
 

Journal of Operation and Automation in Power Engineering 

Vol. 11, No. 3, Oct.. 2023, Pages: 162-172 

http://joape.uma.ac.ir 
 

 

Received: 20 Jan. 2022 

Revised: 14 Apr 2022  

Accepted: 02 May 2022 

Corresponding author:  

E-mail: pavan.venkata@sot.pdpu.ac.in (P. Venkata) 

DOI: 10.22098/joape.2023.10185.1722 

© 2023 University of Mohaghegh Ardabili. All rights reserved. 

Data Mining Model Based Differential Microgrid Fault Classification Using SVM 

Considering Voltage and Current Distortions 

  P. Venkata*, V. Pandya, A. V. Sant 

Electrical Engineering Department, School of Technology, Pandit Deendayal Energy University, Gandhinatar, 

Gujarat, India 

Abstract- This paper reports support vector machine (SVM) based fault detection and classification in microgrid while 

considering distortions in voltages and currents, time and frequency series parameters, and differential parameters. 

For SVM-based fault classification, the data set is formed by analysing the operation of the standard IEC microgrid 

model, with and without grid interconnection, under different fault and non-fault scenarios. Fault scenarios also 

include different locations, resistances, and incident angles of fault. Whereas, for non-fault scenarios, the variation in 

load is considered. Voltages and currents from both ends of the distribution line (DL) are sampled at 1920 Hz. The time 

and frequency series parameters, total harmonic distortion (THD) in current and voltage, and differential parameters 

are determined. The SVM algorithm uses these parameters to detect and classify faults. The performance of this 

developed SVM based algorithm is compared with that of different machine learning algorithms. This comparative 

analysis reveals that SVM detects and classifies the faults on the microgrid with an accuracy of over 99.99%. The 

performance of the proposed method is also tested with 30 dB, 35 dB, and 40 dB noise in the generated data, which 

represent measurement errors. 
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1. INTRODUCTION 

1.1. Background 

Due to rapid urbanisation, industrialisation and rural 

electrification, the electric power demand is increasing 

day-by-day [1]. With the large-scale adoption of electric 

vehicles, this demand will further increase. This rapidly 

increasing energy demand, the depletion of fossil fuels, 

and growing concern for carbon emissions and global 

warming have led to increased grid penetration of 

renewable energy systems (RES) [2, 3]. With the 

consequent government policies for curbing carbon 

emissions, there has been a surge in the deployment of 

solar photovoltaic and wind energy-based RES [4]. 

Besides offering the merit of reduced carbon emissions, 

the integration of RESs with the existing power system 

offers advantages such as efficient transmission and 

distribution, reduction in environmental pollution and 

overall cost of generation, improved power reliability 

and enhanced voltage profile [5].  

Microgrids are receiving much attention as they 

facilitate the integration of RES and distributed 

generation. Microgrid involves the localised generation, 

management, control, and energy supply to local loads 

[6]. To increase the reliability of the microgrid, energy 

storage elements are also included. Various works of 

literature have reported the different concepts of 

microgrids, such as microgrid power management [7–

9], microgrid control [10], and selection of the size and 

location of renewable energy sources used in microgrids 

[11]. With the microgrids being part of the distribution 

system, which is open to the atmosphere, there is more 

probability of experiencing different types of electrical 

faults such as a line to ground (LG) fault, line to line 

(LL) fault, double line to ground (LLG) fault, triple line 

(LLL) fault, and triple line to ground (LLLG) fault. 

Suppose these faults are not cleared within the shortest 

possible time. In that case, severe damage may be 

caused to the microgrid infrastructure and consumer 

loads. Furthermore, the reliability of the power supply is 

hindered. Hence, the protection of the microgrid is of 

paramount importance.  

In traditional grids, the power flows unidirectionally 

from sources to the load in a radially distributed 

network. On the contrary, bidirectional power flow is 
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possible in microgrids. This bidirectional power flow 

and the variation of short circuit capability –caused due 

to the intermittent generation of RESs in the microgrid – 

make the protection of the microgrid more complicated.  

