تعداد نشریات | 27 |
تعداد شمارهها | 370 |
تعداد مقالات | 3,277 |
تعداد مشاهده مقاله | 4,861,282 |
تعداد دریافت فایل اصل مقاله | 3,326,915 |
تأثیر آبیاری شیرابة محل دفن زباله بر خصوصیات مختلف خاک و تغذیة گیاه: مطالعة مروری | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 8، دوره 4، شماره 2، 1403، صفحه 33-54 اصل مقاله (1.13 M) | ||
نوع مقاله: مروری | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2023.12503.1246 | ||
نویسنده | ||
سید مصطفی عمادی بالادهی* | ||
دانشآموختة کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکدة علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
چکیده | ||
شیرابة محل دفن زباله نوعی پساب با ترکیب پیچیده است که غنی از عناصر غذایی نظیر نیتروژن و املاح بالا مانند سدیم و کلر بوده که بهدلیل اثرات مثبت و منفی آن بر محیط زیست در سراسر جهان مورد توجه ویژه است. همچنین، بهدلیل اینکه در مناطق خشک و نیمهخشک آب یک عامل محدودکننده در گسترش کشاورزی و افزایش تولیدات آن محسوب میشود، استفاده از شیرابة زباله در این مناطق میتواند راهکاری مناسب برای آبیاری محصولات مختلف باشد. مطالعة حاضر، مروری بر مطالعات انجام شده در خصوص اثرات آبیاری شیرابه محل دفن زباله بر ویژگیهای شیمیایی، فیزیکی و زیستی خاک و رشد، عملکرد و تغذیة گیاه است که برگرفته از 110 مقاله در بازة زمانی سالهای 1989 تا 2023 از پایگاههای اطلاعاتی Web of Science، Google Scholar، ScienceDirect و SID است. بررسیها نشان داد که اثر شیرابة زباله بر خاک بسته به نوع، ترکیب و pH شیرابه و بهعلاوه بافت، کانیهای تشکیلدهنده و pH خاک میتواند سبب تغییرات متفاوتی در ویژگیهای مختلف خاک شود. بهطور کلی آبیاری شیرابه موجب افزایش شوری، میزان نیتروژن، آب قابل استفاده خاک و افزایش فعالیت و جمعیت میکروبی خاک میشود. از طرف دیگر، محققان با کاربرد شیرابة زباله جهت آبیاری گیاهان نتایج بسیار متفاوتی را بهدست آوردند. در بعضی از مطالعات افزایش رشد و عملکرد گیاهان پس از آبیاری شیرابة زباله مشاهده شد، ولی در نتایج دیگر نشانههایی از اثرات منفی شیرابه نظیر کاهش جوانهزنی بذر، رشد گیاه و سوختگی برگ، سمیّت گیاهی و از بین رفتن کامل گیاه بهدلیل افزایش میزان شوری و فلزات سنگین و دیگر ترکیبات شیرابه یافت شد. از یافتهها در این زمینه میتوان نتیجه گرفت، اثر آبیاری شیرابة زباله بر گیاه به گونة گیاهی، میزان تحمل گیاه، نوع و ترکیب شیرابه و شیوه و میزان آبیاری بستگی داشته و برای حصول عملکرد بیشتر بایستی از استفادة مکرر شیرابة خام جلوگیری کرده و یا بهصورت رقیق شده آن را بهکار برد. | ||
کلیدواژهها | ||
آبیاری؛ ریزموجودات؛ سمیّت گیاهی؛ شیرابة محل دفن زباله؛ شوری خاک؛ نیتروژن | ||
مراجع | ||
References Abdollahi Mansurkhani, S., Asadilour, M., Farzadian, A., Egdernezhad, A., & Asareh, A. (2022). Phytoremediation of heavy metals by vetiver plant species in unconventional water. Environment and Water Engineering, 8(4), 796-809. doi:10.22034/jewe.2022.311963.1653. [In Persian] Abdulmalek, M.M. (2014). Influence of landfill leachate on growth response and mineral content of Swiss Chard. M.Sc. Thesis, Cape Peninsula University of Technology, Cape Town, South Africa. Aderemi, A.O., Oriaku, A.V., Adewumi, G.A., & Otitoloju, A.A. (2011). Assessment of groundwater contamination by leachate near a municipal solid waste landfill. African Journal of Environmental Science and Technology, 5(11), 933-940. doi:10.5897/AJEST11.272 Adhikari, B., Dahal, K.R., & Khanal, S.N. (2014). A review of factors affecting the composition of municipal solid waste landfill leachate. International Journal of Engineering Science and Innovative Technology, 3(5), 273-281. Ahmad, H.R., Sabir, M., Ur Rehman, M.Z., Aziz, T., Maqsood, M.A., Ayub, M.A., & Shahzad, A. (2020). Wastewater irrigation-sourced plant nutrition: Concerns and prospects. Pp. 417-434. In: Aftab T Hakeem KR (eds), Plant Micronutrients, Springer. doi.:10.1007/978-3-030-49856-6_18 Alaribe, F.O., & Agamuthu, P. (2015). Fertigation of Brassica rapa L. using treated landfill leachate as a nutrient recycling option. South African Journal of Science, 122(3/4), 1-8. doi:10.17159/sajs.2016/20150051 