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A MILP Model Incorporated With the Risk Management Tool for
Self-Healing Oriented Service Restoration
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Abstract— The inevitable emergence of intelligent distribution networks has introduced new features in these networks. According to most
experts, self-healing is one of the main abilities of smart distribution networks. This feature increases the reliability and resiliency of
networks by reacting fast and restoring the critical loads (CLs) during a fault. Nevertheless, the stochastic nature of the components in a
power system imposes significant computational risk in enabling the system to self-heal. In this paper, a mathematical model is introduced
for the self-healing operation of networked Microgrids (MGs) to assess the risk in the optimal service restoration (SR) problem. Electric
vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) and their stochastic nature besides the distributed generation units (DGs), the
ability to reconfiguration, and demand response program are considered simultaneously. The objective function is designed to maximize the
restored loads and minimize the risk. The Conditional Value-at-Risk (CVaR) is used to calculate the risk of the SR as one of the most
efficient and famous risk indices. In the general case study and considering β equal to the 0, 1, 2, 3, and 4, expected values of SR for
the risk-averse problem is 21.2, 20, 19.3, 19.1, and 19% less than the risk-neutral problem, respectively. The formulation of the problem
is mixed-integer linear programming (MILP), and the model is tested in the modified Civanlar test system. The analysis of several case
studies has proved the performance of the proposed model and the importance of risk management in the problem.
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NOMENCLATURE
Indices and Sets
ω, Ω Index and set of the scenarios [1:Nω]
b, B Index and set of the electric vehicles’ brand [1:Nb]
k, K Index and set of the intervals in piecewise

linearization [1:Nk]
n, N Index and set of the network nodes [1:Nn]
SN State Number of the network topology [1:NSN ]
t, T Index and set of the timeslots [1:Nt]
Constants and parameters
α Confidence level
β Risk weight
χn,b The number of the EV b, in the node n
ηbCH , η

b
DCH Charging and discharging of the EV b

λt,ωE Demand values of the load type E at time t
λt,ωG Demand values of the load type G at time t
λt,ωQ Demand values of the load type Q at time t
φω Occurrence probability of scenario ω
ag , bg , cg Coefficients of the function of the EGs power

generation
CV aRα CVaR with confidence level α
En The size of the load type E in the node n
g

max /min
eg Maximum/minimum limits of fuel consumption
Gn The size of the load type G in the node n
P t,ωDG1 Generation amount of DG1 at time t and scenario ω
P t,ωDG2 Generation amount of DG2 at time t and scenario ω
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P t,ωDG3 Generation amount of DG3 at time t and scenario ω
P ts Probability of clearing the fault at time t
Qn The size of the load type Q in the node n
SOCb

max Minimum SOC of the EV b
SOCb

min Maximum SOC of the EV b
Pb

CH−max maximum charging power of the EV b
Pb

DCH−max maximum discharging power of the EV b
Big M Big number
Variables
∆gb,keg Length of block k of linearized fuel consumption of

the EG b
ηω, ζ Auxiliary variables used in CVaR calculation
τ b,n,t,ωch binary variable, which indicates the operating

charging status of the EV b in the node n, at
time t, and scenario ω

τ b,n,t,ωdch binary variable, which indicates the operating
discharging status of the EV b in the node n,
at time t, and scenario ω

gb,keg,ini/fin Initial and final values of fuel consumption in block
k of linearized output of the EG b

gkb,k,n,t,ω
eg operating kth section of linearized fuel consumption

function of the EG b, in the node n, at time t, and in
scenario ω

sb,keg Slope of fuel consumption in block k of linearized
output of the EG b

SOCb,n,t,ω Operating SOC of the EV b, in the node n, at time
t, and scenario ω

Un,t,ω Statues indicator of the load type E where 1 means
satisfied and 0 means shed.

V n,t,ω Statues indicator of the load type Q where 1 means
satisfied and 0 means shed.

Y n,t,ω Statues indicator of the load type G where 1 means
satisfied and 0 means shed.

gb,n,t,ω
eg operating total fuel consumption function of the EG

b, in the node n, at time t, and in scenario ω
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Pb,n,t,ω
CH−total Total charging power of the EV b, in the node n, at

time t, and scenario ω
Pb,n,t,ω

CH Charging power of the EV b, in the node n, at time
t, and scenario ω

Pb,n,t,ω
DCH−total Total discharging power of the EV b, in the node n,

at time t, and scenario ω
Pb,n,t,ω

DCH Discharging power of the EV b, in the node n, at
time t, and scenario ω

Pb,n,t,ω
EG−total Total EG output of the EV b, in the node n, at time

t, and scenario ω
Pb,n,t,ω

EG EG output of the EV b, in the node n, at time t, and
scenario ω

1. INTRODUCTION

1.1. Aim
One of the important characteristics of the smart grids is

resiliently operating in the hardware or software failures to
enhance the level of the reliability and security of supplying
energy [1]. Such capabilities in a self-heal scheme lead to a safe
and reliable power supply for the consumers [2].

In the normal operation, the main grid supplies the loads, and
the goal is to minimize the cost of the operation. When a fault
happens, the model switches to the self-healing mode. To support
the on-emergency portion of the system, DGs, energy storage
systems (ESSs), vehicle-to-grids (V2Gs), and grid-to-vehicles
(G2Vs) capability in EVs, PHEVs with engine generators (EGs),
as well as remote control switches (RCSs) provide network
maneuverability and optimal restore of CLs using available energy
sources [3]. In other words, MGs operate autonomously in parallel
with the traditional electricity macrogrid.

