On Birecurrent for Some Tensors in Various Finsler Spaces

Alaa A. Abdallah ${ }^{a}$, Ahmed A. Hamoud ${ }^{b}$, A. Navlekar ${ }^{c}$, Kirtiwant Ghadle d, Basel Hardan ${ }^{e}$, Homan Emadifar ${ }^{f *}$, Masoumeh Khademi ${ }^{f}$
${ }^{a}$ Department of Mathematics, Abyan University, Abyan, Yemen.
E-mail: maths.aab@bamu.ac.in
${ }^{b}$ Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen E-mail: ahmed.hamoud@taiz.edu.ye
${ }^{c}$ Department of Mathematics, Pratishthan Mahavidyalaya, Paithan, India.
E-mail: dr.navlekar@gmail.com
${ }^{d}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.
E-mail: ghadle.maths@bamu.ac.in
${ }^{e}$ Department of Mathematics, Abyan University, Abyan, Yemen.
E-mail: bassil2003@gmail.com
${ }^{f}$ Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran.
E-mail: homan_emadi@yahoo.com(H.E), dr.amonaft@gmail.com(M.KH)

Abstract

The $\mathfrak{B} C$ - recurrent Finsler space introduced by Alaa et al. [1]. Now in this paper, we introduce and extend $\mathfrak{B C}$ - birecurrent Finsler space by using some properties of different spaces. We study the relationship between Cartan's second curvature tensor $P_{j k h}^{i}$ and $(h) h v$ torsion tensor $C_{j k}^{i}$ in sense of Berwald. Additionally, the necessary and sufficient condition for some tensors which satisfy birecurrence property will be discuss in different spaces. Four theorems have been established and proved.

Keywords: $\mathfrak{B} C-$ birecurrent space, birecurrence property, $P 2$-like space, P^{*}-space, generalized P-reducible space.

[^0]
1. Introduction

The tensors which satisfy a birecurrence property in Finsler spaces has been discussed by the Finslerian geometers. The concept of C-birecurrent space in sense of Cartan and Berwald were studied by Pandey and Verma [20] and Sarangi and Goswami [13], respectively. Saleem [6] discussed C^{h}-generalized birecurrent space and C^{h}-special generalized birecurrent space. Pandey and Verma [20], Otman [9], Hanballa [8], Alqufail et al. [14] and Dikshit [23] introduced C^{h} - birecurrnt space, $\mathfrak{B P}$ - birecurrent space, $\mathfrak{B} K$-birecurrent space, K^{h} - birecurrent space and R^{h} - birecurrent space, respectively. Also, Qasem and Hanballa [10] studied K^{h}-generalized birecurrent space.

In the same vein, Saleem and Abdallah [7] introduced the U^{h} - birecurrent Finsler space and discussed the necessary and sufficient condition for some tensors which satisfy the birecurrence property.

Regarding to special spaces of Finsler space, Pandey and Dikshit [21] discussed P^{*} - and P-reducible Finsler space of recurrent curvature tensor, Otman [9] studied the properties of $P 2$-like space and P^{*}-space in P^{h}-birecurrent space. In addition, Saleem [6] studied $P 2$ - like-generalized birecurrent space and $P 2$ - like $-C^{h}$-special generalized birecurrent. Further, Saxena and Swaroop [22] used P-reducibility condition in spacial Finsler spaces. Recently, the properties of $P 2$-like space, P^{*}-space and generalized P-reducible space in generalized $\mathfrak{B P}$ - recurrent space have been studied by $[2,3]$. The main idea of this paper to concentrate on obtaining the necessary and sufficient condition for $P_{j k h}^{i}, P_{i j k h}, P_{k h}^{i}, P_{j k}, P_{k}$ and P which satisfy birecurrence property in various spaces.

2. Preliminaries

In this section, important concept of Finsler geometry will be given in this paper. An n-dimensional space X_{n} equipped with a function $F(x, y)$ that denoted by $F_{n}=\left(X_{n}, F(x, y)\right)$ called a Finsler space if the function $F(x, y)$ satisfying the request conditions $[5,12,15,24]$.

Matsumoto [18] introduced the (h)hv-torsion tensor $C_{i j k}$ that is positively homogeneous of degree -1 in y^{i} and defined by

$$
C_{i j k}=\frac{1}{2} \dot{\partial}_{i} g_{j k}=\frac{1}{4} \dot{\partial}_{i} \dot{\partial}_{j} \dot{\partial}_{k} F^{2}
$$