Alvarez-Bernal, D., Contreras-Ramos, S.M., Trujillo-Tapia, N., Olalde-Portugal, V., Frías-Hernández, J.T., & Dendooven, L. (2006). Effects of tanneries wastewater on chemical and biological soil characteristics. Applied Soil Ecology, 33(3), 269–277. doi:10.1016/j.apsoi l.2005.10.007 Andreottola, G., & Cannas, P. (1992). Chemical and biological characteristics of landfill leachate. Pp. 65-88. In: Christensen TH Cossu R & Stegmann R (eds), Landfilling of Waste: Leachate, Elsevier-London. Arasan, S., Yilmaz, G., Akbulut, R.K., & Yetimoglu, T. (2007). Engineering properties of compacted clay liners contaminated by salt solution .Geotechnical Symposium, Adana, Turkey, Pp. 415-425. Aronsson, P., Dahlin, T., & Dimitriou, I. (2010). Treatment of landfill leachate by irrigation of willow coppice – Plant response and treatment efficiency. Environmental Pollution, 158(3), 795–804. doi:10.1016/j.envpol.2009.10.003 Aryabod, S., Fotovat, A., Lakzian, A., & Haghnia, G.H. (2008). Effect of municipal waste compost leachate on micronutrients uptake by maize and lettuce in sterile and non-sterile conditions. Iranian Journal of Soil Research, 22(1), 47-57. doi:10.22092/IJSR.2008.126982. [In Persian] Asadi, F., Shariatmadari, N., Moayedi, H., & Huat, B.B.K. (2011). Effect of MSW leachate on soil consistency under influence of electrochemical forces induced by soil particles. International Journal of Electrochemical Science, 6(7), 2344-2351. Astaraei, A., & Aryabod, S. (2008). Effect of municipal solid waste leachate on plant growth and micro elements’ uptake of Green Chilli. Environmental Sciences, 5(3), 95-106. [In Persian] Bhagwat, R.V., Boralkar, D.B., & Chavhan, R.D. (2018). Remediation capabilities of pilot-scale wetlands planted with Typha aungstifolia and Acorus calamus to treat landfill leachate. Journal of Ecology and Environment, 42(23), 1-8. doi:10.1186/s41610-018-0085-0 Bialowiec, A., & Randerson, P.F. (2010). Phytotoxicity of landfill leachate on willow – Salix amygdalina L. Waste Management, 30(8/9), 1587–1593. doi:10.1016/j.wasman.2010.02.033 Bowman, M.S., Clune, T.S., & Sutton, B.G. (2002). Sustainable management of landfill leachate by irrigation. Water, Air, & Soil Pollution, 134(1/4), 81-96. doi:10.1023/A:1014114500269 Brennan, R.B., Healy, M.G., Morrison, L., Hynes, S., Norton, D., & Clifford, E. (2016). Management of landfill leachate: The legacy of European Union Directives. Waste Management, 55, 355-363. doi:10.1016/j.wasman.2015.10.010 Breza-Boruta, B., Lemanowicz, J., & Bartkowiak, A. (2016). Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites. Environmental Earth Sciences, 75(3), 1-13. doi:10.1007/s12665-015-4955-9 Carlos, F.S., Dos Santos, B.L., Andreazza, R., Tedesco, M.J., Morris, L., & Camargo, F.A.D.O. (2017). Irrigation of paddy soil with industrial landfill leachate: Impacts in Rice productivity, plant nutrition, and chemical characteristics of soil. Paddy and Water Environment, 15(1), 133-144. doi:10.1007/ Chan, Y.S.G., Wong, M.H., & Whitton, B.A. (1999). Effects of landfill leachate on growth and nitrogen fixation of two leguminous trees (Acacia confusa, Leucaena leucocephala). Water, Air, and Soil Pollution, 111, 29–40. doi:10.1023/A:1005088919668 Cheng, C.Y. (2004). Landfill Leachate as a Source of Plant Nutrients. M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong. Cheng, C.Y., & Chu, L.M. (2007). Phytotoxicity data safeguard the performance of the recipient plants in leachate irrigation. Environmental Pollution, 145(1), 195-202. doi:10.1016/j.envpol.2006.03.020 Cheng, C.Y., & Chu, L.M. (2011). Fate and distribution of nitrogen in soil and plants irrigated with landfill leachate. Waste Management, 31(6), 1239-1249. doi:10.1016/ Cheng, C.Y., Tsang, C.K., Wong, R.S.K., & Chu, L.M. (2011). Is landfill leachate a potential source of nitrogen for plant growth? Proceedings of the 12th International Conference on Environment