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Abstract. In this paper we discuss some results related to angle between geo-

desic segments in an infinite dimensional and an asymptotic Teichmller space.

Also, we construct a geodesic triangle in Universal Teichmüller space and cal-

culate all of its interior angles.
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1. Introduction

It is known that on a Riemannian manifold angle between two geodesic

segments is well defined by an inner product on the tangent space. In [14]

author provided a notion of angle cone ∠x,y,z defined on triple points x, y, z in

a general metric space. Teichmüller metric is induced by Finsler structure, pre-

cisely equals to Kobayashi metric [16]. Since defining angle between geodesic

segments in Finsler spaces is not very obvious, hence situation is very ambigu-

ous here. Tamassy [19], introduced Minkowski measure of angle α = ∠(a, b)

between two rays a, b ∈ Tp
0
M originating from origin p0 of Tp

0
M . Since

Finsler space makes its tangent space into Minkowski space, measuring angle

into Finsler space can be reduced onto Minkowski space.

Apart from this, a lot of difference has been observed between angle geometry

of finite and infinite dimensional Teichmüller spaces [6, 8]. For instance, as we
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know that Teichmüller theorem affirms the existence of unique geodesic segment

between any two points of Teichmüller space, whereas in infinite dimensional

space there exists infinitely many geodesic segments.

Recently, Yao [21] gave an approach to define angle between geodesic seg-

ments in finite dimensional Teichmüller space. Later, Li and Qi [7] discovered

some conditions under which existence of angle between geodesic segments in

infinite dimensional space can be confirmed.

An interesting contribution has been made by Fan and Jiang in [4], au-

thors investigate angle geometry on universal Teichmüller space. Their work

indicates that universal Teichmüller space shows all the characteristics of Eu-

clidean, hyperbolic and spherical geometry. In this paper, authors showed

existence of three geodesic triangles bounded by geodesic segments in which

sum of interior angles is π, less than π and greater than π respectively.

Some trivial queries like what can we say about sum of the interior angles of

geodesic triangle in infinite dimensional Teichmüller space and how the angle

geometry varies when we switch between finite and infinite dimensional Te-

ichmüller spaces have been discussed in [6, 3, 21]. In applied sense, it has been

observed that due to its promising geometric environment for non-perturbative

version of bosonic string theory, universal Teichmüller space is an important

object to study string theory in physics [15, 1]. In [13], author has proved that

in hyperbolic surfaces S of finite type the set A(S) of angles between closed

geodesics on S contains finitely many rational multiples of π. In [5], Hu and

Shen have shown that sum of interiors angles of a geodesic triangle in an infinite

dimensional Teichmüller space, lies between π and 3π.

In [9], Liu, Su and Zhong, have shown that in infinite dimensional Te-

ichmüller space, angle between geodesic rays defined by using law of cosines

does not always exist which implies infinite dimensional Teichmüller space is

not CAT(k) space for any k. Another interesting fact about Teichmüller space

is that this space is of non-positive curvature. In [10], author has shown that

two Teichmüller geodesic rays starting from a common point are not divergent.

Minsky [12], showed that Teichmüller metric near thin regions of Teichmüller

spaces reveals characteristics of positive curvature. Masur and Wolf[11] proved

that Teichmüller space with Teichmüller metric is not Gromov-hyperbolic.

In this paper we have covered the following objectives:

• We construct a geodesic triangle and calculate sum of interior angles

in Universal Teichmüller space.

• In asymptotic Teichmüller space, we find the bounds of angle between

two geodesic segments.

2. Preliminaries

The notion of angle between two joint curves in general metric space with

common end point can be seen as follows:
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Let (X, d) be general metric space. Let α and β be two continuous curves in

X with common point p. For any r > 0, choose two points x(r) and y(r) on

curves α and β respectively such that length of sub-curves between p and x(r)

is equal to length of sub curves between p and y(r) and equals to r. Then angle

θ ∈ [0, π] between α and β at point p is defined as :

2sin
θ

2
= lim
r→0

d(x(r), y(r))

r
,

if limit exists. Also, angle here reduces to 0, if α ≡ β in the neighbourhood of

p, and it reduces to π when α ∪ β is a geodesic at p.

Alexandrov proposed a method to define angle between two geodesic seg-

ments. Let γ1 and γ2 be two geodesic segments such that γ1(0) = γ2(0), then

∠(γ1, γ2) = arccos

(
lim
s,t→0

s2 + t2 − d2(γ1(s), γ2(t))

2st

)
.

