariant derivative for the condition (2.15) twice with respect to x^{m} and x^{l}, respectively, using the condition (2.21), we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h}\right)= & a_{l m} P_{j k h}^{i}+b_{l m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right) \\
& -2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(\delta_{j}^{i} C_{k h l}-\delta_{k}^{i} C_{j h l}\right) .
\end{aligned}
$$

Using the condition (2.15) in above equation, we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h}\right)= & a_{l m}\left(\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h}\right)+b_{l m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right) \\
& -2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(\delta_{j}^{i} C_{k h l}-\delta_{k}^{i} C_{j h l}\right) . \tag{3.1}
\end{align*}
$$

Hence, we have proved this theorem.
Now, we infer a corollary related to the previous theorem.
Contracting the indices i and h in the condition (2.15), using (2.4) and (2.11), we get

$$
\begin{equation*}
P_{j k}=\varphi_{j} C_{k}-\varphi^{i} C_{j k i} \tag{3.2}
\end{equation*}
$$

Taking \mathfrak{B}-covariant derivative for (3.2) twice with respect to x^{m} and x^{l}, respectively, using (2.23), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi_{j} C_{k}-\varphi^{i} C_{j k i}\right)=a_{l m} P_{j k}
$$

Using (3.2) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi_{j} C_{k}-\varphi^{i} C_{j k i}\right)=a_{l m}\left(\varphi_{j} C_{k}-\varphi^{i} C_{j k i}\right) \tag{3.3}
\end{equation*}
$$

Thus, we conclude the following corollary:
Corollary 3.4. In $P 2-$ like $-G(\mathfrak{B} P)-B R F_{n}$, the behavior of the tensor $\left(\varphi_{j} C_{k}-\varphi^{i} C_{j k i}\right)$ as birecurrent.

4. A P^{*}-Generalized $\mathfrak{B} P$-Birecurrent Space

Definition 4.1. [17] The generalized $\mathfrak{B} P$-birecurrent space which is P^{*}-space i.e. satisfies the condition (2.16), will be called a $P^{*}-$ generalized $\mathfrak{B} P$-birecurrent space and will be denoted briefly by $P^{*}-G(\mathfrak{B} P)-B R F_{n}$.

Remark 4.2. All results in $P 2-$ like $-G(\mathfrak{B} P)-B R F_{n}$ which obtained in the previous section are satisfied in $P^{*}-G(\mathfrak{B} P)-B R F_{n}$.

Let us consider a $P^{*}-G(\mathfrak{B} P)-B R F_{n}$.
In next theorem we obtain the Berwalds covariant derivative of second order for some tensors are non - vanishing.

Theorem 4.3. Berwalds covariant derivative of second order for the tensors $\left(\varphi C_{k h}^{i}\right),\left(\varphi C_{k}\right)$ and (φC) are non-vanishing in $P^{*}-G(\mathfrak{B} P)-B R F_{n}$.

Proof. Taking \mathfrak{B}-covariant derivative for the condition (2.16) twice with respect to x^{m} and x^{l}, respectively, using (2.22), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi C_{k h}^{i}\right)=a_{l m} P_{k h}^{i}+b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) .
$$

Using the condtion (2.16) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi C_{k h}^{i}\right)=a_{l m}\left(\varphi C_{k h}^{i}\right)+b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) . \tag{4.1}
\end{equation*}
$$

Contracting the indices i and h in the condition (2.16), using (2.4) and (2.11), we get

$$
\begin{equation*}
P_{k}=\varphi C_{k} . \tag{4.2}
\end{equation*}
$$

Taking \mathfrak{B}-covariant derivative for (4.2) twice with respect to x^{m} and x^{l}, respectively, using (2.24), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi C_{k}\right)=a_{l m} P_{k} .
$$

Using (4.2) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(\varphi C_{k}\right)=a_{l m}\left(\varphi C_{k}\right) . \tag{4.3}
\end{equation*}
$$

Transvecting (4.2) by y^{k}, using (2.11) and put $\left(C_{k} y^{k}=C\right)$, we get

$$
\begin{equation*}
P=\varphi C \tag{4.4}
\end{equation*}
$$

Taking \mathfrak{B}-covariant derivative for (4.4) twice with respect to x^{m} and x^{l}, respectively, using (2.25), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}(\varphi C)=a_{l m} P
$$

Using (4.4) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}(\varphi C)=a_{l m}(\varphi C) . \tag{4.5}
\end{equation*}
$$

The equations (4.1), (4.3) and (4.5) prove that the tensors $\left(\varphi C_{k h}^{i}\right),\left(\varphi C_{k}\right)$ and (φC) are non-vanishing. Hence, we have proved this theorem.