and Industrial Innovation., Singapore, Pp. 286-295. Cretescu, I., Pohontu, C., Iticescu, C., Cioroi, M., Ciocinta, R.C., & Bucur, D. (2013). Treatment of landfill leachate using Zea mays and Triticum sp. on antropogenic soils. Journal of Food, Agriculture & Environment, 11(3/4), 1507-1512. doi:10.1234/4.2013.4886 Cureton, P.M., Groenevelt, P.H., & McBride, R.A. (1991). Landfill leachate recirculation: Effects on vegetation vigor and clay surface cover infiltration. Journal of Environmental Quality, 20(1),17-24. doi:10.2134/jeq1991.00472425002000010005x Dimitriou, I., & Aronsson, P. (2010). Landfill leachate treatment with willows and poplars – Efficiency and plant response. Waste Management, 30(11), 2137–2145. doi:10.1016/j.wasman.2010.06.013 Dimitriou, I., Aronsson, P., & Weih, M. (2006). Stress tolerance of five willow clones after irrigation with different amounts of landfill leachate. Bioresource Technology, 97(1), 150–157. doi:10.1016/j.biortech.2005.02.004 Edmundson, S.J., & Wilkie, A.C. (2013). Landfill leachate – a water and nutrient resource for algae-based biofuels. Environmental Technology, 34(13/14), 1849–1857. doi:10.1080/09593330.2013.826256 Emadi Baladehi, S.M., Sadegh-Zadeh, F., Bahmanyar, M.A., & Jalili, B. (2022a). The effect of different moisture levels on the enrichment of cow manure compost with iron and zinc metal scraps. Environmental Sciences Studies, 8(3), 6892-6902. doi:10.22034/JESS.2023.378611. [In Persian] Emadi Baladehi, S.M., Sadegh-Zadeh, F., Bahmanyar, M.A., & Jalili, B. (2022b). Enrichment of cow manure compost with iron and zinc metal scraps in different moisture levels. Proceedings of the 7th International Congress on Development of Agricultural and Environment with emphasis on the UN Development Program, Tehran, Iran, Pp. 1-8. [In Persian] Emadi Baladehi, S.M., Sadegh-Zadeh, F., Bahmanyar, M.A., & Jalili, B. (2022c). Available iron and zinc concentration of soils with different textures under the influence of cow manure compost application enriched with iron and zinc metal scraps. Proceedings of the 7th International Congress on Development of Agricultural and Environment with emphasis on the UN Development Program, Tehran, Iran, Pp. 1-9. [In Persian] Fasani, E., DalCorso, G., Zerminiani, A., Ferrarese, A., Campostrini, P., & Furini, A. (2019). Phytoremediatory efficiency of Chrysopogon zizanioides in the treatment of landfill leachate: a case study. Environmental Science and Pollution Research, 26(10), 10057-10069. doi:10.1007/s11356-019-04505-7 Filho, J.A., Dias, N.D.S., Batista, R.O., Santos Júnior, J.A., Santos, A.G.D., & Lima, A.L.F. (2018). Landfill leachate as nutritional source in castor bean cultivation under semi-arid conditions. Brazilian Journal of Agricultural and Environmental Engineering, 22(6), 378-382. doi:10.1590/1807-1929/agriambi.v22n6p378-382 Franco, H.A., Filho, S.T., Pérez, D.V., & da Costa Marques, M.R. (2020). Impact of the application of landfill leachate on the germination of Senna macranthera in different substrates. Journal of Social, Technological and Environmental Science, 9(2), 68-87. doi:10.21664/2238-8869.2020v9i2 Friedman, S.P. (2005). Soil properties influencing apparent electrical conductivity: A review. Computers and Electronics in Agriculture, 46(1), 45-70. doi:10.1016/j.compag.2004.11.001 Fu, L.H. (2004). The use of landfill leachate for growing ornamental plants. M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong. Ghaemi, A.A., & Majdeddin, F. (2016). Investigation of the phytoremediation of vetiver and eucalyptus by absorption of heavy metals from sewage in a contaminated soil with landfill leachate. Water Resources Engineering, 9(1), 95-106. dor:20.1001.1.20086377.1395.9.28.8.9. [In Persian] Gordon, A.M., McBride, R.A., Fisken, A.J., & Bates, T.E. (1989). Effect of landfill leachate irrigation on red maple (Acer rubrum L.) and sugar maple (Acer saccharum) seedling growth and on foliar nutrient concentrations. Environmental Pollution, 56(4), 327-336. doi:10.1016/0269-7491(89)90078-X Guerrero-Rodríguez, D., Sánchez-Yáñez, J.M., Buenrostro-Delgado, O., & Márquez-Benavides, L. (2014). Phytotoxic effect of landfill leachate with different pollution indexes on Common bean. Water, Air, & Soil Pollution, 225(6), 1-7. doi:10.1007/s11270-014-2002-1 Guidi Nissim, W., Palm, E., Pandolfi, C., Mancuso, S., & Azzarello, E. (2021). Willow and Poplar for the phyto-treatment of landfill leachate in Mediterranean climate. Journal of Environmental Management, 277(1), 111454. doi:10.1016/j.jenvman.2020.111454 Han, K., Zhou, C.J., & Wang, L.Q. (2014). Reducing ammonia volatilization from maize fields with separation of nitrogen fertilizer and water in an alternating furrow irrigation system. Journal of Integrative Agriculture, 13(5), 1099-1112. doi:10.1016/S2095-3119(13)60493-1 Hasnelly, H., Yasin, S., Agustian, A., Darmawan. (2021). Response of growth and yield of soybean (Glycine max L.) to the method and dose of leachate liquid organic fertilizer application. Journal of Agro Science, 9(2), 109-115. doi:10.18196/pt.v9i2.9000 Im, J.H., Woo, H.J., Choi, M.W., Han, K.B., & Kim, C.W. (2001). Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Research, 35(10), 2403-2410. doi:10.1016/S0043-1354(00)00519-4 Islam, J., & Singhal, N. (2004). A laboratory study of landfill leachate transport in soils. Water Research, 38(8), 2035–2042. doi:10.1016/j.watres.2004.01.024 Jalalipour, H., & Ghaemi, A.A. (2013). A study of the ability of vetiver grass to refinement city landfill residuals. Iranian Water Research Journal, 7(12), 45-52. [In Persian] Jorge, L.G.T., Peralta-Videab, J.R., de la Rosa, G., & Parsons, J.G. (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 249(17-18), 1797-1810. doi:10.1016/j.ccr.2005.01.001 Kabata-Pendias, A. (2010). Trace elements in soils and plants. 4th Edition: CRC Press, Boca Raton, FL. 548 pages. doi:10.1201/b10158 Kalbasi, M., & Gandomkar, A. (1997). Effect of garbage leachate on yield and chemical composition of corn and the effect of leachate residual on soil characteristics. Journal of Water and Soil Science, 1(2), 41-51. dor:20.1001.1.22518517.1376.1.2.4.3. [In Persian] Kang, D.H., Tsao, D., Wang-Cahill, F., Rock, S., Schwab, A.P., & Banks, M.K. (2008). Assessment of landfill leachate volume and concentrations of cyanide and fluoride during phytoremediation. Bioremediation Journal, 12(1), 35–48. doi:10.1080/10889860701866297 Khoshgoftarmanesh, A.H., & Kalbasi, M. (2001). Effect of garbage leachate on soil properties, growth and yield of rice. Journal of Water and Soil Science, 15(1), 12-24. [In Persian] Khoshgoftarmanesh, A.H., & Kalbasi, M. (2002). Effects of residual processed municipal waste leachate on soil properties, and wheat growth and yield. Journal of Water and Soil Science, 6(3), 141-149. dor:20.1001.1.24763594.1381.6.3.11.2. [In Persian] Kjeldsen, P., & Christophersen, M., (2001). Composition of leachate from old landfills in Denmark. Waste Management & Research, 19(3), 249-256. doi:10.1177/0734242X0101900306 Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A.P., Ledin, A., & Christensen, T.H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336. doi:10.1080/10643380290813462 Klauck, C.R., Giacobbo, A., Altenhofen, C.G., Silva, L.B., Meneguzzi, A., Bernardes, A.M., & Rodrigues, M.A.S. (2017). Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption. Environmental Technology & Innovation, 8, 246-255. doi:10.1016/j.eti.2017.07.006 Krishna, K., Chaitra, R., & Kumari, J. (2016). Effects of municipal solid waste leachate on the quality of soil. International Journal of Engineering Science Invention, 5(6), 69-73. Kulikowska, D., & Klimiuk, E. (2008). The effect of landfill age on municipal leachate composition. Bioresource Technology, 99(13), 5981–5985. doi:10.1016/j.biortech.2007.10.015 Kuwano, B.H., Nogueira, M.A., Santos, C.A., Fagotti, D.S.L., Santos, M.B., Lescano, L.E.A.M., Andrade, D.S., Barbosa, G.M.C., & Tavares-Filho, J. (2017). Application of landfill leachate improves wheat nutrition and yield but has minor effects on soil properties. Journal of Environmental Quality, 46(1), 153–159. doi:10.2134/jeq2016.02.0041 Lambers, H. (2022). Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73(1), 17-42. doi:10.1146/annurev-arplant-102720-125738 Landon, J.R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. 1st Edition: Longman Scientific & Technical, Harlow. 530 pages. doi:10.4324/9781315846842 Lanrewaju, O.A., Longinus, N.K., Olamilekan, M.Q., Alex, A.A., Olalekan, O.O., & Olanrewaju, B. (2019). Heavy metal residue and potential human health risk factors of Celosia argentea (Lagos spinach) planted in a soil mixed with landfill leachate. Environment Asia, 12(1), 74-82. doi:10.14456/ea.2019.9 Leal, R.M.P., Firme, L.P., Herpin, U., Fonseca, A.F., Montes, C.R., Dias, C.T.S., & Melfi, A.J. (2010). Carbon and nitrogen cycling in a tropical Brazilian soil cropped with sugarcane and irrigated with wastewater. Agricultural Water Management, 97(2), 271–276. doi:10.1016/j.agwat.2009.09.018 Lee, A.H., Nikraz, H., & Hung, Y.T. (2010). Influence of waste age on landfill leachate quality. International Journal of Environmental Science and Development, 1(4), 347-350. doi:10.7763/IJESD.2010.V1.68 Li, X.Z., & Zhao, Q.L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20(2), 171-181. doi:10.1016/S0925-8574(03)00012-0 Liang, J., Zhang, J., & Wong, M.H. (1999). Landfill leachate used as irrigation water on landfill sites during dry seasons. Pp 305-317. In: Wong MH, Wong JWC and Baker AJM, editors. Remediation and Management of Degraded Lands, Lewis Publishers, Boca Raton. Lindsay, W. (1995). Chemical reactions in soils that affect iron availability to plants. A quantative approach. Pp. 7-14. In: Abadía J (eds), Iron Nutrition in Soils and Plants, Springer-Dordrecht. doi:10.1007/978-94-011-0503-3_2 Loncnar, M., Zupancic, M., Bukovek, P., & Justin, M.Z. (2010). Fate of saline ions in a planted landfill site with leachate recirculation. Waste Management, 30(1), 110–118. doi:10.1016/j.wasman.2009.09.010 Luna, Y., Otal, E., Vilches, L.F., Vale, J., Querol, X., & Fernandez Pereira, C. (2007). Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study. Waste Management, 27(12), 1877–1883. doi:10.1016/j.wasman.2006.10.016 Lund, U., Rasmussen, L., Segato, H., & Ostfeldt, P. (1992). Analytical methods for leachate characterization. Pp. 167-181. In: Christensen TH Cossu R & Stegmann R (eds), Landfilling of Waste: Leachate, Elsevier-London. MacDonald, N.W., Rediske, R.R., Scull, B.T., & Wierzbicki, D. (2008). Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications. Journal of Environmental Quality, 37(5), 1974-1985. doi:10.2134/jeq2007.0637 Madera-Parra, C.A., Peña, M.R., Peña, E.J., & Lens, P.N.L. (2014). Cr (VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale. Environmental Science and Pollution Research, 22(17), 12804-12815. doi:10.1007/s11356-014-3623-z Mathan, K.K. (1994). Studies on the influence of long-term municipal sewageeffluent irrigation on soil physical properties. Bioresource Technology, 48(3), 275–276. doi:10.1016/0960-8524(94)90159-7 McFarlane, D.J., George, R.J., Barrett-Lennard, E.G., & Gilfedder, M. (2016). Salinity in dryland agricultural systems: Challenges and opportunities. Pp. 521-547. In: Farooq M & Siddique KHM (eds), Innovations in Dryland Agriculture, Springer. doi:10.1007/978-3-319-47928-6_19 Mekki, A., Dhouib, A., & Sayadi, S. (2009). Evolution of several soil properties following amendment with olive mill wastewater. Progress in Natural Science, 19(11), 