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Abstract. In this paper, we study conformally flat 5-th root (α, β)-metrics.

We prove that every conformally flat 5-th root (α, β)-metric with relatively

isotropic mean Landsberg curvature must be either Riemannian metrics or lo-

cally Minkowski metrics.
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1. Introduction

Conformal Geometry and its impact on other sciences has a long and bril-

liant history. It has played an elegance and important role in Physical Theories.

More precisely, conformal transformation of Riemannian metrics (or Riemann-

ian curvature) have been well studied by many geometers. The well-known

Weyl theorem states that the projective and conformal properties of a Finsler

manifold determine the metric properties uniquely. There are many important

local and global results in Riemann-Finsler conformal geometry, which in turn

lead to a better understanding on Riemann-Finsler manifolds. Also, the con-

formal properties of a Finsler metric deserve extra attention. Let F = F (x, y)

and F̃ = F̃ (x, y) be two arbitrary Finsler metrics on a manifold M . Then

we say that F is conformal to F̃ if and only if there exists a scalar function

σ = σ(x) such that

F (x, y) = eσ(x)F̃ (x, y).
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The scalar function σ = σ(x) is called the conformal factor. A Finsler met-

ric F = F (x, y) on a manifold M is said to be a conformally flat metric if

there exists a locally Minkowski metric F̃ = F̃ (y) such that F = eκ(x)F̃ , where

κ = κ(x) is a scalar function on M . A new and hot issue is to characterization

of conformally flat Finsler metrics. Recently, Asanov constructed a Finslerian

metric function on the manifold N = R×M , where M is a Riemannian mani-

fold endowed with two real functions, and showed that the tangent Minkowski

spaces of such a Finsler space are conformally flat [3]. This motivated Asanov

to propose a Finslerian extension of the electromagnetic field equations whose

solutions are explicit images of the solutions to the ordinary Maxwell equations.

In order to find conformally flat Finsler metrics, we consider the class of

m-th root Finsler metrics. Let (M,F ) be an n-dimensional Finsler manifold,

TM its tangent bundle and (xi, yi) the coordinates in a local chart on TM .

Let F : TM → R be a scalar function defined by F = m
√
A, where A is given

by A := ai1...im(x)yi1yi2 . . . yim such that ai1...im is symmetric in all its indices.

Then F is called an m-th root Finsler metric. An m-th root Finsler metric

can be regarded as a direct generalization of a Riemannian metric in the sense

that the 2-th root metric is a Riemannian metric F =
√
aij(x)yiyj . The fourth

root metrics F = 4
√
aijkl(x)yiyjykyl are called the quartic metrics. The special

quartic metric F = 4
√
yiyjykyl is called Berwald-Moór metric which plays

an important role in theory of space-time structure, gravitation and general

relativity. For more progress, see [9], [11], [12] and [14].

In [13], Tayebi-Razgordani proved that every conformally flat weakly Ein-

stein 4-th root (α, β)-metric on a manifold M of dimension n ≥ 3 is either

a Riemannian metric or a locally Minkowski metric. Also, they showed that

every conformally flat 4-th root (α, β)-metric of almost vanishing Ξ-curvature

on a manifold M of dimension n ≥ 3 reduces to a Riemannian metric or

a locally Minkowski metric. In [10], Tayebi and the author studied confor-

mally flat 4-th root (α, β)-metric with relatively isotropic mean Landsberg cur-

vature and proved that every conformally flat 4-th root (α, β)-metric F =
4
√
c1α4 + c2α2β2 + c3β4, be a on a manifold M of dimension n ≥ 3 with

relatively isotropic mean Landsberg curvature is a Riemannian or a locally

Minkowski metric. The third root metrics F = 3
√
aijk(x)yiyjyk are called the

cubic metrics. In [1], the author studied conformally flat 3-th root (α, β)-metric

with relatively isotropic mean Landsberg curvature and proved that such met-

rics reduces to a Riemannian or a locally Minkowski metric. In [8], Piscoran and

the author studied conformally flat square-root (α, β)-metric F =
√
α(α+ β)