By using Euler's theorem on homogeneous function, we get

$$
\begin{equation*}
\text { a) } C_{i j k} y^{i}=C_{k i j} y^{i}=C_{j k i} y^{i}=0 \text { and b) } C_{j k}^{i} y^{j}=C_{k j}^{i} y^{j}=0, \tag{2.1}
\end{equation*}
$$

where $C_{j k}^{i}$ is called associate tensor of the tensor $C_{i j k}$, these tensors are defined by

$$
\begin{equation*}
\text { a) } \left.C_{i k}^{h}=C_{i j k} g^{h j} \text {, b) } C_{j i}^{i}=C_{j} \text { and } c\right) C_{k} y^{k}=C \tag{2.2}
\end{equation*}
$$

The unit vector l^{i} and the associative vector l_{i} with the direction of y^{i} are given by

$$
\begin{equation*}
\text { a) } l^{i}=\frac{y^{i}}{F} \text { and b) } l_{i}=\frac{y_{i}}{F} \tag{2.3}
\end{equation*}
$$

Berwald covariant derivative $\mathfrak{B}_{k} T_{j}^{i}$ of an arbitrary tensor field T_{j}^{i} with respect to x^{k} is given by [12]

$$
\mathfrak{B}_{k} T_{j}^{i}=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r}
$$

Berwald covariant derivative of the vector y^{i} vanish identically, i.e.

$$
\begin{equation*}
\mathfrak{B}_{k} y^{i}=0 . \tag{2.4}
\end{equation*}
$$

The tensor $P_{j k h}^{i}$ is called $h v$-curvature tensor (Cartan's second curvature tensor) is positively homogeneous of degree -1 in y^{i} and defined by [12]

$$
\begin{equation*}
P_{j k h}^{i}=C_{k h \mid j}^{i}-g^{i r} C_{j k h \mid r}+C_{j k}^{r} P_{r h}^{i}-P_{j h}^{r} C_{r k}^{i}, \tag{2.5}
\end{equation*}
$$

which satisfies the relation

$$
\begin{equation*}
P_{j k h}^{i} y^{j}=\Gamma_{j k h}^{* i} y^{j}=P_{k h}^{i}=C_{k h \mid r}^{i} y^{r}, \tag{2.6}
\end{equation*}
$$

where $P_{k h}^{i}$ is $(v) h v$-torsion tensor which satisfies

$$
\begin{equation*}
P_{k h}^{i}=P_{r k h} g^{i r} \tag{2.7}
\end{equation*}
$$

where $P_{r k h}$ is called associative tensor for $v(h v)$-torsion tensor.
$P-$ Ricci tensor $P_{j k}$, curvature vector P_{k} and curvature scalar P of Cartan's second curvature tensor are given by

$$
\begin{equation*}
\text { a) } \left.P_{j k}=P_{j k i}^{i}, \text { b) } P_{k i}^{i}=P_{k} \text { and } c\right) P=P_{k} y^{k} \tag{2.8}
\end{equation*}
$$

respectively.
Definition 2.1. A Finsler space F_{n} is called a P2-like space if the Cartan's secend curvature tensor $P_{j k h}^{i}$ is characterized by the condition [18]

$$
\begin{equation*}
P_{j k h}^{i}=\varphi_{j} C_{k h}^{i}-\varphi^{i} C_{j k h} \tag{2.9}
\end{equation*}
$$

where φ_{j} and φ^{i} are non - zero covariant and contravariant vectors field, respectively.

Definition 2.2. A Finsler space F_{n} is called a $P^{*}-$ Finsler space if the $(v) h v-$ torsion tensor $P_{k h}^{i}$ is characterized by the condition [11]

$$
\begin{equation*}
P_{k h}^{i}=\varphi C_{k h}^{i} \tag{2.10}
\end{equation*}
$$

where $P_{j k h}^{i} y^{j}=P_{k h}^{i}=C_{k h \mid s}^{i} y^{s}$.

Definition 2.3. A Finsler space F_{n} is called a generalized P-reducible space if the associate tensor $P_{j k h}$ of $(v) h v$-torsion tensor $P_{k h}^{i}$ is characterized by the condition [19, 25]

$$
\begin{equation*}
P_{j k h}=\lambda C_{j k h}+\vartheta\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right) \tag{2.11}
\end{equation*}
$$

where λ and ϑ are scalar vectors positively homogeneous of degree one in y^{j} and $h_{j k}$ is the angular metric tensor.

Definition 2.4. Let the current coordinates in the tangent space at the point x_{0} be x^{i}, then the indicatrix I_{n-1} is a hypersurface defined by [12] $F\left(x_{0}, x^{i}\right)=1$ or by the parametric form defined by $x^{i}=x^{i}\left(u^{a}\right), a=1,2, \ldots, n-1$.

Definition 2.5. The projection of any tensor T_{j}^{i} on indicatrix I_{n-1} given by [12, 16]

$$
\begin{equation*}
p \cdot T_{j}^{i}=T_{b}^{a} h_{a}^{i} h_{j}^{b} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{c}^{i}=\delta_{c}^{i}-l^{i} l_{c} . \tag{2.13}
\end{equation*}
$$

The projection of the vector y^{i}, the unit vector l^{i} and the metric tensor $g_{i j}$ on the indicatrix are given by $p \cdot y^{i}=0$, p. $l^{i}=0$ and $p . g_{i j}=h_{i j}$, where $h_{i j}=$ $g_{i j}-l_{i} l_{j}$.

