تعداد نشریات | 27 |
تعداد شمارهها | 368 |
تعداد مقالات | 3,269 |
تعداد مشاهده مقاله | 4,836,219 |
تعداد دریافت فایل اصل مقاله | 3,310,711 |
روش جدید مبتنی بر تصاویر ماهواره لندست 8 و سنجنده مادیس برای تخمین تبخیر و تعرق مرجع ماهانه در دو اقلیم خشک و نیمهخشک | ||
مدل سازی و مدیریت آب و خاک | ||
مقاله 12، دوره 3، شماره 3، 1402، صفحه 180-195 اصل مقاله (1.83 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22098/mmws.2023.12048.1198 | ||
نویسندگان | ||
حامد طالبی1؛ سعید صمدیان فرد* 2؛ خلیل ولیزاده کامران3 | ||
1دانشجوی دکتری/ گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2دانشیار/ گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
3استاد/ گروه سنجش از دور، دانشکده برنامهریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
مدیریت آب کشاورزی و برنامهریزی آبیاری به برآورد دقیق تبخیر و تعرق مرجع (ET0) وابسته هستند. با استفاده از تصاویر ماهوارهای میتوان در مناطق فاقد ایستگاه هواشناسی، کمبود اطلاعات آب و هوایی را جبران کرد. بنابراین، در این مطالعه، الگوریتمهای جنگل تصادفی (RF) و پرسپترون چندلایه (MLP) برای برآورد تبخیر و تعرق مرجع ماهانه در ایستگاههای اهواز (اقلیم خشک) و تبریز (اقلیم نیمهخشک) با استفاده از پارامترهای استخراج شده از تصاویر ماهواره لندست 8 و سنجنده مادیس اجرا شده است. لازم به ذکر است که پایگاه داده بر اساس دادههای تصاویر ماهوارهای جمعآوری شده از سال 1392 تا 1400 ایجاد شد. همچنین برای توسعه مدلهای مذکور، از دادههای سالهای 1392-1398 (75 درصد) برای آموزش مدل و دادههای باقیمانده (25 درصد) برای آزمایش مدل استفاده شد. علاوه بر این، متغیرهای ورودی، شامل دمای سطح زمین لندست (LSTLand)، دمای سطح زمین مادیس (LSTMOD)، شاخص نرمال شده تفاوت پوشش گیاهی ماهواره لندست (NDVILand) و شاخص نرمال شدی تفاوت پوشش گیاهی سنجنده مادیس (NDVIMOD) برای تخمین ET0 ماهانه استفاده شد. همچنین، سه شاخص عملکرد ضریب تعیین (R2)، ریشه میانگین مربعات خطا (RMSE) و ضریب نش-ساتکلیف (NS) بهمنظور تعیین توانایی مدلهای اجرا شده مورد استفاده قرار گرفت. نتایج نشان داد که دقت برآورد تبخیر و تعرق مرجع ماهانه در ایستگاه اهواز و تبریز با سناریوی 4 شامل پارامترهای ورودی LSTMOD و NDVIMOD بهتر از سایر سناریوهای مورد بررسی است. همچنین برآورد تبخیر و تعرق مرجع ماهانه در ایستگاه اهواز و تبریز بهترتیب با مدل (R2=0/983، RMSE=0/279 و 0/962=NS) RF-4 و (R2 R2=0/988، RMSE=0/299 و 0/935=NS) MLP-4 بهترین عملکرد را داشته است. در نهایت چنین نتیجهگیری شد که کاربرد دادههای حاصل از تصاویر سنجنده مادیس نسبت به ماهواره لندست 8 در برآورد تبخیر و تعرق مرجع ماهانه دقیقتر است. | ||
کلیدواژهها | ||
پرسپترون چندلایه؛ جنگل تصادفی؛ دمای سطح زمین؛ لندست؛ مادیس | ||
مراجع | ||
پناهی، سهیلا، کرباسی، مسعود، و نیکبخت، جعفر (1395). پیشبینی تبخیر و تعرق مرجع با استفاده از شبکههای عصبی مصنوعی SVM، RBF و MLP. محیط زیست و مهندسی آب، 2(1)، 63-51. دهقانی، تهمینه، احمدپری، هدیه، و امینی، عطا (1402). ارزیابی تغییرات کاربری اراضی با استفاده از تصاویر ماهوارهای چند طیفی و شبکه عصبی مصنوعی. مدلسازی و مدیریت آب و خاک، 3(2)، 18-35. doi:10.22098/mmws.2022.11279.1114 صمدیان فرد، سعید، و پناهی، سولماز (1397). برآورد تبخیر-تعرق مرجع روزانه با استفاده از روشهای داده کاوی رگرسیون بردار پشتیبان و مدل درختیM5. پژوهشنامه مدیریت حوزه آبخیز، (18)9، 157-167. doi:10.29252/jwmr.9.18.157 طافی، شکور، پیغان، خشایار، باقری خانقاهی، مرضیه، صالحیپور باورصاد، تارا، و سلطانی محمدی، امیر (1400). ارزیابی چهارده روش تخمین تبخیر و تعرق گیاه مرجع (مطالعه موردی: استان مازندران). آبیاری و زهکشی ایران، 15(3)، 520-510. dor:20.1001.1.20087942.1400.15.3.3.7
References