Using Alexandrov notion of angle, Su and Zhong [18] defined comparison angle

between three points of T (S). A marked Riemann surface (X,φ) is a conformal

structure X on surface S, endowed with orientation preserving homeomorphism

φ : S → X. Teichmüller space T (S) of surface S is a set of equivalence classes

of marked Riemann surfaces, where (X,φ) ∼ (Y, ψ), if there exists a conformal

map ρ : X → Y homotopic to ψ ◦ φ−1. The space T (4), where 4 is the unit

disc {z|0 < z < 1} is known as Universal Teichmüller space, since it contains

all the others. A (−1, 1)-measurable form µ = µ(z)
dz̄

dz
which satisfies

||µ||∞ = ess sup
z∈X
|µ(z)| <∞,

is called Beltrami differential. Suppose the space of Beltrami differentials on

X is denoted by B(X). A Beltrami coefficient µ is extremal if ||µ||∞ = k(f).

Let X ∈ T (S), µ ∈ B(X) with ||µ||∞ < 1. Consider the Beltrami equation

∂f

∂z̄
= µ(z)

∂f

∂z
.

The solution of above Beltrami equation is quasiconformal deformation of X,

denoted by fµ. The maximal dilatation of a quasi-conformal mapping f with

Beltrami differential µ is

K(f) =
1 + ||µ||∞
1− ||µ||∞

.

Definition 2.1. Teichmüller distance between two points in X and Y in T (S)

is defined as

dT (X,Y ) :=
1

2
inf

f'f2◦f−1
1

logK(f),

where infimum is taken over all quasiconformal maps f : X → Y that are

homotopic to f2 ◦ f−1
1 . Teichmüller metric is induced from Finsler structure.
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Definition 2.2. Let V be an n-dimensional real vector space endowed with

smooth norm F on V \{0} satisfying the following conditions:

(1) F (u) ≥ 0 ∀ u ∈ V,
(2) F (λu) = λF (u) ∀ λ > 0, i.e., F is positively homogeneous,

(3) The Hessian matrix (gij) :=

([
1

2
F 2

]
yiyj

)
, is positive definite at every

point of V \{0}. The pair (V, F ) is called Minkowski space and F is

called Minkowski norm.

Definition 2.3. Let M be a connected (smooth) manifold. A Finsler metric

on M is a function F : TM → [0,∞) which satisfies:

(1) F is smooth on slit tangent bundle TM\{0}.
(2) The restriction of F to any TxM,x ∈M is a Minkowski norm.

The space (M,F ) is called Finsler space.

Definition 2.4. Let γ : [0, 1]→M be a C1-curve. Then Finsler length of γ is

defined as

L(γ) =
∫ 1

0
F (γ(t), γ

′
(t))dt.

Further, Finsler distance between two points p, q ∈M is defined as

dF (p, q) = infγL(γ),

where infimum is taken over all piecewise C1 curves joining p and q.

Definition 2.5. For any quasi conformal mapping f : R −→ S,

Kz(f) =
1 + |fz̄/fz|
1− |fz̄/fz|

.

We say that f is asymptotically conformal if for every ε > 0 there is a compact

subset E of R such that Kz(f) ≤ 1 + ε for z in R − E. The definition of

this new equivalence is same as Definition 2.1 with conformal being replaced by

asymptotically conformal.

Definition 2.6. Let P = [φ] and Q = [ψ] be two points in universal Te-

ichmüller space T (S). Let η ∈ [fψ ◦ (fφ)−1] be extremal Beltrami coefficient.

Then geodesic segment γPQ connecting P and Q is defined as

[f tη ◦ fφ|0 ≤ t ≤ 1].

Definition 2.7. Let P = [φ], Q = [ψ] and R = [η] be three points in T (S) and

γPQ, γPR and γQR be the segments connecting P to Q, P to R and Q to R,

respectively. Then γPQ, γPR and γQR form a geodesic triangle 4PQR, if γPQ
or γQP , γPR or γRP and γQR or γRQ are of the form given in definition 2.6.
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Definition 2.8. Consider a geodesic triangle 4PQR as defined in definition

2.7. Then ∠P is defined as

∠P = 2 arcsin

{
1

2
lim
r→0

dT (γPQ(r), γPR(r))

dT (γPQ(r), P )

}
= 2 arcsin

{
1

2
lim
r→0

dT (γPQ(r), γPR(r))

r

}
,

if the limit exists. Similarly ∠Q and ∠R can be defined.