3. On $\mathfrak{B} C$-Birecurrent Space

In this section, we find the condition for different tensors which behave as birecurrent in $\mathfrak{B} C$-birecurrent space. Matsumoto [17] introduced a Finsler space which the $(h) h v$-torsion tensor $C_{i j k}$ and its associate tensor $C_{j k}^{i}$ satisfy the recurrence property in sense of Cartan. This space is called C^{h}-recurrent space and characterized by the conditions

$$
\begin{equation*}
\text { a) } C_{k h \mid m}^{i}=\lambda_{m} C_{k h}^{i} \text { and b) } C_{j k h \mid m}=\lambda_{m} C_{j k h} . \tag{3.1}
\end{equation*}
$$

Alaa et al. [1] introduced $\mathfrak{B} C-R F_{n}$ which is characterized by the conditions

$$
\begin{equation*}
\text { a) } \mathfrak{B}_{m} C_{k h}^{i}=\lambda_{m} C_{k h}^{i} \text { and b) } \mathfrak{B}_{m} C_{j k h}=\lambda_{m} C_{j k h} \tag{3.2}
\end{equation*}
$$

Sarangi and Goswami [13] introduced a Finsler space which the (h) $h v$ - torsion tensor $C_{i j k}$ and its associate tensor $C_{j k}^{i}$ satisfy the birecurrence property in sense of Berwald and called it C-birecurrent space. Let us denote to this space briefly by a $\mathfrak{B C}-B R F_{n}$. This space characterized by the conditions

$$
\begin{equation*}
\text { a) } \mathfrak{B}_{l} \mathfrak{B}_{m} C_{k h}^{i}=a_{l m} C_{k h}^{i} \text { and b) } \mathfrak{B}_{l} \mathfrak{B}_{m} C_{j k h}=a_{l m} C_{j k h} \text {, } \tag{3.3}
\end{equation*}
$$

where $a_{l m}=\mathfrak{B}_{l} \lambda_{m}+\lambda_{l} \lambda_{m}$. Using eq. (3.1) in (2.5), we get

$$
\begin{equation*}
P_{j k h}^{i}=\lambda_{j} C_{k h}^{i}-\lambda^{i} C_{j k h}+C_{j k}^{r} P_{r h}^{i}-C_{r k}^{i} P_{j h}^{r} \tag{3.4}
\end{equation*}
$$

where $\lambda^{i}=\lambda_{r} g^{i r}$.

In next theorem we get the necessary and sufficient condition for some tensors which behave as birecurrent tensor in $\mathfrak{B} C-B R F_{n}$.

Theorem 3.1. In $\mathfrak{B} C-B R F_{n}$, Cartan's second curvature tensor $P_{j k h}^{i}$, torsion tensor $P_{k h}^{i}, P-$ Ricci tensor $P_{j k}$, curvature vector P_{k} and curvature scalar P satisfy the birecurrence property if and only if

$$
\begin{align*}
&\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k h}^{i} \\
&-\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda^{i}\right)-\left(\mathfrak{B}_{m} \lambda^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \lambda^{i}\right) \lambda_{m}\right\} C_{j k h} \\
&+\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{r h}^{i}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{r h}^{i}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{r h}^{i}\right)\right\} C_{j k}^{r} \\
&-\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j h}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j h}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j h}^{r}\right)\right\} C_{r k}^{i}=0, \tag{3.5}\\
&\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k h}^{i} y^{j} \\
&-\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j h}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j h}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j h}^{r}\right)\right\} C_{r k}^{i} y^{j}=0, \tag{3.6}\\
&\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k} \\
&-\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda^{i}\right)-\left(\mathfrak{B}_{m} \lambda^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \lambda^{i}\right) \lambda_{m}\right\} C_{j k i} \\
&+\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{r}\right)\right\} C_{j k}^{r} \\
&-\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j i}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j i}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j i}^{r}\right)\right\} C_{r k}^{i}=0, \tag{3.7}\\
&\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k} y^{j} \\
&-\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j i}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j i}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j i}^{r}\right)\right\} C_{r k}^{i} y^{j}=0, \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C y^{j}=0 \tag{3.9}
\end{equation*}
$$

respectively.
Proof. Taking \mathfrak{B} - covariant derivative for eq. (3.4) twice with respect to x^{m} and x^{l}, respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}= & a_{l m}\left(\lambda_{j} C_{k h}^{i}-\lambda^{i} C_{j k h}+C_{j k}^{r} P_{r h}^{i}-C_{r k}^{i} P_{j h}^{r}\right) \\
& +\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k h}^{i} \\
& -\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda^{i}\right)-\left(\mathfrak{B}_{m} \lambda^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \lambda^{i}\right) \lambda_{m}\right\} C_{j k h} \\
& +\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{r h}^{i}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{r h}^{i}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{r h}^{i}\right)\right\} C_{j k}^{r} \\
& -\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j h}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j h}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j h}^{r}\right)\right\} C_{r k}^{i} .
\end{aligned}
$$