1.2. Literature Review 

Since the inception of microgrids, the research fraternity 

has paid due attention to the protection of microgrids. 

The previous literature has provided several solutions to 

this problem through different techniques. These 

protection techniques can be classified into the 

following six categories. 

1. Optimisation technique based on conventional 

protection schemes [12–17] 

2. Artificial intelligence (AI) based protection 

schemes [5, 18] 

3. Protection schemes utilising signal processing and 

statistical parameters [19-22] 

4. Protection schemes utilising signal processing and 

AI techniques[23–25] 

5. Protection schemes utilising signal processing and 

machine learning techniques(MLT) [26–31] 

6. Protection schemes based on miscellaneous 

methods [32–34] 

Saad et al. have used optimisation techniques to find 

an appropriate protection coordination scheme with 

minimum operating time while guaranteeing reliability 

and security. This method does not talk about high 

impedance faults and the different modes of operation 

of microgrids [12]. Reference [14] proposes another 

method for maintaining proper protection coordination 

that uses dual setting directional over-current relays 

with distinct settings and low bandwidth 

communication. This method takes a long time to detect 

faults with high impedance [14]. A conventional and 

non-pilot-based protection scheme was developed for 

inverter-based microgrid protection by Lahiji et al. [16]. 

This method is network-dependent and requires the 

deployment of additional relays at the point of common 

coupling (PCC) and the location of the distributed 

generator (DG) [16]. A method is reported based on the 

phase difference between pre-fault and post-fault 

current components [17]. This method has been 

analysed for different microgrid configurations, except 

radial and interconnected [17].  

For fault identification, Sadegh Jamali et al. have 

used wavelet packet transform to obtain features from 

the fault current and voltage waveforms [19]. The effect 

of measurement errors is also considered [19]. 

Reference [23] reported protection of radial network 

microgrid with a hybrid approach involving discrete 

wavelet transform and artificial neural network (ANN). 

Similarly, Aljohani et al. have also proposed a hybrid 

approach involving Stockwell transform and MLT for 

detection, classification and location of LG faults only 

[26]. A fault index computed using the Wigner 

distribution, and Alienation indices was introduced in 

[20] for fault identification. This method was 

implemented for a microgrid involving a single DG 

[20]. A travelling wave-based protection scheme that 

utilises an initial current travelling wave and an 

improved mathematical morphology was also reported 

[15]. Dhivya et al. considered a fast recursive discrete 

Fourier transform (DFT) for efficient fundamental 

tracking of varying power system signals [24]. Another 

interesting approach involves the DFT of line currents 

to extract the necessary statistical features, which are 

then processed by deep neural networks to obtain the 

fault information [25]. This approach does not perform 

the accuracy and detailed classification [25]. 

Convolutional neural network-based fault classification 

is reported in [5], where no data pre-processing is 

needed. Reference [29] has presented logistic 

regression-based and AdaBoost-based fault 

classification with Hilbert transform-based feature 

extraction. An intelligent protection scheme using a 

combined wavelet transform and decision tree (DT) is 

also proposed [27]. Susmita Kar et al. had introduced a 

data-mining-based intelligent differential protection 

scheme for microgrids, wherein SVM and DT are used 

for fault detection [30].  

Besides these methods, the communication-free dual 

setting-based method for microgrid [35], inverter 

control-based method [36], a combination of Hilbert 

Huang Transform and extreme learning machine [31], 

and traditional method for relay settings [37] are very 

recently reported for microgrid protection. Adaptive 

protection for grid-connected and islanded microgrids is 

proposed in [38]. The adaptive protection needs the 

updated relay setting when the power output of RES 

changes. Baloch et al. have developed a new protection 

strategy based on the auto-correlation of three-phase 

current envelops for grid-connected and islanded 

microgrids [22]. Reference [39] reported a novel 

discrete wavelet Transform (DWT) based probabilistic 

generative model for protecting the microgrid, which 

has been tested for a relatively less number of the total 

fault and non-fault scenarios [39]. A protection method 

based on a multi-resolution analysis of the DWT and a 

Taguchi-based ANN is presented by Hong et al. This 

work concentrates only on the static switch present at 

the PCC of a grid-connected microgrid [18]. Another 

work proposed a method based on the corresponding 
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sum of the current samples obtained after every half-