Also, in next theorem we discuss the relationship between Cartan's first curvature tensor $S_{j k h}^{i}$ and associate tensor $C_{j k}^{i}$ of the (h)hv-torsion tensor $C_{i j k}$.

Theorem 4.4. The behavior of Cartan's first curvature tensor $S_{j k h}^{i}$, its associative curvature tensor $S_{p j k h}$ and S-Ricci tensor $S_{j k}$ as birecurrent in $P^{*}-G(\mathfrak{B} P)-B R F_{n}$.

Proof. Taking \mathfrak{B}-covariant derivative for (2.12) twice with respect to x^{m} and x^{l}, respectively, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{j k h}^{i}= & \left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{r k}^{i}\right) C_{j h}^{r}+\left(\mathfrak{B}_{m} C_{r k}^{i}\right)\left(\mathfrak{B}_{l} C_{j h}^{r}\right)+\left(\mathfrak{B}_{l} C_{r k}^{i}\right)\left(\mathfrak{B}_{m} C_{j h}^{r}\right) \\
& +C_{r k}^{i}\left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{j h}^{r}\right)-\left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{r h}^{i}\right) C_{j k}^{r}-\left(\mathfrak{B}_{m} C_{r h}^{i}\right)\left(\mathfrak{B}_{l} C_{j k}^{r}\right) \\
& -\left(\mathfrak{B}_{l} C_{r h}^{i}\right)\left(\mathfrak{B}_{m} C_{j k}^{r}\right)-C_{r h}^{i}\left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{j k}^{r}\right) .
\end{aligned}
$$

Using (2.26) in above equation, then use (2.4), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{j k h}^{i}=2\left(a_{l m}+\lambda_{l} \lambda_{m}\right)\left(C_{r k}^{i} C_{j h}^{r}-C_{r h}^{i} C_{j k}^{r}\right)+2 \mu_{l} \mu_{m} y_{j}\left(\delta_{k}^{i} y_{h}-\delta_{h}^{i} y_{k}\right)
$$

Using (2.12) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{j k h}^{i}=\alpha_{l m} S_{j k h}^{i}, \tag{4.6}
\end{equation*}
$$

where $\alpha_{l m}=2\left(a_{l m}+\lambda_{l} \lambda_{m}\right)$ and $\delta_{k}^{i} y_{h}=\delta_{h}^{i} y_{k}$.
Transvecting (2.12) by $g_{i p}$, using (2.4) and (2.13), we get

$$
\begin{equation*}
S_{p j k h}=C_{p r k} C_{j h}^{r}-C_{p r h} C_{j k}^{r} . \tag{4.7}
\end{equation*}
$$

Taking \mathfrak{B}-covariant derivative for (4.7) twice with respect to x^{m} and x^{l}, respectively, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{p j k h}= & \left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{p r k}\right) C_{j h}^{r}+\left(\mathfrak{B}_{m} C_{p r k}\right)\left(\mathfrak{B}_{l} C_{j h}^{r}\right)+\left(\mathfrak{B}_{l} C_{p r k}\right)\left(\mathfrak{B}_{m} C_{j h}^{r}\right) \\
& +C_{p r k}\left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{j h}^{r}\right)-\left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{p r h}\right) C_{j k}^{r}-\left(\mathfrak{B}_{m} C_{p r h}\right)\left(\mathfrak{B}_{l} C_{j k}^{r}\right) \\
& -\left(\mathfrak{B}_{l} C_{p r h}\right)\left(\mathfrak{B}_{m} C_{j k}^{r}\right)-C_{p r h}\left(\mathfrak{B}_{l} \mathfrak{B}_{m} C_{j k}^{r}\right) .
\end{aligned}
$$