Alipour, A., Yarahmadi, J., & Mahdavi, M. (2014). Comparative study of M5 model tree and artificial neural network in estimating reference evapotranspiration using MODIS products. Journal of Climatology,11(42), 16-50. doi:10.1155/2014/839205 Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements- FAO Irrigation and Drainage paper 56. Fao, Rome, 300(9). Antonopoulos, V.Z., & Antonopoulos, A.V. (2017). Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Computers and Electronics in Agriculture, 132, 86-96. doi:10.1016/j.compag.2016.11.011 Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/A:1010933404324 Caudill, M., & Butler, C. (1992). Understanding neural networks; Computer Explorations. MIT press. Chen, G., Long, T., Xiong, J., & Bai, Y. (2017). Multiple random forests modelling for urban water consumption forecasting. Water Resources Management, 31(15), 4715-4729. doi:10.1007/s11269-017-1774-7 Chia, M. Y., Huang, Y. F., Koo, C.H., & Fung, K.F. (2020). Recent advances in evapotranspiration estimation using artificial intelligence approaches with a focus on hybridization techniques—a review. Agronomy, 10(1), 101. doi:10.3390/agronomy10010101 Dehghani, T., Ahmadpari, H., & Amini, A. (2022). Assessment of land use changes using multispectral satellite images and artificial neural network. Water and Soil Management and Modelling, 3(2), 18-35. doi:10.22098/mmws.2022.11279.1114 [In Persian] Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N’Diaye, M.K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: regional studies, 60(1), 139-159. doi:10.1016/j.ejrh.2015.02.002 Eslamian, S., Khordadi, M.J., & Abedi-Koupai, J. (2011). Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions. Global and Planetary Change, 78(3-4), 188-194. doi:10.1016/j.gloplacha.2011.07.001 Fawzy, H. E.D., Sakr, A., El-Enany, M., & Moghazy, H.M. (2021). Spatiotemporal assessment of actual evapotranspiration using satellite remote sensing technique in the Nile Delta, Egypt. Alexandria Engineering Journal, 60(1), 1421-1432. doi:10.1016/j.aej.2020.11.001 Hadadi, F., Moazenzadeh, R., & Mohammadi, B. (2022). Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. Journal of Hydrology, 609, 127774. doi:10.1016/j.jhydrol.2022.127774 Hargreaves, G.H., & Samani, Z.A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96-99.doi: 10.13031/2013.26773 Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. doi:10.1016/j.jhydrol.2019.04.085 Kim, N., Kim, K., Lee, S., Cho, J., & Lee, Y. (2020). Retrieval of daily reference evapotranspiration for croplands in South Korea using machine learning with satellite images and numerical weather prediction data. Remote Sensing, 12(21), 364. doi:10.3390/rs12213642 Koch, J., Berger, H., Henriksen, H. J., & Sonnenborg, T.O. (2019). Modelling of the shallow water table at high spatial resolution using random forests. Hydrology and Earth System Sciences, 23(11), 4603-4619. doi:10.5194/hess-23-4603-2019 Kumar, B.P., Babu, K.R., Anusha, B., & Rajasekhar, M. (2022). Geo-environmental Monitoring and Assessment of Land Degradation and Desertification in the Semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578. doi:10.1016/j.envc.2022.100578 Kumar, B.P., Babu, K.R., Ramachandra, M., Krupavathi, C., Swamy, B. N., Sreenivasulu, Y., & Rajasekhar, M. (2020). Data on identification of desertified regions in Anantapur district, Southern India by NDVI approach using remote sensing and GIS. Data in Brief, 30, 105560. doi:10.1016/j.dib.2020.105560 Moore, R., & Hansen, M. (2011). Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis. AGU Fall Meeting Abstracts. Nouri, H., Faramarzi, M., Sobhani, B., & Sadeghi, S. (2017). Estimation of evapotranspiration based on surface energy balance algorithm for land (SEBAL) using Landsat 8 and MODIS images. Applied Ecology and Environmental Research, 15(4), 1971-1982. doi: 10.15666/aeer/1504_19711982 Pagano, T.S., & Durham, R.M. (1993). Moderate resolution imaging spectroradiometer (MODIS). Sensor Systems for the Early Earth Observing System Platforms, 31(15). doi: 10.1117/12.152835 Panahi, S., Karbasi, M., & Nikbakht, J. (2016). Forecasting of Reference Evapotranspiration using MLP, RBF, and SVM Neural Networks. Environment