cycle [21]. Nsengiyaremye et al. proposed a new 

method based on a differential scheme using low-cost 

communication systems [40]. The islanded mode or 

grid-connected mode of the microgrid is not studied in 

the system. The effect of noise is also not considered in 

the method [40]. Another work suggests a new 

microgrid protection scheme based on Teager–Kaiser 

energy operator approach. This method uses the change 

in the value of the sum of squares of three-phase 

currents to detect the fault. Selecting the values of the 

indices is rather difficult in dynamic variations in the 

microgrid operation [41].  

Table 1. Limitations of existing literature in microgrid protection 

Reference Limitation 

[18] 
Faults in utility networks are only considered in the 

study, and faults in the microgrid are not considered 

[21] Threshold selection is rather difficult 

[22] 
Quantification of results in terms of regularly used 

accuracy, precision, and F1-score is not presented. 

[29] Limited fault and non-fault scenarios are considered 

[30] 
The presence of noise in the data-set is not  considered in 

the analysis 

[31] 
A limited number of fault and non-fault scenarios were 
considered in the study 

[35] 

Discussion on the variations in short circuit rating due to 

the intermittent nature of renewable energy sources is not 
presented 

[36] 

This work focuses only on the islanded microgrid, and 

this scheme requires the injection of fifth harmonic 
currents into the system to have a higher fault current 

similar to the traditional system. 

[37] Only islanded mode is considered 

[38] 
Adaptive protection needs an updated relay setting when 

the generation changes 

[39] 
A limited number of fault and non-fault scenarios were 
considered in the study 

[40] 

A microgrid is analysed in this work. However, whether 

the analysis is related to grid-tied or islanded mode is not 
mentioned. 

[41] 
The proposed method requires the selection of indices, 
which is rather difficult under the dynamic variations in 

the microgrid operation 

The above-mentioned protection strategies employed 

different protection ideas to solve the protection 

problems in the microgrid. However, each of the 

schemes has some limitations. Most of the protection 

strategies have not considered the effect of 

measurement noise in their work. Some schemes suffer 

from higher fault detection times. Some methods have 

used fewer fault and non-fault scenarios, while others 

have focused only on one mode of the microgrid. The 

adaptive methods experience a high computational 

burden due to the complex fault calculations for relay 

settings. Therefore, this manuscript proposes a new 

scheme for microgrid protection using the Support 

Vector Machine (SVM) [42] classifier-based data 

mining model for fault detection and fault classification 

to overcome these limitations. Time series, frequency 

series, THD, and derived differential parameters are 

computed to build a data mining model to train the 

SVM-based fault detection and classification models. 

PSCAD/EMTDC [43] is used for basic data generation, 

whereas Python [44] is used for feature extractions, 

training, and testing the data mining model. Table 1 

states the scope for improvement in the earlier reported 

literature. The scope for improvement is treated as the 

research gap, and an SVM classifier is developed to 

overcome the limitations associated with the earlier 

reported work. The contribution of the proposed SVM 

classifier is given in the next sub-section. 

1.3. Major contributions of this research 

• A simpler and more efficient data mining-based 

fault detection and classification method for the 

microgrid is proposed in this paper. 

• Three-phase line currents and three-phase line to 

ground voltages on both ends of the distribution 

line (DL) are sampled based on which the time 

series, frequency series, THD, and differential 

features of voltages and currents are computed.  

• A data mining model is developed for the collected 

data set. The mined data set is further utilised for 

training the SVM classifier to detect and classify 

faults.  

• The performance of the developed SVM classifier 

is investigated with different measurement errors 

by adding noise with 30 dB SNR, 35 dB SNR, and 

40 dB SNR. This is done to demonstrate effective 

classification even under measurement noise. 

• Due to the extensive use of parameters, such as 

time series, frequency series, THD and differential 

parameters, the proposed data mining based SVM 

scheme provides more accurate detection and 

classification of faults, which can further enhance 

the protection of microgrid against different faults.  