1515–1521. doi:10.1016/j.pnsc.2009.04.014 Mendel, P., Vyhnánek, T., Braidot, E., Filippi, A., Trojan, V., Bjelková, M., Vaverková, M.D., Adamcová, D., Zloch, J., Brtnický, M., & Đorđević, B. (2020). Fiber quality of Hemp (Cannabis sativa L.) grown in soil irrigated by landfill leachate water. Journal of Natural Fibers, 19(9), 3288-3299. doi:10.1080/15440478.2020.1843101 Mir Seyed Hosseini, H., Karimi, R., Bagheri Novair, S., & Tabatabaei, S.H. (2016). A study of treated municipal waste leachate and Zeolite effects on soils. Iran Agricultural Research, 34(2), 109-116. doi:10.22099/IAR.2016.3533 Mirzaei, S.M.J., Tabatabaei, S.H., Heidarpour, M., & Najafi P. (2014). Effect of compost’s leachate on some physical and hydraulic characteristics of soil enriched by zeolite. Journal of Water and Soil Science, 17(66), 37-48. dor:20.1001.1.24763594.1392.17.66.7.1. [In Persian] Moezzipour, A., Pourtahmasi, K., Motesharezadeh, B., Oladi, R., & Ramazani Saadatabadi A. (2020). Effect of irrigation with municipal landfill leachate on the chemicals content of the tree shoots of Populous (Populus deltoides) and Fraxinus (Fraxinus excelsior). Iranian Journal of Forest, 11(4), 458-475. [In Persian] Mohamed, A., & Ebead, B. (2013). Effect of magnetic treated irrigation water on salt removal from a sandy soil and the availability of certain nutrients. International Journal of Engineering and Applied Sciences, 2(2), 36-44. Mor, S., Kaur, K., & Khaiwal, R. (2013). Growth behavior studies of bread wheat plant exposed to municipal landfill leachate. Journal of Environmental Biology, 34(6), 1083-1087. Moraes Costa, A., Marotta Alfaia, R.G.D.S., & Campos, J.C. (2019). Landfill leachate treatment in Brazil – An overview. Journal of Environmental Management, 232, 110-116. doi:10.1016/j.jenvman.2018.11.006 Mueller, K., Magesan, G.N., & Bolan, N.S. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment, 120(2/4), 93–116. doi:10.1016/j.agee. Mukherjee, S., Mukhopadhyay, S., Ali Hashim, M., & Sen Gupta, B. (2015). Contemporary environmental issues of landfill leachate: Assessment & remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472-590. doi:10.1080/10643389.2013.876524 Naveen, B.P., Mahapatra, D.B., Sitharam, T.G., Sivapullaiah, P.V., & Ram achandra, T.V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution, 220, 1–12. doi:10.1016/j.envpol.2016.09.002 Nayak, S., Sunil, B.M., & Shrihari, S. (2007). Hydraulic and compaction characteristics of leachate-contaminated lateritic soil. Engineering Geology, 94(3/4), 137-144. doi:10.1016/j.enggeo.2007.05.002 Neina, D. (2019). The role of soil ph in plant nutrition and soil remediation. Applied and Environmental Soil Science, 1-9. doi:10.1155/2019/5794869 Nunes Júnior, F.H., Gondim, F.A., Pereira, M.D.S., Braga, B.B., Filho, R.A.P., & Barbosa, F.E.L. (2016). Sanitary landfill leachate as a source of nutrients on the initial growth of sunflower plants. Brazilian Journal of Agricultural and Environmental Engineering, 20(8), 746-750. doi:10.1590/1807-1929 Nyika, J. (2021). Application of experimental and modelling techniques to estimate the effects of landfill leachate on soil and water. Ph.D. Thesis, University of South Africa, Pretoria, South Africa. Panahpour, E., Gholami, A., & Davami, A.H. (2011). Influence of garbage leachate on soil reaction, salinity and soil organic matter in east of Isfahan. World Academy of Science, Engineering and Technology, 3, 171-176. doi:10.5281/zenodo.1327821 Panchoni, L.C., Santos, C.A., Kuwano, B.H., Carmo, K.B., Cely, M.V.T., Oliveira-Júnior, A.G., Fagotti, D.S.L., Cervantes, V.N.M., Zangaro, W., Andrade, D.S., Andrade, G., & Nogueira, M.A. (2016). Effect of landfill leachate on cereal nutrition and productivity and on soil properties. Journal of Environmental Quality, 45(1), 1-7. doi:10.2134/jeq2015.06.0281 Parida, A.K., & Das, A.B., 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010 Postacchini, L., Ciarapica, F.E., & Bevilacqua, M. (2018). Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. Journal of Cleaner Production, 183, 1021-1033. doi:10.1016/j.jclepro.2018.02.219 Ramos-Arcos, S.A., López-Martínez, S., Lagunas Rivera, S., González-Mondragón, E.G., de La Cruz Leyva, M.C., & Velázquez-Martínez, J.R. (2019). Phytoremediation of landfill leachate using vetiver (Chrysopogon zizanioides) and cattail (Typha latifolia). Applied and Environmental Microbiology, 17(2), 2619-2630. doi:10.15666/aeer/1702_26192630 Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008.) Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. doi:10.1016/j.jhazmat.2007.09.077 Revel, J.C., Morard, P., Bailly, J.R., Labbé, H., Berthout, C., & Kaemmerer, M. (1999). Plants' use of leachate derived from municipal solid waste. Journal of Environmental Quality, 28(4), 1083-1089. doi:10.2134/jeq1999.00472425002800040004x Salehi, N., Azhdarpoor, A., & Shirdarreh, M. (2020). The effect of landfill leachate and pyrene on sorghum bicolor growth parameters and soil bacterial communities. Journal of Health Sciences and Surveillance System, 8(2), 85-92. doi:10.30476/JHSSS.2020.86548.1093 Salem, Z., Hamouri, K., Djemaa, R., & Allia, K. (2008). Evaluation of landfill leachate pollution and treatment. Desalination, 220(1/3), 108-114. doi:10.1016/j.desal.2007.01.026 Smaoui, Y., Chaari, L., Fersi, M., Gargouri, K., & Bouzid, J. (2020). Effects of raw and treated landfill leachate on the chemical properties of a Tunisian soil. Euro-Mediterranean Journal for Environmental Integration, 5(3), 1-10. doi:10.1007/s41207-020-00183-x Santos, C.A., Panchoni, L.C., Bini, D., Kuwano, B.H., Carmo, K.B., Silva, S.M.C.P., Martines, A.M., Andrade, G., Andrade, D.S., Cardoso, E.J.B.N., Zangaro, W., & Nogueira, M.A. (2013). Land application of municipal landfill leachate: Fate of ions and ammonia volatilization. Journal of Environmental Quality, 42(2), 523–531. doi:10.2134/jeq2012.0170 Şchiopu, A.M., Robu, B.M., Apostol, I., & Gavrilescu, M. (2009). Impact of landfill leachate on soil quality in IASI county. Environmental Engineering and Management Journal, 8(5), 1155-1164. doi:10.30638/eemj.2009.169 Shrive, S.C., & McBride, R.A. (1995). Physiological responses of red maple saplings to sub-irrigation with and untreated municipal landfill leachate. Waste Management & Research, 13(3), 219-239. doi:10.1016/S0734-242X(95)90041-1 Singh, R.P., Singh, P., Araujo, A.S.F., Ibrahim, M.H., & Sulaiman, O. (2011). Management of urban solid waste: Vermicomposting a sustainable option. Resources, Conservation and Recycling, 55(7), 719-729. doi:10.1016/j.resconrec.2011.02.005 Singh, S., Raju, N.J., & Ramakrishna, C.H. (2017). Assessment of the effect of landfill leachate irrigation of different doses on wheat plant growth and harvest index: A laboratory simulation study. Environmental Nanotechnology, Monitoring and Management, 8, 150-156. doi:10.1016/j.enmm.2017.07.005 Singh, S., Raju, N.J., & Ramakrishna, C.H. (2015) Evaluation of groundwater quality and its suitability for domestic and irrigation use in parts of the Chandauli-Varanasi region, Uttar Pradesh, India. Journal of Water Resource and Protection, 7(7), 482-497. doi:10.4236/jwarp.2015.77046 Singh, D., Tembhare, M., Machhirake, N., & Kumar, S. (2023). Impact of municipal solid waste landfill leachate on biogas production rate. Journal of Environmental Management, 336, 1-17. doi:10.1016/j.jenvman.2023.117643 Singhal, N., & Islam, J. (2008). One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation. Journal of Contaminant Hydrology, 96(1/4), 32-47. doi:10.1016/j.jconhyd.2007.09.007 Stephens, W., Tyrrel, S.F., & Tiberghien, J.E. (2000). Irrigation short rotation coppice with landfill leachate: constraints to productivity due to