Depending on the level of automation in the self-heal power
system, the fault will isolate, and the out-of-service zones will
re-energize automatically. After the appearance of a fault, an
optimum restoration scheme maximizes the number of restored
costumes while satisfying operational and system constraints [4].
Because of the stochastic nature of the components, such problems
have a great deal with the uncertainty that imposes significant
computational risk. To control the risk of the uncertain data, a risk
management tool is incorporated into the optimization problem,
and necessary changes are done in the objective function and
constraints. To take into account the risk associated with the
fluctuation of the problem, this paper presents a MILP model to
solve the unscheduled SR problem incorporated with conditional
value-at-risk (CVaR) in the model.

1.2. Literature review
Optimal energy management between DGs in the MGs

under normal operating conditions has been considered by
researchers [5, 6]. For critical situations, reliability, resiliency, and
security are the most important features of the self-heal smart
grids. Due to the novelty of the self-healing issue, there is no single
standard and definition. According to the report from National
Energy Technology Laboratory (NETL), self-healing is the first of
seven characteristics of a modern grid [7].

In [8], a multi-criteria optimization model is introduced to
achieve self-healing, where the solution is chosen after the
evaluation of technical indices such as branch load limits,
active power losses, voltage deviation limits, and reliability
indices. Artificial neural networks [9] and expert systems [10]
as knowledge-based approaches have been suggested to solve the
restoration problem effectively. By coordination feasible power
interchanges between the MGs, a hierarchical outage management
plan for Multi-MGs is suggested in [11]. Management of the
uncertain parameters in MG is done by different methods such
as the Coupla-base method for energy management in MG [12].
In [13], evaluation of uncertainty in multiple MGs is done by
Monte Carlo simulation. Taguchi’s orthogonal array testing method
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Fig. 1. The integration of an OMS network and EVs

in [14] is introduced according to robust design theory to select
scenarios related to uncertain variables. A data-driven dynamic
uncertainty bound estimation method is used in [15]. Chance
constrained programming approach to handle the constraints under
uncertainties is introduced in [16].

Risk management has already been used in some issues related
to the power system. The energy market is one of the topics
in which risk management is widely used [17–19]. In [20], a
risk-assessment approach has been introduced to the evaluation of
the reliability of a wind integrated power system for short-term
operation planning. Besides reliability constraints in power systems,
risk management tools are incorporated into the optimal expansion
planning problem in [21]. In [22], RCS deployment in a distributed
power system is introduced to evaluate the risk by a step-by-step
method. An appropriate risk metric to assess the potential risk of
sizing problem is incorporated in the optimal size of the hybrid
power system component of the merchant marine vessel in [23].

1.3. Contribution
In the reviewed articles, although they have used risk

management tool for assessment the power system problems,
none of the self-healing field problems have discussed the
risk management related to the SR problem. In this paper,
a mathematical model for the SR problem is introduced by
considering the risk management tool. The objective of this model
is to maximize the expected restored loads and minimize the risk.
The CVaR is used to account for the risk of the SR which has
been widely used in risk management problems. The presence
of an agent with a high probability and low profit needs to
manage the risk of exposure to profit distribution with undesirable
characteristics. In this condition, risk control is very important, and
it should be imposed into the mathematical model of stochastic
programming [24].

The most common way to manage the risk is to add a
term to measure and control the risk of profit distribution
in the formulation of the problem. Usually, this sentence is
known as risk expression or risk measure. Some of the most
relevant risk metrics regarding stochastic programming problems
in the technical literature are [25]: (i) Variance, (ii) Shortfall
probability, (iii) Expected shortage, (iv) Value-at-Risk (VaR), and
(v) Conditional Value-at-Risk (CVaR).

Among the risk measures, the Conditional Value-at-Risk (CVaR)
is the most advantageous for some reasons. In comparison to the
first metric (Variance), we don’t need to use any quadratic (or
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Fig. 2. Different scenarios based on the time of start and end of the outage
and presence of an EV in the parking lot

nonlinear) term in this one. Therefore, it maintains linearity and
we can use it in linear programming (LP) and mixed-integer LP
(MILP) problems. Unlike the second and fourth cases, the CVaR
does not change the dimensions of the problem by adding a binary
variable. This maintains the convergence of the LP problem and
does not add a variable to the MILP problem. Unlike all other
measures, the CVaR can provide cost or profit information across
the distribution search space, and because of the coherence of the
CVaR, it satisfies all desirable characteristics for a risk metric.
Additional information about these features is available in [24].

The problem is formulated as MILP, and the model is applied
to the modified Civanlar (IEEE 13-buses) test system [26]. In
several case studies, the impacts of risk weight, confidence level,
and the presence of EVs & PHEVs as some important parameters
are investigated to control the experiencing risk of SR problem.
These analyses have verified the performance of the proposed
model and proved the importance of the risk control issue when
formulating stochastic programming models. In summary, this
paper has prominent contributions as follows:

1) A mathematical model for SR including the sentences of
CVaR and its constraints is introduced for the first time.

2) In this stochastic programming problem, the classification of
load types is considered multi-stage, and the non-anticipativity
of the decisions is established.

3) In both risk-neutral and risk-averse conditions, the expected
SR versus the different risk management parameters is
presented by the efficient frontier.

4) Unlike other studies, the ability to reconfiguration and demand
response program in the presence of the electric vehicles
and plug-in hybrid electric vehicles and their stochastic
nature besides the distributed generation units are considered

simultaneously.
5) According to the results, planning has been done dynamically

instead of hour by hour and has led to more comprehensive
results.