with relatively isotropic mean Landsberg curvature on a manifoldM of dimen-

sion n ≥ 3, where α = aij(x)y
iyj is a Riemannian metric and β = bi(x)y

i is a

1-form onM . They showed that F reduces to a Riemannian metric or a locally



On Conformally Flat 5-th root (α, β)-Metrics 31

Minkowski metric. In this paper, we study conformally flat 5-th root (α, β)-

metric with relatively isotropic mean Landsberg curvature. More precisely, we

prove the following.

Theorem 1.1. Let F = F (x, y) be a conformally flat 5-th root (α, β)-metric

on a manifold M of dimension n ≥ 3. Suppose that F has relatively isotropic

mean Landsberg curvature

J+ c(x)F I = 0, (1.1)

where c = c(x) is a scalar function on M . Then F reduces to a Riemannian

metric or a locally Minkowski metric.

2. Preliminaries

LetM be a n-dimensional C∞ manifold and TM =
∪

x∈M TxM the tangent

bundle. Let (M,F ) be a Finsler manifold. The following quadratic form gy on

TxM is called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s=t=0, u, v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, for

a non-zero vector y ∈ TxM0 := TxM−{0}, define Cy : TxM×TxM×TxM → R
by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

=
1

4

∂3

∂r∂s∂t

[
F 2(y+ru+sv+ tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on TxM .

The family C := {Cy}y∈TM0 is called the Cartan torsion. Thus C = 0 if and

only if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0
is called

the mean Cartan torsion. Thus, Iy(u) := Ii(y)u
i, where Ii := gjkCijk.

On the slit tangent bundle TM0, the Landsberg curvature Lijk := Lijkdx
i⊗

dxj ⊗ dxk is defined by Lijk := Cijk;my
m, where ”; ” denotes the horizontal

covariant derivative with respect to F . Further, the Landsberg curvature can

be expressed as following

Lijk = −1

2
FFym [Gm]yiyjyk . (2.1)

A Finsler metric is called the Landsberg metric if Lijk = 0.
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The horizontal covariant derivatives of the mean Cartan torsion I along

geodesics give rise to the mean Landsberg curvature Jy : TxM → R which are

defined by Jy(u) := Ji(y)u
i, where

Ji := Ii|sy
s.

Here, “|” denotes the horizontal covariant derivative with respect to the Berwald

connection of F . The family J := {Jy}y∈TM0 is called the mean Landsberg

curvature. Also, the mean Landsberg curvature can be expressed as following

Ji := gjkLijk (2.2)

In this paper, we will focus on studying special (α, β)-metrics. Let “|” denote
the covariant derivative with respect to the Levi-Civita connection of α. Denote

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i)

sij := aimsmj , rij := aimrmj , rj := birij , sj := bisij ,

where (aij) := (aij)
−1 and bj := ajkbk. We put

r0 := riy
i, s0 := siy

i, r00 := rijy
iyj , si0 := sijy

j .

Let Gi and Gi
α denote the geodesic coefficients of F and α respectively in the

same coordinate system. Then we have

Gi = Gi
α + αQsi0 + {r00 − 2Qαs0}{Ψbi +Θα−1yi}, (2.3)

where

Q :=
ϕ′

ϕ− sϕ′
,

Θ :=
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ[ϕ− sϕ′ + (b2 − s2)ϕ′′]
,

Ψ :=
ϕ′′

2[ϕ− sϕ′ + (b2 − s2)ϕ′′]
.

For more details, see [5]. Let

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′

,

hj := bj − α−1syj :
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By (2.1), (2.2), (2.3), the mean Landsberg curvature of the (α, β)-metric F =

αϕ(s), s = β/α, is given by

Jj =
1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+ α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+ α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
.

Here, yj = aijy
i. See [4] and [6].

3. Proof of Theorem 1.1

in this section, we are going to prove Theorem 1.1. To prove it, we need the

following.