Using eq. (3.4) in above equation, we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}= & a_{l m} P_{j k h}^{i}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k h}^{i} \\
& -\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda^{i}\right)-\left(\mathfrak{B}_{m} \lambda^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \lambda^{i}\right) \lambda_{m}\right\} C_{j k h} \\
& +\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{r h}^{i}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{r h}^{i}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{r h}^{i}\right)\right\} C_{j k}^{r} \\
& -\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j h}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j h}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j h}^{r}\right)\right\} C_{r k}^{i} . \tag{3.10}
\end{align*}
$$

This shows that

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}=a_{l m} P_{j k h}^{i} \tag{3.11}
\end{equation*}
$$

if and only if eq. (3.5) holds.
Transvecting eq. (3.10) by y^{j}, using (2.1), (2.4) and (2.6), we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}= & a_{l m} P_{k h}^{i}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k h}^{i} y^{j} \\
& -\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j h}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j h}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j h}^{r}\right)\right\} C_{r k}^{i} y^{j} \tag{3.12}
\end{align*}
$$

This shows that

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i} . \tag{3.13}
\end{equation*}
$$

if and only if eq. (3.6) holds.
Contracting the indices i and h in eq. (3.10), using (2.2) and (2.8), we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k}= & a_{l m} P_{j k}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k} \\
& -\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda^{i}\right)-\left(\mathfrak{B}_{m} \lambda^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \lambda^{i}\right) \lambda_{m}\right\} C_{j k i} \\
& +\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{r}\right)\right\} C_{j k}^{r} \\
& -\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j i}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j i}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j i}^{r}\right)\right\} C_{r k}^{i} . \tag{3.14}
\end{align*}
$$

This shows that

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k}=a_{l m} P_{j k} \tag{3.15}
\end{equation*}
$$

if and only if eq. (3.7) holds.
Contracting the indices i and h in eq. (3.12), using (2.2) and (2.8), we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}= & a_{l m} P_{k}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C_{k} y^{j} \\
& -\left\{\lambda_{m}\left(\mathfrak{B}_{l} P_{j i}^{r}\right)+\lambda_{l}\left(\mathfrak{B}_{m} P_{j i}^{r}\right)+\left(\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j i}^{r}\right)\right\} C_{r k}^{i} y^{j} \tag{3.16}
\end{align*}
$$

This shows that

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}=a_{l m} P_{k} \tag{3.17}
\end{equation*}
$$

if and only if eq. (3.8) holds.
Transvecting eq. (3.16) by y^{k}, using (2.2), (2.4) and (2.8), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P=a_{l m} P+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda_{j}\right)+\left(\mathfrak{B}_{m} \lambda_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda_{j}\right) \lambda_{m}\right\} C y^{j} \tag{3.18}
\end{equation*}
$$

This shows that

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P=a_{l m} P \tag{3.19}
\end{equation*}
$$

if and only if eq. (3.9) holds.
Consequently, from eqs. (3.11), (3.13), (3.15), (3.17) and (3.19), we deduce that the behavior of $P_{j k h}^{i}, P_{k h}^{i}, P_{j k}, P_{k}$ and P in $\mathfrak{B} C-B R F_{n}$ as birecurrent if and only if eqs. (3.5), (3.6), (3.7), (3.8) and (3.9), respectively hold. Hence, we have proved this theorem.

4. Special Spaces of $\mathfrak{B} C$-Birecurrent Space

In this section, we merge the $\mathfrak{B} C$ - birecurrent space with particular spaces of Finsler space to get new spaces.

4.1. A $P 2$-Like $\mathfrak{B} C$-Birecurrent Space.

Definition 4.1. The $\mathfrak{B C}$-birecurrent space which is $P 2$-like space, i.e. satisfies the condition (2.9), will be called a $P 2$-like $\mathfrak{B} C$-birecurrent space and will be denoted briefly by $P 2-$ like $-\mathfrak{B} C-B R F_{n}$.

In next theorem we get the necessary and sufficient condition for some tensors which behave as birecurrent tensor in $P 2-$ like $-\mathfrak{B} C-B R F_{n}$.