2. PROBLEM FORMULATION AND MODELING

2.1. Proposed risk-averse SR
The CVaR risk metric has the ability to incorporate into the

minimization and maximization problems. These problems should
define with discrete scenarios. Considering discrete scenarios in a
maximization problem, the definition of CVaR can be explained
as the expected value of the profit smaller than (1−α)-quantile,
where α∈(0,1) is the confidence level of scenarios. Since in the
SR problem the objective is higher restored loads, the model
maximizes the weighted sum of the SR with lower risk. CVaR by
incorporation into the risk-neutral problem explains as follows [24]:

Maximize (1− β)× profit+ β × CV aRα (1)

profit =
∑
ω∈Ω

φωprofω, ∀ω ∈ Ω (2)

Where, the CVaR for a discrete distribution is mathematically
expressed as,

CV aRα = ζ − 1

1− α
∑
ω∈Ω

φωηω, ∀ω ∈ Ω (3)

ηω + Pr ofω − ζ ≥ 0 , ∀ω ∈ Ω (4)

ηω ≥ 0 , ∀ω ∈ Ω (5)

Here, β is a non-negative weighting parameter and establishes a
tradeoff between the risk and total of the restored loads; so that
a higher value of β leads to more risk-averse for the system
operator. In opposition, β = 0 implies a risk-neutral problem.

2.2. Objective function
In this SR problem, the objective function is formulated to find

the optimal hourly operation of the MGs components including
generators as distributed generation units and EVs, and PHEVs
as energy storage systems by satisfying technical constraints. To
minimize the unsupplied customers, SR problem incorporated with
the risk management tool can determine the energizing schedule of
the customers. The objective is the maximization of the expected
supplied loads and finding the proper restorative zones in the
network.

Maximize
Un,t,ω,V n,t,ω,Y n,t,ω,ξ,ηω

∑
ω∈Ω

φω

{∑
t∈T

Pst

(∑
n∈N

(
λt,ωE EnUn,t,ω + λt,ωQ QnV n,t,ω + λt,ωG GnY n,t,ω

))}

+β

(
ζ − 1

1− α
∑
ω∈Ω

φωηω

)
; ∀n ∈ N,∀t ∈ T,∀ω ∈ Ω

(6)

Here, the first part of the objective function determines the total
weighted loads during the periods of restoration. The second part
deals with the risk management of the objective function. The
power balance within each MG is expressed as:∑

N∈MG1

(
EnUn,t,ω +QnV n,t,ω +GnY n,t,ω

)
≤

P t,ωDG1 +
∑

N∈MG1

(
Pn,t,ωdch_total − P

n,t,ω
ch_total + Pn,t,ωEG_total

)
;

∀n ∈ N,∀t ∈ T,∀ω ∈ Ω

(7)

∑
N∈MG2

(
EnUn,t,ω +QnV n,t,ω +GnY n,t,ω

)
≤

P t,ωDG2 +
∑

N∈MG2

(
Pn,t,ωdch_total − P

n,t,ω
ch_total + Pn,t,ωEG_total

)
;

∀n ∈ N, ∀t ∈ T,∀ω ∈ Ω

(8)
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∑
N∈MG3

(
EnUn,t,ω +QnV n,t,ω +GnY n,t,ω

)
≤

P t,ωDG3 +
∑

N∈MG3

(
Pn,t,ωdch_total − P

n,t,ω
ch_total + Pn,t,ωEG_total

)
;

∀n ∈ N,∀t ∈ T,∀ω ∈ Ω

(9)

2.3. Charge/discharge scheduling of the electric vehicles and
plug-in hybrid electric vehicles
Extensive installation without major technical problems of EVs

and PHEVs has made them the target of many studies. On the
other hand, the integration of the PHEVs into the power systems
is divided into two categories, known as the centralized and
distributed charging modes. The first mode is used in large-scale
parking lots or commercial charging stations, and the second is
used by the owner of charging panels in residential complexes [27].
In general, the presence of an electric vehicle in the power system
is considered as "noise" for the operator, so it is necessary to
collect the information of electric vehicles in a large control center
to create the necessary coordination between these vehicles and
the power system [28]. The aggregators also have the task of
discharge/charge scheduling of the PHEVs. In occurring a fault,
electric vehicles that are not present in the parking lot can be
managed by the Outage Management System (OMS). The data
exchange between OMS and EV is shown in Fig. 1.

Considering that separating from the main grid is defined as
a critical condition and the objective is the maximization of the
SR, the storage energy systems will be in discharge mode. In
this paper, six scenarios are considered for the fault conditions
as Fig. 2. The classification of these scenarios is based on the
presence of the vehicle in the parking lot at the time of the event
when the MGs are separated from the main grid [29].