Lemma 3.1. ([4]) For an (α, β)-metric F = αϕ(s), s = β/α, the mean Cartan

torsion is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi. (3.1)

In [4], the following was proved.

Lemma 3.2. ([4]) An (α, β)-metric F is a Riemannian metric if and only if

Φ = 0.

In order to prove Theorem 1.1, we need the following.

Lemma 3.3. Let F = 5
√
aijklmyiyjykylym be a 5-th root metric which admits

an (α, β)-metric on a manifold M of dimension n ≥ 3. Then it can be written

in the form

F = 5
√
c1α5 + c2β3α2 + c3β5

by choosing suitable non-degenerate quadratic form α =
√
aij(x)yiyj and one-

form β = bi(x)y
i, where c1, v2 and c3 are real constants.

Proof. The proof is computational and straightforward. By the same argument

used in [7], we get the proof. We omit the proof. □
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In [4], the following formula obtained

Jj + c(x)FIj = − 1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj

+αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

−(r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj

}
. (3.2)

Also, we remark the following key lemma.

Lemma 3.4. ([2]) Let F = αϕ(s), s = β/α, be an (α, β)-metric. Then F

is locally Minkowskian if and only if α is a flat Riemannian metric and β is

parallel with respect to α.

Also, the following holds.

Lemma 3.5. ([4]) If ϕ = ϕ(s) satisfies Ψ1 = 0, then F is Riemannian.

Now, assume that F = αϕ(s), s = β/α, is a conformally flat Finsler metric,

that is, F is conformally related to a Minkowski metric F̃ . Then there exists

a scalar function σ = σ(x) on the manifold, so that F̃ = eσ(x)F . It is easy to

see that F̃ = α̃ϕ(s̃), s̃ = β̃/α̃. We have α̃ = eσ(x)α and β̃ = eσ(x)β which are

equivalent to

ãij = e2σ(x)aij , b̃i = eσ(x)bi.

Let “∥” denote the covariant derivative with respect to the Levi-Civita connec-

tion of α̃. Put σi := ∂σ/∂xi and σi := aijσj . The Christoffel symbols Γi
jk of α

and the Christoffel symbols Γ̃i
jk of α̃ are related by

Γ̃i
jk = Γi

jk + δijσk + δikσj − σiajk.

Hence, one can obtain

b̃i∥j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eσ(bi|j − bjσi + brσ

raij). (3.3)
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By Lemma 3.40, for Minkowski metric F̃ , we have b̃i∥j = 0. Thus

bi|j = bjσi − brσ
raij , (3.4)

rij =
1

2
(σibj + σjbi)− brσ

raij , (3.5)

sij =
1

2
(σibj + σjbi), (3.6)

rj = −1

2
(brσ

r)bj +
1

2
σjb

2, (3.7)

sj =
1

2
(brσ

r)bj − σjb
2, (3.8)

ri0 =
1

2
[σiβ + (σry

r)bi]− σrb
ryi, (3.9)

si0 =
1

2
[σiβ + (σry

r)bi]. (3.10)

Further, we have

r00 = (σry
r)β − (σry

r)α2, (3.11)

r0 =
1

2
(σry

r)b2 − 1

2
(σrb

r)β, (3.12)

s0 =
1

2
(σry

r)β − 1

2
(σry

r)b2. (3.13)

By (3.13), the conformally flat (α, β)-metrics satisfying r0 + s0 = 0 which is

equivalent to the length of β with respect to α being a constant. We take an

orthonormal basis at any point x with respect to α such that α =
√∑n

i=1(y
i)2

and β = by1, where b := ∥βx∥α. By using the same coordinate transformation

ψ : (s, uA) −→ (yi) in TxM , we get

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n, (3.14)

where ᾱ =
√∑n

i=2(u
A)2. We have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ. (3.15)

