تعداد نشریات | 26 |
تعداد شمارهها | 340 |
تعداد مقالات | 2,930 |
تعداد مشاهده مقاله | 4,409,138 |
تعداد دریافت فایل اصل مقاله | 3,001,838 |
On new classes of stretch Finsler metrics | ||
Journal of Finsler Geometry and its Applications | ||
مقاله 8، دوره 3، شماره 1، مهر 2022، صفحه 86-99 اصل مقاله (108.58 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2022.10115.1058 | ||
نویسندگان | ||
Laszlo Kozma* 1؛ Sameer Annon Abbas2 | ||
1Institute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary | ||
2Doctoral School of Mathematical and Computational Sciences, Institute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary | ||
چکیده | ||
In this paper, we introduce two classes of stretch Finsler metrics. A Finsler metric with vanishing stretch B∼-curvature ( stretch H-curvature) is called B∼-stretch (H-stretch) metric (respectively). The class of B∼-stretch (H-stretch) metric contain the class of Berwald (weakly Berwald) metric (respectively). First, we show that every complete B∼-stretch metric (H-stretch metric) is a B∼-metric (H-metric). Then we prove that every compact Finsler manifold with non-negative (non-positive) relatively isotropic stretch B∼-curvature (stretch H-curvature) is B∼-metric (H-metric). | ||
کلیدواژهها | ||
stretch curvature؛ complete stretch metric؛ Berwald curvature؛ H-curvature؛ relatively isotropic stretch curvature | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 331 تعداد دریافت فایل اصل مقاله: 272 |