To analysis the EV & PHEVs behavior in SR problem, in the
first step, the probabilistic model of available energy associated
with EV & PHEVs in a parking lot in normal condition is
formulated. Charging/discharging scheduling of a V2G and G2V
capable EV can be modeled as:

0 ≤ P b,n,t,ω
ch ≤ P bCH−max × τb,n,t,ω

ch ,

∀b ∈ B,∀n ∈ N, ∀t ∈ T,∀ω ∈ Ω
(10)

0 ≤ P b,n,t,ω
dch ≤ P bDCH−max × τb,n,t,ω

dch ,

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(11)

SOCbmin ≤ SOCb,n,t,ω ≤ SOCbmax,

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(12)

SOCb,n,t+1,ω = SOCb,n,t,ω+(
τ b,n,t,ωch × P b,n,t,ωch × ηbch −

τ
b,n,t,ω
dch

×P b,n,t,ω
dch

ηb
dch

)
∆t,

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω

(13)

τ b,n,t,ωch + τ b,n,t,ωdch ≤ 1 ∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω (14)

SOCb,n,t,ωarr = SOCb,n,t,ωinitial ∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(15)

SOCb,n,t,ωdep = SOCb,n,t,ωfinal ∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(16)

Control variables are applied in the charge and discharge limit
of the EV & PHEVs according to constraints (10) and (11),
respectively. Constraint (12) prevents the SOC from exceeding
the allowable min and max levels. The SOC of each storage
system is calculated in constraint (13). Constraint (14) ensures
that simultaneous charging and discharging modes do not occur
on storage systems per hour. Constraints (15) and (16) are used
to force the SOC of the EV & PHEVs at the arriving time and
departure time to be equal to the initial and final expected SOC,
respectively.

The total charge and discharge power of energy storage systems
are determined based on the number of different brands of electric
vehicles, the amount of charge or discharge power of each brand,
and also the status of the binary control variable of charge or
discharge according to Eqs. (17–18).

Pn,t,ωch_total =
∑
b∈B

χn,b × P b,n,t,ωch × τ b,n,t,ωch ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω

(17)

Pn,t,ωdch_total =
∑
b∈B

χn,b × P b,n,t,ωdch × τ b,n,t,ωdch ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω

(18)

This part of the problem is a nonlinear form by multiplying
two continuous and binary variables. To solve the problem with
the MILP method, it is necessary to linearize this part of the
problem, which is done by the "big-M" method [30]. All big-M
parameters in the model formulation are set to big enough, which
is sufficiently higher than the charge and discharge power capacity
of all EV & PHEVs.

Pn,t,ωch_total −
∑
b∈B

χn,b × P b,n,t,ωch ≤
(

1− τ b,n,t,ωch

)
× bigM ;

∀b ∈ B,∀n ∈ N, ∀t ∈ T,∀ω ∈ Ω
(19)

Pn,t,ωch_total −
∑
b∈B

χn,b × P b,n,t,ωch ≥ −
(

1− τ b,n,t,ωch

)
× bigM ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(20)

P b,n,t,ωch ≤ P b,n,t,ωch_ max × τ
b,n,t,ω
ch ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(21)

Pn,t,ωdch_total −
∑
b∈B

χn,b × P b,n,t,ωdch ≤
(

1− τ b,n,t,ωdch

)
× bigM ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(22)

Pn,t,ωdch_total −
∑
b∈B

χn,b × P b,n,t,ωdch ≥ −
(

1− τ b,n,t,ωdch

)
× bigM ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(23)

P b,n,t,ωdch ≤ P b,n,t,ωdch_ max × τ
b,n,t,ω
dch ;

∀b ∈ B,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω
(24)



Journal of Operation and Automation in Power Engineering, Vol. 12, No. 1, Jan. 2024 5

Table 1. Scenarios related to the value of the load demands

Load Type E Type Q Type G

Period Period Period

Scenario 1 2 3 4 1 2 3 4 1 2 3 4

1 11 16.5 12.1 10 5.5 8.5 6.5 5 17 28 15 12
2 11 16.5 12.1 10 5.5 8.5 6.5 5 10 17 13 13
3 11 16.5 12.1 10 5 7 5.5 6 12 17 15 14
4 11 16.5 12.1 10 5 7 5.5 6 9 14 11 15
5 13.2 18.7 16.5 12 6.5 9.5 8 7 17 22 19 14
6 13.2 18.7 16.5 12 6.5 9.5 8 7 14 19 15 13
7 13.2 18.7 16.5 12 6 8.5 7.5 5 16 25 21 12
8 13.2 18.7 16.5 12 6 8.5 7.5 5 13 17 14 11
9 15.4 19.8 17.6 14 7 10.5 10.5 4 17 28 24 12
10 15.4 19.8 17.6 14 7 10.5 10.5 4 14 23 20 13
11 15.4 19.8 17.6 14 6.5 9 9.5 7 16 23 21 14
12 15.4 19.8 17.6 14 6.5 9 9.5 7 13 19 18 15
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Fig. 3. Three-stage scenario tree of the load demand values: Type E, Type
Q, Type G

Table 2. Load sizes of each bus (kW) [34]

Bus E Q G

1 100 60 30
2 45 30 15
3 30 20 10
4 25 15 5
5 70 40 20
6 60 50 25
7 20 10 5
8 30 20 10
9 25 20 10
10 95 60 30
11 30 20 30
12 40 25 15
13 35 20 10

2.4. Modeling and operation constraints of the engine gen-
erators embedded in PHEVs
Due to the increased need for power in PHEV on trips above 350

miles, an EG is installed on PHEV [29]. The bulky EG fuel tank
can assist in emergency load restoration. EG modeling is based on
the conversion of the chemical energy of fuel into electrical energy.
The ratio of fuel consumption to power production is referred
to as brake-specific fuel consumption (BSFC), which is (g/kWh).
The generating power of the generator at an operating point is
determined for a certain speed and torque. The amount of fuel
consumed at an operating point can be calculated using parameter
BSFC. This amount will be equal to the fuel consumed in the EG
per minute. Using measured data and estimated curve, a quadratic
sample equation is obtained for an EG [31]. For example, the
output power and fuel consumption of the "Chevrolet Volt" have
a relation according to Eq. (25) [29]. In this equation, g(t) is the
fuel consumed per hour t and P(g(t)) is the power produced by
EG per hour. The time step considered in this equation is hourly.