Using (2.26) in above equation, then use (2.4), we get
$\mathfrak{B}_{l} \mathfrak{B}_{m} S_{p j k h}=2\left(a_{l m}+\lambda_{l} \lambda_{m}\right)\left(C_{p r k} C_{j h}^{r}-C_{p r h} C_{j k}^{r}\right)+2 \mu_{l} \mu_{m} y_{j}\left(y_{h} g_{p k}-y_{k} g_{p h}\right)$.
Using (4.7) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{p j k h}=\alpha_{l m} S_{p j k h} . \tag{4.8}
\end{equation*}
$$

where $\alpha_{l m}=2\left(a_{l m}+\lambda_{l} \lambda_{m}\right)$ and $y_{h} g_{n k}=y_{k} g_{n h}$.
Contracting the indices i and h in (4.6), using (2.14), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{j k}=\alpha_{l m} S_{j k} . \tag{4.9}
\end{equation*}
$$

The equations (4.6), (4.8) and (4.9) show that the tensors $S_{j k h}^{i}, S_{p j k h}$ and $S_{j k}$ behave as birecurrent. Hence, we have proved this theorem.

5. A P-Reducible-Generalized $\mathfrak{B} P$-Birecurrent Space

Definition 5.1. The generalized $\mathfrak{B P}$-birecurrent space which is P - reducible space i.e. satisfies one of the conditions (2.17) or (2.18), will be called a P-reducible generalized $\mathfrak{B P}$-birecurrent space and will be denoted briefly by $P-$ reducible $-G(\mathfrak{B} P)-B R F_{n}$.

Remark 5.2. It will be sufficient to call the tensor which satisfies the condition of $P-$ reducible $-G(\mathfrak{B} P)-B R F_{n}$ as a generalized \mathfrak{B}-birecurrent.

In P-reducible space, the associate tensor $P_{i j k h}$ of $h v$-curvature tensor $P_{j k h}^{i}$ is given by [10]

$$
\begin{equation*}
P_{i j k h}=\left(\Theta_{j} C_{i k h}+\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-i / j\right)-\lambda S_{i j k h} \tag{5.1}
\end{equation*}
$$

where
$\left\{\begin{array}{l}\text { a) } \Theta_{j}=\lambda_{j}-\vartheta C_{j} \\ \text { b) } E_{k j}=C_{k} \vartheta_{j}+\vartheta \partial_{j} C_{k}+\vartheta F^{-1}\left(L_{j} C_{k}+L_{k} C_{j}\right) \\ \text { c) } B_{h j}=C_{h} \vartheta_{j}+\vartheta C_{h \mid j}+\vartheta F^{-1}\left(L_{h} C_{j}+L_{j} C_{h}\right) \\ \text { d) } \lambda_{j}=\dot{\partial}_{j} \lambda, \\ \text { e) } \vartheta_{j}=\dot{\partial}_{j} \vartheta, \\ \text { f) } F^{-1}=1 / F, F \text { is the fundamental function of Finsler space. }\end{array}\right.$
Let us consider a P - reducible $-G(\mathfrak{B} P)-B R F_{n}$.
In next theorem we obtain the tensor $g^{i r}\left[\left(\Theta_{j} C_{i k h}+\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-\right.\right.$ $\left.i / j)-\lambda S_{i j k h}\right]$ satisfies the generalized birecurrence property.

Theorem 5.3. In $P-$ reducible $-G(\mathfrak{B} P)-B R F_{n}$, the tensor $g^{i r}\left[\left(\Theta_{j} C_{i k h}+\right.\right.$ $\left.\left.\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-i / j\right)-\lambda S_{i j k h}\right]$ is a generalized \mathfrak{B}-birecurrent.

Proof. Transvecting (5.1) by $g^{i r}$, using (2.10), we get

$$
\begin{equation*}
P_{j k h}^{r}=g^{i r}\left[\left(\Theta_{j} C_{i k h}+\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-i / j\right)-\lambda S_{i j k h}\right] \tag{5.2}
\end{equation*}
$$

Taking \mathfrak{B}-covariant derivative for above equation twice with respect to x^{m} and x^{l}, respectively, using the condition (2.21), we get

$$
\begin{aligned}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left(g^{i r}\left[\left(\Theta_{j} C_{i k h}+\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-i / j\right)-\lambda S_{i j k h}\right]\right) \\
& =a_{l m} P_{j k h}^{i}+b_{l m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(\delta_{j}^{i} C_{k h l}-\delta_{k}^{i} C_{j h l}\right) .
\end{aligned}
$$