• The developed SVM model can easily adapt to 

multiple operating modes (grid-connected and 

standalone modes) and network topologies (radial 

and interconnected configurations) without any 

need for change in the algorithm. Additionally, the 

developed SVM model can handle power dynamics 

associated with conventional synchronous 

generators (small hydropower plants and diesel 

generators, etc.) and inverter integrated DG (Solar 

PV, Wind, etc.) can be handled.  

The remaining part of this paper is organised as 

follows: Section 2 explains the methodology employed 

for developing the proposed SVM model. Section 3 

describes the simulation of the IEC microgrid in 

PSCAD/ EMTDC and the process of data generation by 
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simulating fault and non-fault scenarios. Section 4 

describes the implementation and the training procedure 

of the proposed model. Section 5 provides the results 

and discussions. Finally, section 6 reveals the 

conclusions and recommendations. 

2. THE METHODOLOGY USED FOR THE 

PROTECTION OF MICROGRID 

2.1. Proposed method 

This work proposes a data mining model based on 

differential microgrid fault classification using SVM 

considering voltage and current distortions. Noise is 

also considered in the analysis presented. This robust 

scheme for the protection of microgrid can effectively 

detect and classify faults irrespective of its mode of 

operation (islanded mode or grid-connected mode) and 

configuration (radial configuration or interconnected 

configuration). The input features for the developed 

SVM model are the time series, frequency series, THD 

parameters, and differential parameters. The data of the 

latest thirty-two samples of three-phase line currents 

and three-phase line to ground voltages on both ends of 

the DL to be protected are required to compute these 

features. A moving window of thirty-two samples stores 

the required voltages and currents to compute these 

input parameters. The sampling frequency is selected 

such that the data over an entire cycle can fit into the 

moving window. The data in the moving window is 

used to calculate the above-mentioned features. The 

calculated features are applied to the trained model at a 

frequency equal to the sampling frequency of 32 

samples per power cycle, i.e. 1920 Hz. Figure 1 shows 

the methodology adopted in this paper for tripping the 

circuit breaker after the fault. An extensive data set 

consisting of fault, and non-fault scenarios is needed to 

train the proposed method. The IEC microgrid model 

considered in this study has four DGs and five DLs. The 

data is generated by simulating different types of faults 

at a location on a particular DL by varying fault 

resistances and fault inception angles. The data is 

gathered for different fault locations on DL while 

considering various fault resistances and fault inception 

angles. This process is similarly repeated for faults in all 

other DL. The fault data is also generated for different 

modes and configurations of the microgrid. The non-

faults are also simulated by varying the loads available 

in the microgrid in all the different modes and 

configurations. The following sub-section discusses the 

mathematical formulations for computing the time and 

frequency series, THD and differential parameters. 

 
Fig. 1. The methodology adopted in this paper for tripping the 

circuit breakers after the fault 

The currents and voltages are continuously fed at 32 

samples per power cycle. As shown in Figure 2, the 

acquired samples of three-phase current and voltages at 

both the ends of DL are stored in a moving window 

having a length of thirty-two. This window is updated at 

each sampling instant. Based on the stored data, the 

time series, frequency series, differential, and THD 

parameters are calculated recursively using full-cycle 

data of the latest thirty-two data samples. The calculated 

parameters are applied as features to the already trained 

MLT-based fault identification and classification 

models. From the eleven possible outcomes (No-

fault/AG/BG/CG/ABG/BCG/ACG/ABCG/AB/AC/BC), 

the model identifies one based on the input features. The 

identified outcome is provided as the output of the 

model. 

2.2. Feature extraction 

Extraction of features starts with the measurement and 

sampling of the three-phase currents and voltages on 

both sides of DL. Let the DL be connected between the 

bus M and N of the microgrid. The three-phase 

instantaneous currents and instantaneous voltages 

measured at bus M can be denoted as iaM, ibM, icM, vaM, 

vbM, vcM, respectively. Similarly, the three-phase 

instantaneous currents and instantaneous voltages 

measured at bus N can be denoted as iaN, ibN, icN, vaN, vbN, 

and vcN, respectively. The extraction of different input 

parameters for training and testing of the proposed SVM 

method is shown in Figure 3. 