P (g(t)) =

− 0.000105× g(t)2 + 5.291× g(t) + 588.3 ; ∀t ∈ T (25)

Due to the non-linear relationship between fuel consumption and
EG power production, in this section, it is necessary to approximate
with the linear piecewise function. Thus the nonlinear relation for
each EG is converted to linear constraints Eqs. (26–34).

0 ≤ gkb,k,n,t,ω
eg ≤ ∆gb,keg

∀b ∈ B,∀k ∈ K,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω (26)

∆gb,keg =
gmax
eg − gmin

eg

K
; ∀b ∈ B,∀k ∈ K (27)

gb,keg,ini = (k − 1)∆gb,keg + gmin
eg ; ∀b ∈ B,∀k ∈ K (28)

gb,keg,fin = ∆gb,keg + gb,keg,ini ; ∀b ∈ B,∀k ∈ K (29)

gb,n,t,ωeg = gmin
eg +

∑
k∈K

gb,k,n,t,ωeg ;

∀b ∈ B,∀k ∈ K,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω (30)

sb,keg =
P b,keg,fin − P

b,k
eg,ini

∆gb,keg
; ∀b ∈ B,∀k ∈ K (31)
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Fig. 4. Branch-node (Graph) model of network in (a) normal operation, (b) self-healing operation

P b,keg,ini = −0.00105× (gb,keg,ini)
2 + 5.291× gb,keg,ini + 588.3 ;

∀b ∈ B,∀k ∈ K (32)

P b,keg,fin = −0.00105× (gb,keg,fin)2 + 5.291× gb,keg,fin + 588.3 ;

∀b ∈ B,∀k ∈ K (33)

P b,n,t,ωeg = ag×(gmin
eg )2 +bg×gmin

eg +cg+
∑
K

sb,keg ×gb,k,n,t,ωeg ;

∀b ∈ B,∀k ∈ K,∀n ∈ N,∀t ∈ T,∀ω ∈ Ω (34)

Finally, the total output power of EGs by different brands in
each bus is calculated as follows.

Pn,t,ωEG_total =
∑
b∈B

χn,b × P b,n,t,ωeg ;

∀b ∈ B,∀n ∈ N, ∀t ∈ T,∀ω ∈ Ω (35)

2.5. Uncertainty modeling based on non-anticipativity
In this paper, the decision-making problem comprises several

stages without perfect information. In this way, we go to the
multi-stage stochastic programming method [32]. In all multi-stage
stochastic programming problems, it is necessary to use the
non-anticipativity concept in the decisions. That is, the values
of the decision variables must be identical up to stage k if the
realizations of the stochastic processes are identical up to stage
k [26].
For this problem, the architecture of the scenario tree of the
load demand values has exhibited in Fig 3, according to the data
in Table 1. The number of scenarios is equal to 12 and the
probability of occurrence of scenarios is considered equal. In this
case, scenarios 1–4, 5–8, and 9–12 have the same type E values,
while type Q values for scenarios 1–2, 3–4, and etc. are similar.
Type G values are different for all scenarios.

To establish the non-anticipativity of the decisions, the values
of the vectors AE , AQ, and AG are Set up according to the
structure of the tree for type E, type Q, and type G load values,
respectively. Vectors AE and AQ for the tree in Fig 3 are:

AE = AQ = [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0] (36)

The vector of AG is defined as

AG = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] (37)
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According to Table 1 and Fig 3, the matrix OE used to sort the
load values of type E for each period t in an increasing procedure
for every scenario ω and to enforce non-decreasing value curves
expressed as

OE =

 1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3

 (38)

To enforce the non-decreasing value of the load demands curves,
the non-anticipativity constraints are formulated as below,

Un,t,ω − Un,t,ω
′
≤ 0 ∀n ∈ N,∀t ∈ T,∀ω ∈ Ω ;

OE(t, ω) + 1 = OE(t, ω′), if AE(ω) = AE(ω′) = 0 (39)

Un,t,ω − Un,t,ω+1 = 0 ,

∀n ∈ N,∀t ∈ T,∀ω ∈ Ω if AE(ω) = 1 (40)

V n,t,ω − V n,t,ω+1 = 0 ,

∀n ∈ N,∀t ∈ T,∀ω ∈ Ω ; if AQ(ω) = 1 (41)

Y n,t,ω − Y n,t,ω+1 = 0 ,

∀n ∈ N,∀t ∈ T,∀ω ∈ Ω ; if AG(ω) = 1 (42)

2.6. General connectivity constraints

Another constraint that must be observed in the reconfiguration
of the network is the maintenance of the radiality limitation of
the network at the same time as the connection of all buses to
the slack bus. On the other hand, one of the characteristics of
a self-healing system is fast load restoration. Therefore, the fast
execution of the program is very important in these studies.
Considering this reason, in this paper, the fundamental loops
according to graph theory are used for the restoration of MGs.
Based on this theory, an equivalent graph model is formed for
each network, including nodes (buses) and branches (lines). It is
assumed that all of the distributed generation recourses can control
the frequency. So, with the occurrence of fault and disconnection
from the upstream network, three MGs are formed according to
Fig ??, and distributed generation sources in A, B, and C play
the role of the slack bus in power supply. Then fundamental loops
are formed according to graph theory. Considering Fig ??, the
studied system has three fundamental loops (C1–C3). It should
be noted that the number of fundamental loops (FL) is obtained
by subtracting the number of branches from the nodes plus one
(nb-nt+1). Each loop also contains a set of controllable switches.
Further details are available in [33]. According to Fig ??, the
fundamental loop vectors (FLVs) will be as follows:

FLV1 = {L1, L2, L4, L5, L8, L9, L11, L17} (43)

FLV2 = {L2, L3, L8, L10, L13, L14, L18} (44)

FLV3 = {L1, L3, L4, L6, L7, L13, L15, L16, L19} (45)
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Fig. 5. Network configuration consisting of DGs & parking lots.
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3. NUMERICAL RESULTS

In this section, the introduced model to solve the SR problem
is validated using numerical results. First, the studied network is
introduced. Then, the results of the SR problem in the self-healing
mode, which is done in the risk management framework, are
presented. In this section, the uncertainties related to the value of
the loads are classified according to the topic of non-anticipativity.
According to the scenario tree, the necessary constraints are
defined and added to the problem. The efficiency of the proposed
method in solving the SR problem in self-healing mode has been
proved by presenting the results for different β coefficients. The
mathematical model is formulated as a MILP problem, and the
code for the model is written in GAMS 24.2.2 and solved by
CPLEX solver. All the input data of the problem are entered in
MATLAB R2013a and linked with GAMS through gdx.

3.1. Studied network
As mentioned earlier, the method of implementing the SR

approach is applied to the modified Civanlar system in island
mode. The system includes three DGs as distributed generation
resources and electric vehicles as energy storage systems, according
to Fig 5. The loads in each bus are divided into three types (E,
Q, and G), and the load size s in kW are presented in Table 2.
For simplicity, we ignore the changes in load over time, but the
changes in the value of loads over time are already presented in
Table 1.

The generation of DGs connected to basses 1, 5, and 10 in the
time of outage is equal to (80, 80, 80, 80), (70, 75, 60, 70), and
(50, 55, 65, 60) kW, respectively. The information of EVs and
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Table 3. Operational details of the EVs & PHEVs [29]

ID of EV EV type Battery capacity (kWh) Discharge power (kW) EG maximum generation power (kW) Gasoline tanker capacity (kg)

1 BEV 62 6.6 - -
2 BEV 79.5 11.5 - -
3 BEV 60 7.2 - -
4 PHEV 40 6.6 45 13
5 PHEV 38.3 7.2 45 18
6 BEV 100 11 - -
7 BEV 50 11 - -
8 BEV 62 11.5 - -

Table 4. Results of service restoration with various β in case 1

β=0 β=1 β=2 β=3

SR ηω SR ηω SR ηω SR ηω

ω1 3788.6 0 3572.6 0 2934.3 0 2774.8 0
ω2 2797.1 0 2833.1 0 2805.3 0 2755.8 0
ω3 3036.1 0 3000.1 0 2972.3 0 2812.8 0
ω4 2484.6 0 2556.5 276.5 2695.3 110 2755.8 0
ω5 3854 0 3717.3 0 3534.1 0 3396.6 0
ω6 3264.6 0 3235.8 0 3219.1 0 3301.6 0
ω7 4094.6 0 3993.8 0 3644.1 0 3396.6 0
ω8 3005.6 0 3012.8 0 3107.1 0 3244.6 0
ω9 4529.3 0 4529.3 0 4074.2 0 3722.2 0
ω10 3955.8 0 3955.8 0 3778.2 0 3646.2 0
ω11 4029.8 0 4029.8 0 3852.2 0 3665.2 0
ω12 3585.8 0 3585.8 0 3630.2 0 3608.2 0

Expected SR 3535.5 3501.9 3353.9 3256.7
CVaR 2484.6 2602.6 2713.6 2755.5
ζ 2484.6 2833.1 2805.3 2755.5
Lines opened 17-18-19 (#1)

17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

Table 5. Results of service restoration with various β in case 2

β=0 β=1 β=2 β=3 β=4

SR ηω SR ηω SR ηω SR ηω SR ηω

ω1 11012 0 10822 0 10720 0 10652 0 10620 0
ω2 9930.3 0 9961.9 0 9945.6 0 9937.3 0 9936 0
ω3 10116 0 10085 0 10074 0 10043 0 10033 0
ω4 9505.6 0 9568.8 393.08 9621.3 324.27 9633.2 304.11 9638.2 297.73
ω5 12751 0 12654 0 12585 0 12558 0 12540 0
ω6 12098 0 12070 0 12064 0 12080 0 12077 0
ω7 13004 0 12942 0 12810 0 12761 0 12736 0
ω8 11770 0 11778 0 11814 0 11841 0 11841 0
ω9 14259 0 14259 0 14086 0 14017 0 13984 0
ω10 13594 0 13594 0 13527 0 13501 0 13482 0
ω11 13631 0 13631 0 13563 0 13527 0 13504 0
ω12 13117 0 13117 0 13134 0 13129 0 13118 0

Expected SR 12066 21675 31346 41025 50711
CVaR 9505.6 9634.3 9675.4 9683.9 9687.9
ζ 9505.6 9661.9 9945.6 9937.3 9936
Lines opened 17-18-19 (#1)

17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)

17-18-19 (#1)
17-18-19 (#2)
17-18-19 (#3)
17-18-19 (#4)
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Input:

✓ Network and load data

✓ Electrical vehicles data

✓ Distributed generations data

✓ Fault data

Optimization model in 

GAMS:

✓Objective function: Eq. (6)

✓ Constraints: Eq. (7-42)

GDX

Output data:

✓ Load restoration program

✓ Schedule of switching

Plot/Report:

Drawing diagrams in 

MATLAB

Fig. 7. The flowchart of the proposed method for self-healing oriented
service restoration
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PHEVs is shown in Table 3. Location of parking lots is considered
on buses 1, 5, and 10. The number of electric vehicles presented
in the parking lot at the time of the event and the charge of battery
and fuel level of these vehicles are considered random because of
the random nature of these variables.