chloride. Bioresource Technology, 75(3), 227-229. doi:10.1016/S09608524(00)00065-1 Taylor, J.P., Wilson, B., Mills, M.S., & Burns, R.G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology & Biochemistry, 34(3), 387–401. doi:10.1016/S0038-0717(01)00199-7 Tewolde, H., Sistani, K.R., & Rowe, D.E. (2005). Broiler litter as a sole nutrient source for cotton: Nitrogen, phosphorus, potassium, calcium, and magnesium concentrations in plant parts. Journal of Plant Nutrition, 28(4), 605–619. doi:10.1081/PLN-200052633 Torabi Farsani, B., & Afyuni, M. (2021). Effect of urban waste compost leachate on the soil physical, hydraulic, moisture characteristics and corn yield. Journal of Water and Soil Science, 25(1), 1-14. doi:20.1001.1.24763594.1400.25.1.1.1. [In Persian] Toufexi, E., Tsarpali, v., Efthimiou, i., Vidali, M.S., Vlastos, d., & Dailianis, S. (2013). Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells. Journal of Hazardous Materials, 260, 593–601. doi:10.1016/j.jhazmat.2013.05.054 Tsang, C.K. (2006). Landfill leachate irrigation: Evaluation of plant productivity and soil toxicity. M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong. Turki, N., & Bouzid, J. (2017). Effects of landfill leachate application on crops growth and properties of a mediterranean sandy soil. Journal of Pollution Effects & Control, 5(2), 186. doi:10.4176/2375-4397.1000186 Wong, M.H., & Leung, C.K. (1989). Landfill leachate as irrigation water for tree and vegetable crops. Waste Management & Research, 7(4), 311–323. doi:10.1016/0734242X(89)90069-4 Wong, R.S.K. (2003). Chemical and Ecotoxicological Characterization of Landfill Leachate, M.Sc. Thesis, The Chinese University of Hong Kong, Sha Tin, Hong Kong. WHO. (1996). Permissible limits of heavy metals in soil and plants. World Health Organization, Geneva, Switzerland. Wydro, U., Wołejko, E., Sokołowska, G., Leszczynski, J., & Jabłonska-Trypuc, A. (2022). Investigating landfill leachate influence on soil microbial biodiversity and its cytotoxicity. Water, 14(22), 3634. doi:10.3390/w14223634 Xing, Y., Jiang, W., He, X., Fiaz, S., Ahmad, S., Lei, X., Wang, W., Wang, Y., & Wang, Y. (2019). A review of nitrogen translocation and nitrogen-use efficiency. Journal of Plant Nutrition, 42(19), 2624-2641. doi:10.1080/01904167.2019.1656247 Xu, Q., Renault, S., & Yuan, Q. (2019). Phytodesalination of landfill leachate using Puccinellia nuttalliana and Typha latifolia. International Journal of Phytoremediation, 21(9), 831-839. doi:10.1080/15226514.2019.1568383 Yalcuk, I., & Ugurlu, A. (2020). Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: Plant growth modeling. International Journal of Phytoremediation, 22(2), 157–166. doi:10.1080/15226514.2019.1652562 Zalesny, J.A., Zalesny Jr, R.S., Wiese, A.H., Sexton, B.T., & Hall, R.B. (2008a). Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of populus after irrigation with landfill leachate. Journal of Sustainable Forestry, 27(3), 303-327. doi:10.1080/10549810802256262 Zalesny, J.A., Zalesny Jr, R.S., Wiese, A.H., Sexton, B.T., & Hall, R.B. (2008b). Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Environmental Pollution, 155(1), 72-80. doi:10.1016/j.envpol.2007.10.032 Zhang, H.H., He, P.J., & Shao, L.M. (2010). Ammonia volatilization, N2O and CO2 emissions from landfill leachate-irrigated soils. Waste Management, 30(1), 119-124. doi:10.1016/j.wasman.2009.08.004 Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulam, A., Fang, C.R., & He, R. (2013). Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Management, 33(11), 2277–2286. doi:10.1016/j.wasman.2013.07.021 Zupanc, V., & Zupancic Justin, M. (2010). Changes in soil characteristics during landfill leachate irrigation of Populus deltoids. Waste Management, 30(11), 2130–2136. doi:10.1016/j.wasman.2010.05.004 | ||
آمار تعداد مشاهده مقاله: 1,273 تعداد دریافت فایل اصل مقاله: 586 |