3. Universal Teichmüller Space

Let T (S) be the universal Teichmüller space. In [4],Fan-Jiang have con-

structed geodesic triangles to prove that in universal Teichmüller space there

exists geodesic triangles with interior angle sum equal to π, less than π and

greater than π.

In order to prove our result, let us recall these Lemma from [17].

Lemma 3.1. [17] Let E be a subset in ∂S. Let FK(x, y) = Kx+ iy, where K

is a positive scalar. Consider

Q(FK , E) = {f |f is a quasi conformal mapping of S onto FK(x, y), f |K = FK |E}.

Then, FK is extremal in Q(FK , E).

Using Lemma 3.1, in [4] authors have proved the following Lemma, which

we use further.

Lemma 3.2. Define

f(x, y) =

{
K1x+ iy, (x, y) ∈ S, x ≥ 0

K2x+ iy, (x, y) ∈ S, x < 0

where K1 and K2 are two positive constants. Then µf is extremal in [f ].

In this section, we construct an example of a geodesic triangle and determine

all of its interior angles. For 0 < k < 1, consider

φ(x, y) =

{
−k, (x, y) ∈ S, x ≥ 0

k, (x, y) ∈ S, x < 0

ψ(x, y) =

{
−k, (x, y) ∈ S, x ≤ 0

0, (x, y) ∈ S, x < 0

Clearly, both φ and ψ are extremal.

Let P = [0], Q = [φ] and R = [ψ] be three points of T (S). Then,

αPQ =
{

[tφ] | 0 ≤ t ≤ 1}, αPR = {[tψ] | 0 ≤ t ≤ 1
}

are geodesic segments connecting P to Q and P to R, respectively.

Now, in order to calculate third geodesic segment connecting R to Q, we

determine extremal Beltrami coefficient η(t) in [fφ ◦ (fψ)−1], defined as
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η(t) = µfφ◦(fψ)−1 =

(
φ(t)− ψ(t)

1− ¯ψ(t)φ(t)
.
∂zf

ψ(t)

¯∂zfψ(t)

)
◦ (fψ)−1

=

{
0, (x, y) ∈ S, x ≥ 0

k, (x, y) ∈ S, x < 0
.

Since k > 0, it is obvious that η is extremal. Hence

αRQ =
{

[f tn ◦ fψ] | 0 ≤ t ≤ 1
}
,

is the geodesic segment connecting R to Q.

Now we are interested in calculating all three interior angles of 4PQR with

geodesics segments αPQ, αPR and αRQ as the edges of triangle.

It is trivial to see that

αPQ(s) =
[ s
k
φ
]
, αPR(r) =

[ s
k
ψ
]
.

Recall that

∠P = 2sin−1

{
1

2
lim
s→0

dT (αPQ(s), αPR(s))

s

}
.

We define

ηs =

 s

k
φ− s

k
ψ

1− s

k
φ
s̄

k
ψ
.
f
s
kψ
z

¯
f
s
kψ
z

 ◦ (f
s
kψ)−1 =

{
0, (x, y) ∈ S, x ≥ 0

s, (x, y) ∈ S, x < 0
, (3.1)

as ηs is extremal in
[
f
s
kφ ◦ (f

s
kψ)−1

]
.Now we are ready to calculate Teichmüller

distance and ∠P .

dT (γPR(s), γPQ(s)) =
1

2
log

1 + s

1− s
,

∠P = 2arcsin

{
1

2
lim
s→0

1
2 log

1+s
1−s
s

}
.

Using basic calculus, we get that ∠P =
π

3
. Next, we calculate ∠R.

Let us denote

s′ =
k − s
1− ks

.

It is easy to check that dT (αRP (s), P ) = dT (αPR(s′), P ) and

αRQ(s) =
[
f
s
k η ◦ fψ

]
= [η′],

where

η′ =

{
k, (x, y) ∈ S, x ≥ 0

r, (x, y) ∈ S, x < 0
. (3.2)
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Similarly, we can define

η′s = µ
f
s′
k
ψ◦(fη′ )−1

=

 s′

k ψ − η
′

1− s′

k
ψη̄′

.
fη
′

z

¯
fη
′

z

 ◦ f (η′)−1

=


−s′ + k

1− s′k
, (x, y) ∈ S, x ≥ 0,

−s, (x, y) ∈ S, x < 0
.