Using (5.2) in above equation, we get

$$
\begin{align*}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left(g^{i r}\left[\left(\Theta_{j} C_{i k h}+\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-i / j\right)-\lambda S_{i j k h}\right]\right) \\
& =a_{l m}\left(g^{i r}\left[\left(\Theta_{j} C_{i k h}+\vartheta_{j} h_{k h} C_{i}+E_{k j} h_{i h}+B_{h j} h_{i k}-i / j\right)-\lambda S_{i j k h}\right]\right) \\
& \quad+b_{l m}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(\delta_{j}^{i} C_{k h l}-\delta_{k}^{i} C_{j h l}\right) . \tag{5.3}
\end{align*}
$$

Hence, we have proved this theorem.
Now, we infer a corollary related to the previous theorem.
Transvecting (2.17) by $g^{i j}$, using (2.9) and (2.4), we get

$$
\begin{equation*}
P_{k h}^{i}=\lambda C_{k h}^{i}+\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right) \tag{5.4}
\end{equation*}
$$

where $h_{k}^{i}=g^{i j} h_{j k}$ and $C^{i}=g^{i j} C_{j}$.
Taking \mathfrak{B}-covariant derivative for (5.4) twice with respect to x^{m} and x^{l}, respectively, using (2.22), we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\lambda C_{k h}^{i}+\varphi\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)\right]= & a_{l m} P_{k h}^{i}+b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right) \\
& -2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) .
\end{aligned}
$$

Using (5.4) in above equation, we get

$$
\begin{align*}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left[\lambda C_{k h}^{i}+\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)\right] \\
& =a_{l m}\left[\lambda C_{k h}^{i}+\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)\right] \tag{5.5}\\
& +b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) .
\end{align*}
$$

Also, transvecting (2.18) by $g^{i j}$, using (2.9), we get

$$
\begin{equation*}
P_{k h}^{i}=\frac{1}{n+1}\left(h_{k}^{i} P_{h}+h_{k h} P^{i}+h_{h}^{i} P_{k}\right), \tag{5.6}
\end{equation*}
$$

where $h_{h}^{i}=g^{i j} h_{h j}$ and $P^{i}=g^{i j} P_{j}$.
Taking \mathfrak{B}-covariant derivative for (5.6) twice with respect to x^{m} and x^{l}, respectively, using (2.22), we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\frac{1}{n+1}\left(h_{k}^{i} P_{h}+h_{k h} P^{i}+h_{h}^{i} P_{k}\right)\right]= & a_{l m} P_{k h}^{i}+b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right) \\
& -2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) .
\end{aligned}
$$

Using (5.6) in above equation, we get

$$
\begin{align*}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left[\frac{1}{n+1}\left(h_{k}^{i} P_{h}+h_{k h} P^{i}+h_{h}^{i} P_{k}\right)\right] \\
& =a_{l m}\left[\frac{1}{n+1}\left(h_{k}^{i} P_{h}+h_{k h} P^{i}+h_{h}^{i} P_{k}\right)\right] \tag{5.7}\\
& +b_{l m}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right)-2 y^{t} \mu_{m} \mathfrak{B}_{t}\left(y^{i} C_{k h l}\right) .
\end{align*}
$$

Thus, we conclude the following corollary:

Corollary 5.4. P - reducible $-G(\mathfrak{B} P)-B R F_{n}$, Berwald's covariant derivative of second order for the tensors $\left[\lambda C_{k h}^{i}+\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)\right]$ and $\left[\frac{1}{n+1}\left(h_{k}^{i} P_{h}+h_{k h} P^{i}+h_{h}^{i} P_{k}\right)\right]$ are given by (5.5) and (5.7), respectively.

6. Examples

Some examples related to the previous mentioned theorems will be discussed to clarify the proved findings.

Example 6.1. The behavior of Cartan's first curvature tensor $S_{j k h}^{i}$ as birecurrent if and only if the projection on indicatrix for $S_{j k h}^{i}$ is birecurrent.

Firstly, since Cartan's first curvature tensor $S_{j k h}^{i}$ behaves as birecurrent, then the condition (4.6) is satisfied. In view of (2.19), the projection of Cartan's first curvature tensor $S_{j k h}^{i}$ on indicatrix is given by

$$
\begin{equation*}
p \cdot S_{j k h}^{i}=S_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d} \tag{6.1}
\end{equation*}
$$

By using \mathfrak{B}-covariant derivative for (6.1) twice with respect to x^{m} and x^{l}, respectively, using (4.6) and the fact that h_{b}^{a} is covariant constant in above equation, we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p \cdot S_{j k h}^{i}\right)=\alpha_{l m}\left(S_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right)
$$

Using (6.1) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p \cdot S_{j k h}^{i}\right)=\alpha_{l m}\left(p \cdot S_{j k h}^{i}\right) . \tag{6.2}
\end{equation*}
$$

Equation (6.2) refers to the projection on indicatrix for Cartan's first curvature tensor $S_{j k h}^{i}$ behaves as birecurrent.