3.2. Case studies
The outage duration of the MGs from the upstream network

is uncertain and considered to be 4 hours. Also, we consider the
possibility of repairing and reconnecting the MGs to the macrogrid
during these four hours, 0.2, 0.3, 0.4, and 0.1, and the cumulative
probability of the fault clearing is shown in Fig 6.

Parking lots are connected to buses 1, 5, and 10, and the power
exchange of these vehicles with the network is done through these
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Fig. 10. SR versus CVaR (efficient frontier) in case 2

buses. In a general case, it is assumed that there are 3 electric
vehicles for each type and totally 24 vehicles in the MGs. The
number of electric vehicles in the parking lot at the time of
the fault and the state of charge and fossil fuel level are also
considered random. The program execution process is summarized
in Fig 7.

A) Case study 1
In this case, the network is considered without the ability to

switching and reconfiguration. Also, the effect of the presence of
electric vehicles has been ignored. By disconnecting the upstream
network, the distributed energy sources start to restore the loads
for a 4-hour period until reconnection to the upstream grid. To
analyze the impact of β, this parameter is gradually increased
from 0 to 3, and the simulation is repeated. The confidence level
is assumed to be α=0.9. The simulation results are presented in
Table 4 and Fig 8. For β changes from 0 to 3, it is observed that
the value of expected SR changes from 3535.5 to 3256.7 and the
value of CVaR from 2484.6 to 2755.8.

It is observed that in risk-averse self-healing mode (β>0),
the system prefers to restore the loads (expected SR) less than
the risk-neutral (β=0) circumstance. Also, the optimal value of
objective, i.e., optimal restored loads, has a trend for changes in a
specific interval for beta, and these changes occur discretely.

Fig 9 represents the cumulative distribution functions for
β = {0, 1}. For β = 0, the CVaR is equal to 2484.6, whereas it is
equal to 2602.6 for β = 1. The worst scenario in each case has the
highest robustness between the solutions. By comparing the results
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Table 6. Results of service restoration with various β in case 3

β=0 β=1 β=2 β=3

SR ηω SR ηω SR ηω SR ηω

ω1 3848.7 0 3620.7 0 2947.9 0 2779.7 0
ω2 2803.2 0 2841.2 0 2811.9 0 2759.7 0
ω3 3055.2 0 3017.2 0 2987.9 0 2819.7 0
ω4 2473.7 0 2549.7 291.5 2695.9 0 2759.7 0
ω5 3883.5 0 3739.2 0 3546.1 116 3401.1 0
ω6 3262.1 0 3231.7 0 3214.1 0 3301.1 0
ω7 4137 0 4030.7 0 3662.1 0 3401.1 0
ω8 2989.1 0 2996.7 0 3096.1 0 3241.1 0
ω9 4579.5 0 4579.5 0 4099.8 0 3728.6 0
ω10 3975 0 3975 0 3787.8 0 3648.6 0
ω11 4053 0 4053 0 3865.8 0 3668.6 0
ω12 3585 0 3585 0 3631.8 0 3608.6 0

Expected SR 3553.7 3518.3 3362.3 3259.8
CVaR 2473.7 2598.2 2715.2 2759.7
ζ 2473.7 2841.2 2811.9 2759.7
Lines opened 16-17-18 (#1)

16-17-18 (#2)
16-17-18 (#3)
16-17-18 (#4)

17-18-19 (#1)
16-17-18 (#2)
16-17-18 (#3)
16-17-18 (#4)

16-17-18 (#1)
16-17-18 (#2)
16-17-18 (#3)
16-17-18 (#4)

5-18-19 (#1)
16-17-18 (#2)
17-18-19 (#3)
16-17-18 (#4)

Table 7. Results of service restoration with various β in case 4

β=0 β=1 β=2 β=3 β=4

SR ηω SR ηω SR ηω SR ηω SR ηω

ω1 11012 0 10823 0 10721 0 10653 0 10621 0
ω2 9931.2 0 9962.8 0 9946.5 0 9938.2 0 9936.9 0
ω3 10118 0 10087 0 10076 0 10045 0 10035 0
ω4 9507.4 0 9570.6 392.19 9623.1 323.38 9635 303.22 9640 296.84
ω5 12758 0 12651 0 12581 0 12554 0 12536 0
ω6 12104 0 12077 0 12071 0 12087 0 12084 0
ω7 13012 0 12939 0 12807 0 12758 0 12732 0
ω8 11778 0 11785 0 11821 0 11848 0 11848 0
ω9 14280 0 14280 0 14108 0 14038 0 14005 0
ω10 13615 0 13615 0 13548 0 13522 0 13503 0
ω11 13643 0 13643 0 13576 0 13539 0 13517 0
ω12 13129 0 13129 0 13146 0 13142 0 13130 0

Expected SR 12074 12047 12002 11980 11966
CVaR 9507.4 9636 9677 9685.5 9689.5
ζ 9507.4 9962.8 9946.5 9938.2 9936.9
Lines opened 17-18-19 (#1)

16-17-18 (#2)
17-18-19 (#3)
16-17-18 (#4)

16-17-18 (#1)
16-17-18 (#2)
16-17-18 (#3)
16-17-18 (#4)

5-18-19 (#1)
16-17-18 (#2)
17-18-19 (#3)
16-17-18 (#4)

16-17-18 (#1)
16-17-18 (#2)
17-18-19 (#3)
16-17-18 (#4)

16-17-18 (#1)
16-17-18 (#2)
16-17-18 (#3)
16-17-18 (#4)
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of the expected SR and CVaR (or VaR) for β = {0, 1, 2, 3}, it can
be seen that by using the risk management tool, the robustness of
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the obtained solutions have been increased.
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Fig. 13. schedule in four-time steps and different buses of (a)&(b) β=0, and (c)&(d) β=4.
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Fig. 14. (a) Objective function and (b) service restoration results for various
confidence levels.