Put σ̄0 := σAu
A. Then, by (3.5)-(3.9), (3.14) and (3.15) we have

r00 = −bσ1ᾱ2 +
bsσ̄0ᾱ√
b2 − s2

, (3.16)

r0 =
1

2
b2σ̄0 = −s0, (3.17)
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r10 =
1

2
bσ̄0, (3.18)

rA0 =
1

2

σAbsᾱ√
b2 − s2

− (bσ1)uA, (3.19)

s1 = 0, (3.20)

sA = −1

2
σAb

2, (3.21)

s10 =
1

2
bσ̄0, (3.22)

sA0 =
1

2

σAbsᾱ√
b2 − s2

, (3.23)

h1 = b− s2

b
, (3.24)

hA = −
√
b2 − s2suA

bᾱ
. (3.25)

Proof of Theorem 1.1: We remark that b̃ = constant. If b̃ = 0, then

F = ek(x)α̃ is a Riemannian metric. Now, let F is not Riemannian metric.

Assume that F is a conformally flat (α, β)-metric with relatively isotropic mean

Landsberg curvature. By (3.2) and r0 + s0 = 0, we get

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj + αQ(α2sj − yjs0)

+ α2∆sj0 + α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj = 0.

(3.26)

Letting j = 1 in (3.26), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)h1 + α

[
− α2Q′s0h1 + αQ(α2s1 − y1s0)

+ α2∆s10 + α2(r10 − 2αQs1)− (r00 − 2αQs0)y1
]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)h1 = 0. (3.27)

Putting (3.15)-(3.24) into (3.27) and multiplying the result with 2∆(b2−s2)5/2
implies that

2b2(b2 − s2)3/2∆(bΦϕc− bΦsϕ′c−Ψ1σ1)ᾱ
4

+b2(b2 − s2)σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2)

+2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s)ᾱ
3 = 0. (3.28)
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From (3.28), we get

∆[bΦϕc− bΦsϕ′c−Ψ1σ1] = 0, (3.29)

σ̄0(b
4ΦQ′ − b2Φ∆− b2ΦQ′s2) + 2b2Ψ1∆Q+ b2Φ+ b2ΦQs+ 2Ψ1∆s) = 0.

(3.30)

Note that ∆ = Q′(b2 − s2) + sQ+ 1. Simplifying (3.30) yields

(b2Ψ1∆Q+Ψ1∆s)σ̄0 = 0,

that is

Ψ1∆(b2Q+ s)σ̄0 = 0. (3.31)

Letting j = A in (3.26), we have

α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[
− α2Q′s0hA + αQ(α2sA − yAs0)

+ α2∆sA0 + α2(rA0 − 2αQsA)− (r00 − 2αQs0)yA
]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hA = 0. (3.32)

Putting (3.15)-(3.24) into (3.32) and by using the similar method used in the

case of j = 1, we get

(s∆+ s+ b2Q)b2ΦσAᾱ
2 −

[
(s∆+ s+ b2Q)b2Φ+ 2s(b2Q+ s)Ψ1∆

]
σ̄0uA = 0,

(3.33)

s(b2 − s2)[b(ϕ− sϕ′)Φc−Ψ1σ1]∆uA = 0.

(3.34)

It is easy to see that (3.34) is equivalent to (3.29). Further, multiplying (3.33)

with uA implies that

s(b2Q+ s)Ψ1∆σ̄0ᾱ
2 = 0. (3.35)

It is easy to see that (3.35) is equivalent to (3.31). In summary, conformally

flat (α, β)-metrics with relatively isotropic mean Landsberg curvature satisfy

(3.29) and (3.31). According to (3.31), we have some cases as follows:

Case (i): If b2Q + s = 0, then we have ϕ = κ
√
b2 − s2, which is a contra-

diction with the assumption that ϕ = ϕ(s) is ϕ(s) = 5
√
a1 + a2s3 + a3s5. Then

we have b2Q+ s ̸= 0.

Case (ii): If Ψ1 = 0, then by Lemma 3.5, F is Riemannian.