Secondly, let the projection on indicatrix for Cartans first curvature tensor $S_{j k h}^{i}$ is birecurrent i.e. satisfy (6.2). Using (2.19) in (6.2), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(S_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right)=\alpha_{l m}\left(S_{b c d}^{a} h_{a}^{i} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right) .
$$

By using (2.20) in above equation, we get

$$
\begin{aligned}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left[S_{j k h}^{i}-S_{j k d}^{i} l^{d} l_{h}-S_{j c h}^{i} l^{c} l_{k}+S_{j c d}^{i} l^{c} l_{k} l^{d} l_{h}-S_{b k h}^{i} l^{b} l_{j}\right. \\
& +S_{b k d}^{i} l^{b} l_{j} l^{d} l_{h}+S_{b c h}^{i} l^{b} l_{j} l^{c} l_{k}-S_{b c d}^{i} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}-S_{j k h}^{a} l^{i} l_{a} \\
& +S_{j k d}^{a} l^{i} l_{a} l^{d} l_{h}+S_{j c h}^{a} l^{i} l_{a} l^{c} l_{k}-S_{j c d}^{a} l^{i} l_{a} l^{c} l_{k} l^{d} l_{h}+S_{b k h}^{a} l^{i} l_{a} l^{b} l_{j} \\
& -S_{b k d}^{a} l^{i} l_{a} l^{b} l_{j} l^{d} l_{h}-S_{b c h}^{a} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k}+S_{\left.b c d^{a} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}\right]} \\
& =\alpha_{l m}\left[S_{j k h}^{i}-S_{j k d}^{i} l^{d} l_{h}-S_{j c h}^{i} l^{c} l_{k}+S_{j c d}^{i} l^{c} l_{k} l^{d} l_{h}-S_{b k h}^{i} l^{b} l_{j}\right. \\
& +S_{b k d}^{i} l^{b} l_{j} l^{d} l_{h}+S_{b c h}^{i} l^{b} l_{j} l^{c} l_{k}-S_{b c d}^{i} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}-S_{j k h}^{a} l^{i} l_{a} \\
& +S_{j k d}^{a} l^{i} l_{a} l^{d} l_{h}+S_{j c h}^{a} l^{i} l_{a} l^{c} l_{k}-S_{j c d}^{a} l^{i} l_{a} l^{c} l_{k} l^{d} l_{h}+S_{b k h}^{a} l^{i} l_{a} l^{b} l_{j} \\
& \left.-S_{b k d}^{a} l^{i} l_{a} l^{b} l_{j} l^{d} l_{h}-S_{b c h}^{a} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k}+S_{b c d}^{a} l^{i} l_{a} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}\right] .
\end{aligned}
$$

In view of (2.5) and if $S_{b c d}^{a} y_{a}=S_{b c d}^{a} y^{b}=S_{b c d}^{a} y^{c}=S_{b c d}^{a} y^{d}=0$, then above equation becomes

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{j k h}^{i}=\alpha_{l m} S_{j k h}^{i} .
$$

Above equation means the Cartan's first curvature tensor $S_{j k h}^{i}$ behaves as birecurrent.

Example 6.2. The associate curvature tensor $S_{p j k h}$ behaves as birecurrent if and only if satisfies

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p \cdot S_{p j k h}\right)=\alpha_{l m}\left(p . S_{p j k h}\right) .
$$

Firstly, since the associate curvature tensor $S_{p j k h}$ behaves as birecurrent, then the condition (4.8) is satisfied. In view of (2.19), the projection of associate curvature tensor $S_{p j k h}$ on indicatrix is given by

$$
\begin{equation*}
p . S_{p j k h}=S_{a b c d} h_{p}^{a} h_{j}^{b} h_{k}^{c} h_{h}^{d} . \tag{6.3}
\end{equation*}
$$

Using \mathfrak{B}-covariant derivative for (6.3) twice with respect to x^{m} and x^{l}, respectively, using (4.8) and the fact that h_{b}^{a} is covariant constant in above equation, we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p . S_{p j k h}\right)=\alpha_{l m}\left(S_{a b c d} h_{p}^{a} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right) .
$$

Using (6.3) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p . S_{p j k h}\right)=\alpha_{l m}\left(p . S_{p j k h}\right) . \tag{6.4}
\end{equation*}
$$

Equation (6.4) means the projection on indicatrix for associate curvature tensor $S_{p j k h}$ behaves as birecurrent.