Theorem 4.2. In $P 2$-like- $\mathfrak{B} C-B R F_{n}$, Cartans second curvature tensor $P_{j k h}^{i}$, torsion tensor $P_{k h}^{i}, P-$ Ricci tensor $P_{j k}$ and curvature vector P_{k} satisfy the birecurrence property if and only if

$$
\begin{gather*}
\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k h}^{i} \\
-\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta^{i}\right)-\left(\mathfrak{B}_{m} \vartheta^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \vartheta^{i}\right) \lambda_{m}\right\} C_{j k h}=0, \tag{4.1}\\
\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k h}^{i} y^{j}=0, \tag{4.2}\\
\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k} \\
-\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta^{i}\right)-\left(\mathfrak{B}_{m} \vartheta^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \vartheta^{i}\right) \lambda_{m}\right\} C_{j k i}=0 \tag{4.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k} y^{j}=0 . \tag{4.4}
\end{equation*}
$$

respectively.
Proof. Taking \mathfrak{B} - covariant derivative for the condition (2.9) twice with respect to x^{m} and x^{l}, respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}= & a_{l m}\left(\vartheta_{j} C_{k h}^{i}-\vartheta^{i} C_{j k h}\right) \\
& +\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k h}^{i} \\
& -\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda^{i}\right)-\left(\mathfrak{B}_{m} \vartheta^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \vartheta^{i}\right) \lambda_{m}\right\} C_{j k h} .
\end{aligned}
$$

Using the condition (2.9) in above equation, we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}= & a_{l m} P_{j k h}^{i}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k h}^{i} \\
& -\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta^{i}\right)-\left(\mathfrak{B}_{m} \vartheta^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \vartheta^{i}\right) \lambda_{m}\right\} C_{j k h} . \tag{4.5}
\end{align*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}^{i}=a_{l m} P_{j k h}^{i}$ if and only if eq. (4.1) holds.
Transvecting eq. (4.5) by y^{j} using (2.1), (2.4) and (2.6), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k h}^{i} y^{j} . \tag{4.6}
\end{equation*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i}$ if and only if eq. (4.2) holds.

Contracting the indices i and h in eq. (4.5), using (2.2) and (2.8), we get

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k}= & a_{l m} P_{j k}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k} \\
& -\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta^{i}\right)-\left(\mathfrak{B}_{m} \vartheta^{i}\right) \lambda_{l}-\left(\mathfrak{B}_{l} \vartheta^{i}\right) \lambda_{m}\right\} C_{j k i} . \tag{4.7}
\end{align*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k}=a_{l m} P_{j k}$ if and only if eq. (4.3) holds.
Contracting the indices i and h in eq. (4.6), using (2.2) and (2.8), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}=a_{l m} P_{k}+\left\{\left(\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta_{j}\right)+\left(\mathfrak{B}_{m} \vartheta_{j}\right) \lambda_{l}+\left(\mathfrak{B}_{l} \vartheta_{j}\right) \lambda_{m}\right\} C_{k} y^{j} \tag{4.8}
\end{equation*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}=a_{l m} P_{k}$ if and only if eq. (4.4) holds.
Consequently, from previous equations we proved that the behavior of $P_{j k h}^{i}$, $P_{k h}^{i}, P_{j k}$ and P_{k} in $P 2$-like $-\mathfrak{B} C-B R F_{n}$ as birecurrent if and only if eqs. (4.1), (4.2), (4.3) and (4.4), respectively hold. Hence, we have proved this theorem.

4.2. A $P^{*}-\mathfrak{B} C$-Birecurrent Space.

Definition 4.3. The $\mathfrak{B C}$-birecurrent space which is $P^{*}-$ space, i.e. satisfies the condition (2.10), will be called a $P^{*}-\mathfrak{B C}$-birecurrent space and will be denoted briefly by $P^{*}-\mathfrak{B} C-B R F_{n}$.

In next theorem we get the necessary and sufficient condition for some tensors which behave as recurrent tensor in $P^{*}-\mathfrak{B} C-B R F_{n}$.

Theorem 4.4. In $P^{*}-\mathfrak{B} C-B R F_{n}$, the torsion tensor $P_{k h}^{i}$, curvature vector P_{k} and curvature scalar P satisfy the birecurrence property if and only if

$$
\begin{gather*}
{\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C_{k h}^{i}=0} \tag{4.9}\\
{\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C_{k}=0} \tag{4.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C=0 \tag{4.11}
\end{equation*}
$$

respectively.
Proof. Taking \mathfrak{B} - covariant derivative for the condition (2.10) twice with respect to x^{m} and x^{l}, respectively, using eqs.(3.2) and (3.3) in the resulting equation, we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=\vartheta a_{l m} C_{k h}^{i}+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C_{k h}^{i} .
$$

Using the condition (2.10) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i}+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C_{k h}^{i} \tag{4.12}
\end{equation*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i}$ if and only if eq. (4.9) holds.
Contracting the indices i and h in eq. (4.12), using (2.2) and (2.8), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}=a_{l m} P_{k}+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C_{k} \tag{4.13}
\end{equation*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k}=a_{l m} P_{k}$ if and only if eq. (4.10) holds.