and Water Engineering, 2(1), 51-63. [In Persian] Priestley, C.H.B., & Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81-92. doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 Raju, K.S., Kumar, D.N., & Duckstein, L. (2006). Artificial neural networks and multicriterion analysis for sustainable irrigation planning. Computers & Operations Research, 33(4), 1138-1153. doi:10.1016/j.cor.2004.09.010 Samadianfard, S., & Panahi, S. (2019). Estimating daily reference evapotranspiration using data mining methods of support vector regression and M5 model tree. Journal of Watershed Management Research, 9(18), 157-167. doi:10.29252/jwmr.9.18.157 [In Persian] Sattari, M.T., Apaydin, H., Band, S.S., Mosavi, A., & Prasad, R. (2021). Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. Hydrology and Earth System Sciences, 25(2), 603-618. doi:10.5194/hess-25-603-2021 Shrestha, N., Geerts, S., Raes, D., Horemans, S., Soentjens, S., Maupas, F., & Clouet, P. (2010). Yield response of sugar beets to water stress under Western European conditions. Agricultural Water Management, 97(2), 346-350. doi:10.1016/j.agwat.2009.10.005 Sutariya, S., Ankur, H., & Tiwari, M. (2022). Development of Modeler for Automated Mapping of Land Surface Temperature Using GIS and LANDSAT-8 Satellite Imagery. International Journal of Environment and Geoinformatics, 9(2), 54-59. doi: 10.30897/ijegeo.820 Tabari, H., & Hosseinzadeh Talaee, P. (2013). Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Computing and Applications, 23(2), 341-348. doi:10.1007/s00521-012-0904-7 Tafi, S., Peyghan, K., Bagheri Khaneghahi, M., Salehipour Bavarsad, T., & Soltani Mohamadi, A. (2021). Evaluation of fourteen methods of estimation reference evapotranspiration (Case study: Mazandaran Province). Iranian Journal of Irrigation & Drainage, 3(15), 510-520 (in Persian). dor:20.1001.1.20087942.1400.15.3.3.7 Talaee, P.H., Heydari, M., Fathi, P., Marofi, S., & Tabari, H. (2012). Numerical model and computational intelligence approaches for estimating flow through rockfill dam. Journal of Hydrologic Engineering, 17(4), 528-536. doi:10.1061/(ASCE)HE.1943-5584.0000446 Talebi, H., Samadianfard, S., & Kamran, K.V. (2023). Investigating the roles of different extracted parameters from satellite images in improving the accuracy of daily reference evapotranspiration estimation. Applied Water Science, 13(2), 1-11. doi:10.1007/s13201-022-01862-6 Taloor, A.K., Kothyari, G.C., Manhas, D.S., Bisht, H., Mehta, P., Sharma, M., Mahajan, S., Roy, S., Singh, A.K., & Ali, S. (2021). Spatio-temporal changes in the Machoi glacier Zanskar Himalaya India using geospatial technology. Quaternary Science Advances, 4, 100031. doi:10.1016/j.qsa.2021.100031 Valipour, M. (2016). How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations?. Agriculture, 6(4), 53. doi:10.3390/agriculture6040053 Wu, L., Peng, Y., Fan, J., Wang, Y., & Huang, G. (2021). A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation. Agricultural Water Management, 245, 106624. doi:10.1016/j.agwat.2020.106624 Wu, M., Feng, Q., Wen, X., Deo, R.C., Yin, Z., Yang, L., & Sheng, D. (2020). Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research, 51(4), 648-665. doi:10.2166/nh.2020.012 Yurtseven, I., & Serengil, Y. (2021). Comparison of different empirical methods and data-driven models for estimating reference evapotranspiration in semi-arid Central Anatolian Region of Turkey. Arabian Journal of Geosciences, 14(19), 1-28. doi:10.1007/s12517-021-08150-8 Zhang, Z., Gong, Y., & Wang, Z. (2018). Accessible remote sensing data based reference evapotranspiration estimation modelling. Agricultural Water Management, 210, 59-69. doi:10.1016/j.agwat.2018.07.039 | ||
آمار تعداد مشاهده مقاله: 1,373 تعداد دریافت فایل اصل مقاله: 767 |