Secondly, let the projection on indicatrix for associate curvature tensor $S_{p j k h}$ is birecurrent i.e. satisfy (6.4). Using (2.19) in (6.4), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(S_{a b c d} h_{p}^{a} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right)=\alpha_{l m}\left(S_{a b c d} h_{p}^{a} h_{j}^{b} h_{k}^{c} h_{h}^{d}\right) .
$$

By using (2.20) in above equation, we get

$$
\begin{aligned}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left[S_{p j k h}-S_{p j k d} l^{d} l_{h}-S_{p j c h} l^{c} l_{k}+S_{p j c d} l^{c} l_{k} l^{d} l_{h}-S_{p b k h} l^{b} l_{j}\right. \\
& +S_{p b k d} l^{b} l_{j} l^{d} l_{h}+S_{p b c h} l^{b} l_{j} l^{c} l_{k}-S_{p b c d} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}-S_{a j k h} l^{a} l_{p} \\
& +S_{a j k d} l^{a} l_{p} l^{d} l_{h}+S_{a j c h} l^{a} l_{p} l^{c} l_{k}-S_{a j c d} l^{a} l_{p} l^{c} l_{k} l^{d} l_{h}+S_{a b k h} l^{a} l_{p} l^{b} l_{j} \\
& \left.-S_{a b k d} l^{a} l_{p} l^{b} l_{j} l^{d} l_{h}-S_{a b c h} l^{a} l_{p} l^{b} l_{j} l^{c} l_{k}+S_{a b c d} l^{a} l_{p} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}\right] \\
& =\alpha_{l m}\left[S_{p j k h}-S_{p j k d} l^{d} l_{h}-S_{p j c h} l^{c} l_{k}+S_{p j c d} l^{c} l_{k} l^{d} l_{h}-S_{p b k h} l^{b} l_{j}\right. \\
& +S_{p b k d} l^{b} l_{j} l^{d} l_{h}+S_{p b c h} l^{b} l_{j} l^{c} l_{k}-S_{p b c d} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}-S_{a j k h} l^{a} l_{p} \\
& +S_{a j k d} l^{a} l_{p} l^{d} l_{h}+S_{a j c h} l^{a} l_{p} l^{c} l_{k}-S_{a j c d} l^{a} l_{p} l^{c} l_{k} l^{d} l_{h}+S_{a b k h} l^{a} l_{p} l^{b} l_{j} \\
& \left.-S_{a b k d} l^{a} l_{p} l^{b} l_{j} l^{d} l_{h}-S_{a b c h} l^{a} l_{p} l^{b} l_{j} l^{c} l_{k}+S_{a b c d} l^{a} l_{p} l^{b} l_{j} l^{c} l_{k} l^{d} l_{h}\right] .
\end{aligned}
$$

In view of (2.5) and if $S_{a b c d} y^{a}=S_{a b c d} y^{b}=S_{a b c d} y^{c}=S_{a b c d} y^{d}=0$, then above equation can be written as

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} S_{p j k h}=\alpha_{l m} S_{p j k h} .
$$

Last equation refers to the associate curvature tensor $S_{r j k h}$ behaves as birecurrent. Also, we can apply same technique for proving the S-Ricci tensor $S_{j k}$ is birecurrent if and only if the projection on indicatrix for it behaves as birecurrent.

7. Conclusion

We extended the generalized $\mathfrak{B} P$-birecurrent space by using the properties of $P 2$-like space, P^{*}-space, P-reducible space in the above mentioned space to obtain new spaces related to it. Also, the relationship between Cartan's first curvature tensor $S_{j k h}^{i}$ and associate tensor $C_{j k}^{i}$ of the (h) $h v$-torsion tensor $C_{i j k}$ has been discussed.

Acknowledgment: The authors are grateful to the editor and anonymous reviewers for their helpful, valuable comments and suggestions in the improvement of this manuscript.