Transvecting eq. (4.13) by y^{k}, using (2.2) and (2.8), we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m} P=a_{l m} P+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \vartheta+\lambda_{l}\left(\mathfrak{B}_{m} \vartheta\right)+\lambda_{m}\left(\mathfrak{B}_{l} \vartheta\right)\right] C \tag{4.14}
\end{equation*}
$$

This shows that $\mathfrak{B}_{l} \mathfrak{B}_{m} P=a_{l m} P$ if and only if eq. (4.11) holds.
Consequently, from previous equations we proved that the behavior of $P_{k h}^{i}$, P_{k} and P in $P^{*}-\mathfrak{B} C-B R F_{n}$ as birecurrent if and only if eqs. (4.9), (4.10) and (4.11), respectively hold. Hence, we have proved this theorem.

4.3. A P-Reducible $-\mathfrak{B} C$-Birecurrent Space.

Definition 4.5. The $\mathfrak{B C}$-birecurrent space which is generalized P-reducible space, i.e. satisfies the condition (2.11), will be called a P-reducible $-\mathfrak{B} C$-birecurrent space and will be denoted briefly by P-reducible $-\mathfrak{B} C-B R F_{n}$.

In next theorem we get the necessary and sufficient condition for some tensors which be non-vanishing in P-reducible $-\mathfrak{B} C-B R F_{n}$.

Theorem 4.6. In P-reducible $-\mathfrak{B} C-B R F_{n}$, Berwalds covariant derivative of the second order for the tensors $\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)$ and $\vartheta\left(h_{j k} C_{h}+\right.$ $h_{k h} C_{j}+h_{h j} C_{k}$) are given by

$$
\begin{align*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{j}+h_{h}^{i} C_{k}\right)\right] & =a_{l m} \vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right) \tag{4.15}\\
& -\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda+\left(\mathfrak{B}_{m} \lambda\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda\right) \lambda_{m}\right] C_{k h}^{i}
\end{align*}
$$

and

$$
\begin{align*}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left[\vartheta\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right)\right]=a_{l m} \vartheta\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right) \\
& -\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda+\left(\mathfrak{B}_{m} \lambda\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda\right) \lambda_{m}\right] C_{j k h} \tag{4.1.}
\end{align*}
$$

if and only if the torsion tensor $P_{k h}^{i}$ and associate torsion tensor $P_{j k h}$ satisfy the birecurrence property, respectively.

Proof. Transvecting the condition (2.11) by $g^{i j}$, using (2.7) and (2.2), we get

$$
\begin{equation*}
P_{k h}^{i}=\lambda C_{k h}^{i}+\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right), \tag{4.17}
\end{equation*}
$$

where $h_{k}^{i}=g^{i j} h_{j k}$ and $C^{i}=g^{i j} C_{j}$.
Taking \mathfrak{B} - covariant derivative for the condition (4.17) twice with respect to x^{m} and x^{l} respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}= & \lambda a_{l m} C_{k h}^{i}+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda+\left(\mathfrak{B}_{m} \lambda\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda\right) \lambda_{m}\right] C_{k h}^{i} \\
& +\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)\right] .
\end{aligned}
$$

Using the condition (4.17) in above equation, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}= & a_{l m} P_{k h}^{i}-a_{l m} \vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{i}+h_{h}^{i} C_{k}\right)+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda+\left(\mathfrak{B}_{m} \lambda\right) \lambda_{l}\right. \\
& \left.+\left(\mathfrak{B}_{l} \lambda\right) \lambda_{m}\right] C_{k h}^{i}+\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\vartheta\left(h_{k}^{i} C_{h}+h_{k h} C^{j}+h_{h}^{i} C_{k}\right)\right] .
\end{aligned}
$$

Then Berwalds covariant derivative of the second order for the tensor $\varphi\left(h_{k}^{i} C_{h}+\right.$ $h_{k h} C^{i}+h_{h}^{i} C_{k}$) satisfies eq. (4.15) if and only if

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i}
$$

The above equation refer to $P_{k h}^{i}$ satisfies the birecurrence property.
Taking \mathfrak{B} - covariant derivative for the condition (2.11) twice with respect to x^{m} and x^{l}, respectively, using eqs. (3.2) and (3.3) in the resulting equation, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}= & \lambda a_{l m} C_{j k h}+\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda+\left(\mathfrak{B}_{m} \lambda\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda\right) \lambda_{m}\right] C_{j k h} \\
& +\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\vartheta\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right)\right]
\end{aligned}
$$