Now, since ∣∣∣−s′ + k

1− s′k

∣∣∣ = s,

we get

dT (αRQ(s), αRP (S)) =
1

2
log

1 + s

1− s
.

Hence, it is trivial to see that ∠R =
π

3
.

Now, in order to calculate ∠Q, consider the following geodesic segments

αQR(s) = αRQ(s′) = [f
s′
k η◦f

ψ

] = [η′′]

and

η′′ =

{
−k, (x, y) ∈ S, x ≥ 0

s′, (x, y) ∈ S, x < 0
, (3.3)

η′′s = µ
f
s′
k
φ◦(fη′′ )−1

=

(
s′

k φ− η
′′

1− s′

k φη̄
′′ .
fη
′′

z

¯
fη
′′

z

)
◦ f (η′′)−1

=


−s′ + k

1− s′k
, (x, y) ∈ S, x ≥ 0

0, (x, y) ∈ S, x < 0
.

η′′s is extremal in [f
s′
k φ ◦ (fη

′′
)−1]. This implies

dT (αQR(s), αQP (s)) =
1

2
log

1 + s

1− s
.

Hence,

∠Q =
π

3
.

Then, for the constructed triangle sum of interior angles is equal to π.
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4. Infinite dimensional asymptotic Teichmüller space

In order to prove Theorem 4.2 and Corollary 4.3, let us recall Theorem

4.1, which gives a necessary and sufficient condition for the existence of angle

between two extremal Beltrami differentials φ and ψ.

Theorem 4.1. [9] Let X ∈ T (S). φ and ψ be two extremal Beltrami differ-

entials. Let K be the maximal dilatation of the extremal map in the class of

f : Xsφ → Xtψ and k =
K + 1

K − 1
. Then ∠(φ, ψ) exists if and only if

lim
s,t→0

s2 + t2 − k2

2st

exists. Moreover,

cos∠(φ, ψ) = lim
s,t→0

s2 + t2 − k2

2st
.

Theorem 4.2. Suppose angle between two geodesics αµ and αν exists as defined

in Theorem 4.1 exists in asymptotic Teichmüller space. Then

t− h(η(s, t))

s
≤ cos∠(αµ, αν) ≤ t− h(η(s, t))

s
+

s

2t
.

Proof. In [20], strong angle between two geodesics is defined as

cos∠(αµ, αν) =
s2 + t2 − [h(η(s, t))]2

2st

which can be written as

cos∠(αµ, αν) =
t− h(η(s, t))

s
+
s2 − (h(η(s, t))− t)2

2st
.

As triangle inequality gives

|h(η(s, t))− t| ≤ s,

which further implies

0 ≤ s2 − (h(η(s, t))− t)2

2st
≤ s

2t

which directly implies

t− h(η(s, t))

s
≤ cos∠(αµ, αν) ≤

(
t− h(η(s, t))

s
+

s

2t

)
.

�
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Corollary 4.3. Let K be maximal dilatation of the extremal map in the class

of f : Xtφ → Xtψ, and k = K+1
K−1 . Then ∠(φ, ψ) exists if and only if

lim
t→0

2t2 − k2

2t2

exists. Moreover,

cos∠(φ, ψ) = 1− 1

2

[
sup

θ∈Q1(X)

〈φ− ψ, θ〉2
]

= 1− lim
t→0

1

2t2
(||n||T +O(||n||2∞))2

Proof. The first part of corollary can be seen as direct consequence of Theorem

4.1. Further,

cos∠(φ, ψ) = lim
t→0

cos∠(f tφ(X), f tψ(X))

= lim
t→0

1

2

[
2− k2

t2

]
= lim
t→0

1

2

[
2− sup

θ∈Q1(X)

〈φ− ψ, θ〉2 +O(t2)

]

= 1− 1

2

[
sup

θ∈Q1(X)

〈φ− ψ, θ〉2
]
.

(4.1)

As we know

||η||T = sup
θ∈Q1(X)

〈η, θ〉,

O(||η||2∞) = O(s+ t)2,

and

k(t) = ||η||T +O(||η||2∞).

Using these results in equation 4.1, we get the last part of equality. �
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