Case (iii): If Ψ1 ̸= 0, then σA = 0. In the following, we prove that if Ψ1 ̸= 0,

then by (3.29) one can get σ1 = 0.
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Now, assume that

ϕ = 5
√
a1 + a2s3 + a3s5, a1 ̸= 0, a2 ̸= 0. (3.36)

Here a1, a2, a3 are numbers independent of s and ai ̸= 0, i = 1, 2, 3. Simplifying

(3.29) and multiplying it by ∆2, we get{
[−sΦ+ (b2 − s2)Φ′]∆− 3

2
(b2 − s2)Φ∆′

}
σ1 − b∆2Φ(ϕ− sϕ′)c = 0. (3.37)

Putting (3.36) into (3.37) and by using maple program, we can obtain the

following(
15c

(
a2(5a3 + 8a2)s

6 − 15a1a3s
5 + (a3 + a2)a1s

3 + 3a1a2s+ 5a21

)2(
25a1a2a

2
3s

12

+
(
8na2 + (n+ 1)b2a3

)
a32s

11 − (3n− 5)(b2a42 − 625a21a
2
3)

5
s9 +

15(n− 22)b2a1a
3
2

4
s6

−
25

(
2(7n− 2)a2 + (n+ 2)b2a3

)
a1a2a3

4
s10 +

25
(
(3− 3n)a2 + b2a3(n− 12)

)
a1a

2
2

2
s8

−
125a21a3

(
(13− n)a2 + (n− 1)b2a3

)
2

s7 −
125

(
(−3n− 3)a2 + b2a3(n− 9)

)
a21a2

4
s5

− 125a31a3(n+ 5)

8
s4 − 15(n+ 3)b2a21a

2
2

4
s3 +

125
(
b2a3 − (n+ 3)a2

)
a31

2
s2 +

25b2a31a2
4

)
bϕ

)
+ (a2s

3 +
5a1
2

)7(a3s
5 + a2s

3 + a1)