Using the condition (2.11) in above equation, we get

$$
\begin{aligned}
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}= & a_{l m} P_{j k h}-a_{l m} \vartheta\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right) \\
& +\left[\mathfrak{B}_{l} \mathfrak{B}_{m} \lambda+\left(\mathfrak{B}_{m} \lambda\right) \lambda_{l}+\left(\mathfrak{B}_{l} \lambda\right) \lambda_{m}\right] C_{j k h} \\
& +\mathfrak{B}_{l} \mathfrak{B}_{m}\left[\vartheta\left(h_{j k} C_{h}+h_{k h} C_{j}+h_{h j} C_{k}\right)\right] .
\end{aligned}
$$

Then Berwalds covariant derivative of the second order for the tensor $\varphi\left(h_{j k} C_{h}+\right.$ $\left.h_{k h} C_{j}+h_{h j} C_{k}\right)$ satisfies eq. (4.16) if and only if

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{j k h}=a_{l m} P_{j k h}
$$

The above equation refer to $P_{j k h}$ satisfies the birecurrence property. Hence, we have proved this theorem.

5. An Example

In this section, we give an example to clarify the proved findings.
Example 5.1. The behavior of the torsion tensor $P_{k h}^{i}$ as birecurrent if and only if the projection on indicatrix for it is also birecurrent.

Firstly, since the torsion tensor $P_{k h}^{i}$ behaves as birecurrent, then the condition (3.13) is satisfied. In view of (2.12), the projection of the torsion tensor $P_{k h}^{i}$ on indicatrix is given by

$$
\begin{equation*}
p \cdot P_{k h}^{i}=P_{b c}^{a} h_{a}^{i} h_{k}^{b} h_{h}^{c} . \tag{5.1}
\end{equation*}
$$

Using \mathfrak{B}-covariant derivative for eq. (5.1) twice with respect to x^{m} and x^{l}, respectively, using the condition (3.13) and the fact that h_{b}^{a} is covariant constant in above equation, we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p . P_{k h}^{i}\right)=a_{l m}\left(P_{b c}^{a} h_{a}^{i} h_{k}^{b} h_{h}^{c}\right)
$$

Using eq. (5.1) in above equation, we get

$$
\begin{equation*}
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(p \cdot P_{k h}^{i}\right)=a_{l m}\left(p \cdot P_{k h}^{i}\right) . \tag{5.2}
\end{equation*}
$$

Equation (5.2) refers to the projection on indicatrix for the torsion tensor $P_{k h}^{i}$ behaves as birecurrent.

Secondly, let the projection on indicatrix for the torsion tensor $P_{k h}^{i}$ is birecurrent, i.e. satisfy eq. (5.2). Using (2.12) in eq. (5.2), we get

$$
\mathfrak{B}_{l} \mathfrak{B}_{m}\left(P_{b c}^{a} h_{a}^{i} h_{k}^{b} h_{h}^{c}\right)=a_{l m}\left(P_{b c}^{a} h_{a}^{i} h_{k}^{b} h_{h}^{c}\right) .
$$

By using (2.13) in above equation, we get

$$
\begin{aligned}
& \mathfrak{B}_{l} \mathfrak{B}_{m}\left[P_{k h}^{i}-P_{k c}^{i} l^{c} l_{h}-P_{b h}^{i} b^{b} l_{k}+P_{b c}^{i} l^{b} l_{k} l^{c} l_{h}\right. \\
& \left.-P_{k h}^{a} l^{i} l_{a}+P_{k c}^{a} l^{i} l_{a} l^{c} l_{h}+P_{b h}^{a} l^{i} l_{a} l^{b} l_{k}-P_{b c}^{a} l^{i} l_{a} l^{b} l_{k} l^{c} l_{h}\right] \\
& =a_{l m}\left[P_{k h}^{i}-P_{k c}^{i} l^{c} l_{h}-P_{b h}^{i} l^{b} l_{k}+P_{b c}^{i} l^{b} l_{k} l^{c} l_{h}\right. \\
& \left.-P_{k h}^{a} l^{i} l_{a}+P_{k c}^{a} l^{i} l_{a} l^{c} l_{h}+P_{b h}^{a} l^{i} l_{a} l^{b} l_{k}-P_{b c}^{a} l^{i} l_{a} l^{b} l_{k} l^{c} l_{h}\right] .
\end{aligned}
$$

In view of (2.3) and if

$$
P_{b c}^{a} y_{a}=P_{b c}^{a} y^{b}=P_{b c}^{a} y^{c}=0,
$$

then above equation can be written as

$$
\mathfrak{B}_{l} \mathfrak{B}_{m} P_{k h}^{i}=a_{l m} P_{k h}^{i} .
$$

The above equation means the torsion tensor $P_{k h}^{i}$ behaves as birecurrent.