B) Case study 2
In this case, the condition of SR is considered that there isn’t

the ability of switching and reconfiguration in the network. By
disconnecting the upstream network, the distributed energy sources
along with the available electric vehicles in the parking lots start
to restore the loads for a 4-hour period until the clearing the fault.
The confidence level is assumed to be α = 0.9. In this case,
due to the increase in problem variables, the range of problem
response to β changes has increased and another unique response
has been obtained for β = 4. The results of this case are presented
in Table 5 and Fig 10.

C) Case study 3
Because of the investment, installation, and maintenance costs

of Remote controlled switches (RCSs), we are faced with the
limitation of installing the RCSs in the network. In this paper,
according to the network structure in Fig ??.a, the location of the
RCSs is considered to be lines 5, 16, 17, 18, and 19 from FLV1,
FLV2, and FLV3. In this case, the ability of the reconfiguration in
the network without the presence of electric vehicles is considered.
Also, the confidence level is assumed to be α=0.9. This case is
simulated and the results of SR values versus CVaR are shown
in Table 6. The trend of changes in the objective function for the
change in β is also shown in Fig 11.

D) Case study 4
Finally, in this case, both the ability to reconfiguration and the

presence of electric vehicles are considered. The confidence level
is assumed to be α = 0.9. This case is simulated and the results
of SR values and CVaR for changes from 0 to 4 in β are shown
in Table 7. The trend of changes in the objective function for the
change in β is also shown in Fig 12.

For more access to the details of the load restoration scheduling
scheme, Fig 13 is prepared for the worst scenario (ω = 4) and the
best scenario (ω = 11) in such a way that in three tiers, the optimal
amount of the load that should be restored in each bus and related
to each type is specified in 4 hours. As mentioned previously, it
is assumed that loads E, Q, and G are equal in four-time steps
with light colors in Fig 13, and three color shaded areas display
different MGs with the three type distributed generators.

According to results of β = 0 in Table 7, load buses 1, 2, 3,
and 4 are in the same restoration zone (MG1) and supported by
DG1 and electric vehicles in stages 1, and 3. In the first stage,
DG1 can only provide 80 kW to the bus and the rest of the
power is supplied by the electrical and chemical energy stored in
the electric vehicle. Also, load buses 5, 6, 7, 8, and 9, and load
buses 10, 11, 12, and 13 are in the MG2 and MG3 restoration
zones, respectively. In the second and fourth stages, load buses 1,
2, 3, 4, 13 supported by the resources of MG1, and load buses 5,
6, 7, 8, and 9, and load buses 10, 11, and 12 supported by the
resources of MG1 and MG2, respectively. Then by reconnecting to
the upstream network, the structure returns to its primary structure.

According to the results of the optimization algorithm for
β = 4, the network structure remains constant for 4 hours until
the clearing of the fault.

The confidence level is an important factor in determining
the expected value of the objective function and CVaR. For this
reason, different decision-makers may choose different values for
this parameter depending on the conditions and the different
risk priorities. To analyze the effect of the confidence level,
the simulation results for comparison and analysis for different
confidence levels are shown in Fig 14.
According to Fig 14(a) and 14(b), the objective function and
SR remain constant in β = 0 which is related to risk-neutral
situations. According to the mathematical model, it is clear that
in the risk-neutral mode, the answer will be independent from the
risk management, so the fluctuation in the value of confidence
level will not affect the answer to the problem. However, the value
of the objective function decreases in the risk-averse condition as
the confidence level increases. As shown in Fig 14(a), the rate
of change in the objective function increases with β, and it is
0%, 11.62%, 15.86%, 18.05%, and 19.4% for β from 0 to 4,
respectively. It shows a direct relationship between the β and
the effect of the confidence level on changes in the objective
function. Also, the service restoration results in the risk-averse
condition have a descending trend by increasing the confidence
level according to Fig 14(b).

4. CONCLUSIONS

In this paper, a model is proposed to consider the risk
management tool by uncertain parameters in the SR problem
and self-healing mode. The objective is to maximize the restored
loads and minimize the risk of the results. In five case studies,
the impacts of risk weight, confidence level, and the presence of
EVs & PHEVs in different conditions are investigated in order to
control the effect of risk in the SR problem. These analyses have
verified the performance of the proposed model and proved the
importance of the risk control issue when formulating stochastic
programming models. Analyzing the results shows that the risk
assessment affects both the restoration schedule and switching
in MGs. Meanwhile, according to the results, the robustness of
the CVaR in compare to expected SR in all case studies have
been increased. On the other hand, the value of CVaR in the
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risk-neutral SR problem is less than that in the risk-constrained SR
problem in all cases. This indicates a more risk-taking response
by increasing β. For further studies, the development of the model
and the addition of details related to the operation, as well as
the production of scenarios, can be a field of study for further
research.
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