{
1

(2a2s3 + 5a1)2

({
1

(2a2s3 + 5a1)2
(3(a42a3s

12

− a1a
2
2a

2
3b

4ns11 − 144a52b
4s10 − 160a52b

2s12 + 13600a1a
3
2a3b

2s11 + 28750a21a2a
2
3s

12

+ 50a1a
2
2a

2
3ns

13 + 80a42a3s
12 − 200a1a

2
2a

2
3b

4s11 + 1000a1a
2
2a

2
3b

2s13 + 500a1a
2
2a

2
3s

15

+ 224a52b
2ns12 + 1800a1a

3
2a3b

4s9 − 3400a32a3b
2s11 + 1400a1a

3
2a3s

13 + 240a52b
4s10

− 1250a21a2a
2
3b

4s8 + 17500a21a2a
2
3b

2s10 − 7500a21a2a
2
3s

12 − 11800a1a
3
2a3b

4s9

− 2000a1a
3
2a3s

13 + 50000a21a2a
2
3b

4s8 − 81250a21a2a
2
3b

2s10 − 81250a21a2a
2
3b

2s10

+ 75000a21a
2
2a3b

2ns8 − 18437a31a
2
3b

2s7 + 240a31a
2
3b

2s7 − 5650a31a2a3b
2s5

+ 2880a1a
4
2b

4ns7 − 6700a1a
4
2b

2ns9 + 4200a1a
4
2ns

11 − 37500a21a
2
2a3b

4ns6

− 4050a21a
2
2a3s

10 − 972a1a
4
2b

4s7 + 1460a1a
4
2s

9 − 450a1a
4
2s

11 + 8750a31a
2
3b

4s5

+ 9370a31a
2
3s

9 + 7900a21a
2
2a3s

6 − 160a21a
2
2a3b

2s8 + 810a21a
2
2a3s

10 − 870a31a
2
3b

4s5

− 150a31a
2
3s

9 − 720a21a
3
2b

4s4 + 110a21a
3
2b

2s6 − 300a21a
3
2s

8 + 310a31a2a3b
4s3

+ 180a31a2a3ns
7 + 100a21a

3
2b

4s4 − 4060a21a
3
2b

2s6 + 250a21a
3
2s

8 − 620a31a2a3b
4s3

− 156a41a3ns
4 + 120a41a2b

2 + 850a31a2a3b
2s5 − 860a31a2a3s

7 + 250a31a
2
2b

4ns

− 7375a31a
2
2b

2ns3 + 4500a31a
2
2ns

5 + 100a41a3b
2ns2 − 75a41a3s

4

+ 120a31a
2
2b

4s− 315a31a
2
2b

2s3 + 10a31a
2
2s

5 − 200a41a3b
4 + 100a41a3b

2s2
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− 15a41a2ns
2 + 50a41a2b

2 − 55a41a2s
2)s)

}
(10a2a3b

2s6 − 6a22s
4 + 16a22s

6 + 10a1a3s
3

− 75a1a3s
5 + 30a1a2b

2s+ 5a1a2s
3 + 25a21)

)
+

1

2(2a2s3 + 5a1)7
(27(8a32b

2s6

− 100a1a2a3b
2s5 + 50a1a2a3s

7 − 140a1a
2
2b

2s3 + 10a1a
2
2s

5 − 65a21a3s
4

+ 50a21a2 − 75a21a2s
2)(40a32a3b

2ns11 − 250a1a2a
2
3b

2ns10 + 40a32a3b
2s11

− 500a1a2a
2
3b

2s10 + 250a1a2a
2
3s

12 − 24a42b
2ns9 + 64a42ns

11 + 500a1a
2
2a3b

2ns8

− 700a1a
2
2a3ns

10 + 40a42s
9 − 2500a21a

2
3b

2s7 + 1875a21a
2
3s

9 − 1200a1a
2
2a3b

2s8

+ 1000a1a
2
2a3s

10 + 250a21a2a3ns
7 + 75a21a

2
2ns

5 − 1250a21a2a3b
2ns5

+ 250a21a
2
3b

2s7 − 3125a21a
2
3s

9 + 150a1a
3
2s

6 − 60a1a
3
2ns

8 − 150a21a
2
2b

2s3

− 660a1a
3
2b

2s6 + 750a1a
3
2s

8 + 2250a21a2a3b
2s5 − 3250a21a2a3s

7

− 625a31a3ns
4 − 450a21a

2
2b

2s3 + 375a21a
2
2s

5 + 2500a31a3b
2s2 − 3125a31a3s

4

− 125a31a2ns
2 + 250a31a2b

2 − 375a31a2s
2)(b2 − s2)

}
σ1 = 0,

where ϕ = 5
√
a3s5 + a2s3 + a1. By simplifying the above relation we get the

following

(Π1s
48 +Π2s

47 + ...+Π49)
5
√
a3s5 + a2s3 + a1

+(ζ1s
50 + ζ2s

49 + ...+ ζ51)σ1 = 0 (3.38)

where Πi (1 ≤ i ≤ 49) and ζk (1 ≤ k ≤ 53) are polynomials of a1, a2, a3, b, c,

and ζ51 = b4a101 a2. Equation (3.38) is equivalent to the following two equations

Π1s
48 +Π2s

47 + ...+Π48s+Π49 = 0, (3.39)

(ζ1s
50 + ζ2s

49 + ...+ ζ50s+ ζ51)σ1 = 0, (3.40)

From (3.40), we have σ1 = 0 or

ζ1s
50 + ζ2s

49 + ...+ ζ50s+ ζ51 = 0.

ζ1s
50 + ζ2s

49 + ... + ζ50s + ζ51 ̸= 0, because b ̸= 0, a1 ̸= 0, a2 ̸= 0 then

ζ51 ̸= 0. This implies that σ1 = 0. Together with A = 0, it follows that σ is a

constant, which means that F is a locally Minkowski metric. This completes

the proof. □
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