6. Conclusion

We obtained the necessary and sufficient condition for Cartan's second curvature tensor $P_{j k h}^{i}$, associate curvature tensor $P_{i j k h}$, torsion tensor $P_{k h}^{i}$, P-Ricci tensor $P_{j k}$, curvature vector P_{k} and scalar curvature P which satisfy birecurrence property in $\mathfrak{B} C-B R F_{n}, P 2$ - like $-\mathfrak{B} C-B R F_{n}, P^{*}-\mathfrak{B} C-$ $B R F_{n}$ and P-reducible $-\mathfrak{B} C-B R F_{n}$. Furthermore, the relationship between Cartan's second curvature tensor $P_{j k h}^{i}$ and $(h) h v$ torsion tensor $C_{j k}^{i}$ in sense of Berwald has been discussed.

References

1. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On \mathfrak{B}-covariant derivative of first order for some tensors in different spaces, J. Math. Analysis. Model. 2(2) (2021), 30-37.
2. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, Special types of generalized $\mathfrak{B} P$-recurrent spaces, J. Computer. Math. Sci. 10(5) (2019), 972-979.
3. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On $P^{*}-$ and P-reducible of Cartan's second curvature tensor, J. Appl. Sci. computation. 6(11) (2019), 13-24.
4. A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and A. A. Hamoud, Decomposition for Cartan's second curvature tensor of different order in Finsler spaces, Nonlinear. Functional. Analysis. Appl. 27(2) (2022), 433-448.
5. A. A. Abdallah, A. A. Hamoud, A. A. Navlekar and K. P. Ghadle, On special spaces of $H(h v)$-torsion tensor $c_{j k h}$ in generalized recurrent finsler space, Bull. Pure \& Applied. Sci. Math. Stat. 41(1) (2022), 74-80.
6. A. A. Saleem, On certain generalized birecurrent and trirecurrent Finsler spaces, M.Sc. Thesis, University of Aden, Yemen, 2011.
7. A. A. Saleem, and A. A. Abdallah, Study On $U^{h}-$ birecurrent Finsler spaces, Int. J. Adv. Res. Sci. Commun. Tech. 2 (3) (2022), 28-39.
8. A. M. Hanballa, On covariant differentiation of curvature tensors in Finsler spaces, University of Aden, (Aden), (Yemen), 2016.
9. A. M. Otman, On covariant differentiation for curvature tensor of third order in the sense of Berwald, M.sc. Thesis, University of Aden, Yemen, 2018.
10. F. Y. Qasem and A. M. Hanballa, On study $K^{h}-$ generalized birecurrent Finsler space, Int. J. Sci. Basic. Appl. Res. 25(3), (2016), 208-216.
11. H. Izumi, On P^{*}-Finsler space of scalar curvature, Tensor N.S., 38(1982), 220-222.
12. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Göttingen, (1959); 2nd Edit. (in Russian), Nauka, (Moscow), 1981.
13. K. C. Sarangi and A. Goswami, On C-recurrent Finsler space, J. Int. Acad. Phys. Sci. 10 (2006), 17-24.
14. M. A. Alqufail, F. Y. Qasem and A. A. Muhib, On study K^{h}-birecurrent Finsler spaces, Sci. J. Fac. Edu. Thamar. 2015.
15. M. Dahl, An brief introduction to Finsler geometry, Springer, 2006.
16. M. Gheorghe, The indicatrix in Finsler geometry, Anal. Sti. Ale. Uuiv. Mat. Tomul LIII, (2007), 163-180.
17. M. Matsumoto, On h-isotropic and C^{h}-recurrent Finsler, J. Math. Kyoto Univ., 11 (1971), 1-9.
18. M. Matsumoto, On Finsler spaces with curvature tensor of some special forms, Tensor N.S., 22 (1971), 201-204.
19. P. K. Dwivedi, P - reducible Finsler spaces and applications, Int. J. Math. Analysis, 5(5) (2011), 223-229.
20. P. N. Pandey and R. Verma, C^{h}-birecurrent Finsler spaces, J. Int. Acad. Phy. Sci. 2(1998), 43-50.
21. P. N. Pandy and S. Dikshit, On $P^{*}-$ and P-reducible Finsler spaces of recurrent curvature, J. Int. Acad. Phy. Sci. 2 (1998), 11-17.
22. P. S. Saxena and P. Swaroop, A study of P^{*} - reducible Finsler space with Douglas tensor, J. Int. Acad. Phy. Sci. 17 (3) (2013), 277-285.
23. S. Dikshit, Certain types of recurrences in Finsler spaces, D. phil. Thesis, University of Allahabad, (Allahabad), (India), 1992.
24. S. I. Ohta, Comparison Finsler geometry, Springer International Publishing, 2021.
25. S. M. Zamanzadeh, B. Najafi and M. Toomanian, On generalized P-reducible Finsler manifolds, Open. Math. 16(2018), 718-723.

Received: 05.01.2023
Accepted: 22.05.2023

[^0]: * Corresponding Author

 AMS 2020 Mathematics Subject Classification: 53B40, 53C42, 53C60.