2.2.1. Time series parameters 

Let S be the moving window consisting of the most 

recent thirty-two sampled values of the instantaneous 

values of current and voltages as shown in (1), where x 

denotes the sampled value, and the sub-script depends 

on the number of sample. The time-series parameters 

such as the minimum, maximum, average, peak-to-peak 
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and rms values are calculated based on S as shown in 

Eqns. (2)-(6). 

 𝑆 = {𝑥1 , 𝑥2 , 𝑥3 , . . . . . . . . . . , 𝑥31 , 𝑥32}  (1) 

 𝑋𝑚𝑖𝑛 = min {𝑆}  (2) 

 𝑋𝑚𝑎𝑥 = max {𝑆}  (3) 

 𝑋𝑝𝑝 = |𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛| (4) 

 𝑋𝑎𝑣𝑔 =
∑ 𝑥𝑖

32
𝑖=1

32
 (5) 

 𝑋𝑟𝑚𝑠 = √
∑ 𝑥𝑖

232
𝑖=1

32
 (6) 

2.2.2. Frequency Series Parameters and THD 

Parameters 

The frequency series parameters involve computation of 

the peak magnitudes of the fundamental and the nine 

most dominant harmonics using DFT. With DFT, the 

peak magnitude of the ac component with frequency k 

times the fundamental magnitude can be expressed as in 

(7), where, k is an integer representing the ratio of the 

frequency of the ac signal to the fundamental, N is the 

number of samples in one cycle (i.e. 32 in this case), i is 

the index corresponding to a particular sample, and j is 

the imaginary operator. 

 𝑋𝑘 =
2

𝑁
∑ 𝑥𝑖 

𝑁−1
𝑖=0 𝑒−

𝑗2𝜋

𝑁
𝑖𝑘

 (7) 

Based on Eq. (7), the THD parameters can be 

calculated as 

 𝑋𝑇𝐻𝐷 =
1

𝑋1
√∑ 𝑋𝐼

210
𝐼=2,3,4  (8) 

All the time series, frequency series, and THD 

parameters are calculated individually for all the three-

phase voltages and currents on both sides of DL. 

2.2.3. Differential Parameters 

The differential parameters are calculated using all the 

voltages and currents at bus M and N. By using three-

phase voltages and three-phase currents at bus M (say 

sending end bus), the three-phase active power (PM), 

three-phase reactive power (QM), positive sequence 

voltage (V1M), negative sequence voltage (V2M), zero-

sequence voltage (V0M), positive sequence current (I1M), 

negative sequence current (I2M) and zero sequence 

current (I0M) are calculated. Similarly, by using three-

phase voltages and currents at bus-N (say Receiving 

end), PN, QN, V1N, V2N, V0N, I1N, I2N, I0Nare calculated. 

Then the differential parameters are calculated by taking 

the absolute difference between the respective 

parameter determined based on the measurements at bus 

M and N. Figure 3 shows the block diagram 

representation of the computation of time series, 

frequency series and differential parameters.  

2.3. Relation between SVM and THD along with 

other parameters 

The developed SVM model utilises THD of voltage and 

current as one of the input features. Nowadays, there is 

a tremendous increment in the usage of non-linear 

loads. These non-linear loads draw distorted currents 

from the grid, which leads to current and voltage 

harmonics in the distribution network. Traditionally, the 

short circuit analysis neglects the comparison of pre-

fault and fault currents as the system mainly consists of 

synchronous machines. 

 
Fig. 2. The proposed moving window of thirty-two samples for 

calculating the features applied to the already trained model 

 
Fig. 3. Block diagram for the calculation of time series, frequency 

series and differential parameters 

Nevertheless, in the inverter-based renewable energy 

systems, the fault current magnitude is 1.5 to 2 times the 

rated current. Hence, the pre-fault current compared to 

the fault current cannot be neglected. Moreover, the 

decaying dc component in the fault current will produce 

dc offset, and the non-linear resistance of the arc will 

produce harmonics in the fault currents, which lead to 

distortions in the fault voltage. The harmonic analysis of 

the healthy currents and voltages under the normal 
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operating condition will differ from those under the 

fault state. Along with these THD parameters, the time 

series, frequency series and differential parameters also 

have different values for fault and non-fault conditions. 