References

1. A.A. Abdallah, A.A. Hamoud, A. Navlekar, K. Ghadle, B. Hardan, H. Emadifar, and M. Khadem, On Birecurrent for Some Tensors in Various Finsler Spaces, Journal of Finsler Geometry and its Applications, 4(1)(2023), 33-44.
2. A.A. Abdallah, A.A. Navlekar, K.P. Ghadle, and B. Hardan, Fundamentals and recent studies of finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 10(2)(2022), 27-38.
3. A.A. Abdallah, A.A. Navlekar, and K.P. Ghadle, On \mathfrak{B}-covariant derivative of first order for some tensors in different spaces, Journal of Mathematical Analysis and Modeling, 2(2)(2021), 30-37.
4. A.A. Abdallah, A.A. Navlekar, and K.P. Ghadle, Special types of generalized $\mathfrak{B} P$-recurrent spaces, Journal of Computer and Mathematical Sciences, 10(5)(2019), 972-979.
5. A.A. Abdallah, A.A. Navlekar, K.P. Ghadle, and A.A. Hamoud, Decomposition for Cartan's second curvature tensor of different order in Finsler spaces, Nonlinear Functional Analysis and Applications, 27(2)(2022), 433-448.
6. A.M. Al-Qashbari, Recurrence decompositions in Finsler space, Journal of Mathematical Analysis and Modeling, 1(1)(2020), 77-86.
7. F.A. Assallal, On certain generalized h-birecurrent of curvature tensor, M.Sc. Thesis, University of Aden, (Yemen), (2018).
8. M. Dahl, An brief introduction to Finsler geometry, Springer, (2006).
9. A.D. Dubey, Special Finsler spaces - a review of literature, International Journal of Research and Development in Applied Science and Engineering, 12(1)(2017), 6-8.
10. P.K. Dwivedi, $P^{*}-$ reducible Finsler spaces and applications, Int. journal of Math. Analysis, 5(5)(2011), 223-229.
11. M. Gheorghe, The indicatrix in Finsler geometry, Analele Stiintifice Ale Uuiversitatii Matematica. Tomul LIII, (2007), 163-180.
12. W.H. Hadi, Study of certain types of generalized birecurrent in Finsler spaces, Ph.D. Thesis, Faculty of Education-Aden, University of Aden, (Yemen), (2016).
13. H. Izumi, On Finsler space of scalar curvature, Tensor N.S., 38(1982), 220-222.
14. M. Matsumoto, On h-isotropic and C^{h} - recurrent Finsler, J. Math. Kyoto Univ., 11(1971), 1-9.
15. M. Matsumoto, On Finsler spaces with curvature tensor of some special forms, Tensor N. S., 22(1971), 201-204.
16. S.K. Narasimhamurthy, P. Kumar, and S.T. Aveesh, A study of hypersurfaces on special Finsler spaces, International Journal of Pure and Applied Mathematics, 48(1)(2008), 67-74.
17. S.I. Ohta, Comparison Finsler geometry, Springer International Publishing, (2021).
18. A.M. Otman, On covariant differentiation for curvature tensor of third order in the sense of Berwald, M.SC. Thesis, University of Aden, Yemen, (2018).
19. F.Y. Qasem, and W.H. Hadi, On a generalized $\mathfrak{B} R$-birecurrent affinely connected space, International Journal of Mathematics and statistics invention, 4(5)(2016), 30-33.
20. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Gttingen, (1959); 2nd Edit. (in Russian), Nauka, (Moscow), 1981.
21. P.S. Saxena, A study of P^{*}-reducible Finsler space with Douglas tensor, Journal of International Academy of physical Science, 17(3)(2013), 277-285.
22. Y.B. Shen, and S. Zhongmin, Introduction to modern Finsler geometry, World Scientific Publishing Company, (2016).
23. B.K. Tripathi, and K.B. Pandey, On a special form of $h(h v)$-torsion tensor $P_{i j k}$ in Finsler space, Journal of Mathematics, Hindawi, (2016), 1-5.
24. H. Wosoughi, On P3-Like Finsler spaces, Journal of Mathematics and Statistics Research, $\mathbf{2}(1)(2020), 1-2$.
25. S.M. Zamanzadeh, B. Najafi, and M. Toomanian, On generalized P-reducible Finsler manifolds, Open Mathematics Research Article, 16(2018), 718-723.

Received: 13.05.2023
Accepted: 23.06.2023

[^0]: * Corresponding Author

 AMS 2020 Mathematics Subject Classification: 53C42, 53C60.