SVM classifies the data based on the hyper plane. The 

higher the difference between the values of the 

parameters among the different classes, the higher the 

possibility of forming the hyperplane that can classify 

the different faults. 

3. THE SYSTEM UNDER STUDY AND DATA 

GENERATION  

3.1. Test System 

To simulate the fault and non-fault scenarios, an IEC 

microgrid [27], shown in Figure 4, is studied in this 

paper. The microgrid consists of six buses, four DGs, 

five DLs, six loads, and four transformers. The 

microgrid is connected with the power system grid at 

PCC through a circuit breaker. If the circuit breaker at 

the PCC is closed, then the micro-grid operates in grid-

connected mode; otherwise, it operates in island mode. 

The resulting microgrid configuration is radial if the 

Loop-1 circuit breaker and Loop-2 circuit breaker are 

open. The resulting microgrid configuration is 

interconnected if these circuit breakers are closed. The 

total load on the microgrid is rated at 22 MW and 10 

MVAR. In Figure 3, the length of each DL is assumed to 

be 30 km. The microgrid is connected to the main utility 

grid through a 120/25 kV, 60 Hz transformer. The utility 

is considered to have a short circuit MVA rating of 1000 

MVA. 

3.2. Data Generation Required for Model Training 

and Testing 

Quality of data is of utmost importance for MLT or any 

other AI method. The data required for successful fault 

identification and classification in this study is 

generated by simulating all possible faults in the 

microgrid, shown in Figure 4, for (i) interconnected 

microgrid connected to the grid, (ii) radial microgrid 

connected to the grid, (iii) interconnected microgrid 

operating in islanded mode, and (iv) radial microgrid 

operating in islanded mode. Data for each of these four 

cases is obtained by simulating the respective microgrid 

configuration without any fault. Then each of the four 

cases is simulated with A phase to Ground fault (AG),  

B phase to Ground (BG), C phase to Ground (CG), A 

phase to B phase to Ground (ABG), A phase to C phase 

to Ground (ACG), B phase to C phase to Ground 

(BCG), A phase to B phase to C phase to Ground 

(ABCG), A phase to B phase (AB), A phase to C phase 

(AC) and B phase to C phase (BC). 

Different faults are analysed with the location of fault 

occurrence on DL-1 is considered 3km from Bus-1. 

Also, while simulating each type of fault at a particular 

location, the fault resistance is varied from 0.01 Ω to 

100 Ω. Then for each value of fault resistance, the fault 

inception angle is changed from 00 deg to 1800 deg in 

steps of 22.5 0 deg. This procedure is repeated for the 

fault location of 6km, 9km, 12km, 15km, 18 km, 21km, 

24km, and 27km distances from Bus-1 on the DL1. A 

similar procedure is followed for DL-2, DL-3, DL-4, 

and DL-5. Thus, for the four cases, this procedure is 

repeated. This results in data being collected for 210600 

fault scenarios. This is summarised in Table 2. 

Similarly, the non-fault scenarios are also simulated by 

changing the load (both active and reactive powers) on 

each bus from 80% to 120 % of the nominal load in 

steps of 5%. The total non-fault scenarios considered for 

data generation are 21220. The details of the load 

variation while simulating the non-fault scenarios are 

provided in Table 3. Thus, an extensive data set is 

available to train the SVM classifier. For each fault and 

non-fault scenario, the data is collected and made 

available over eight power cycles, i.e., 0.133 sec. The 

selected sampling frequency of 1920Hz results in the 

acquisition of 32 samples over a power cycle. 

4. SYSTEM IMPLEMENTATION AND 

TRAINING OF THE PROPOSED MODEL 

The fault and non-fault scenarios in the IEC micro gird 

were simulated in PSCAD/EMTDC software. The 

generated data from this software is saved as EMTDC 

output files. All these EMTDC output files are 

combined and converted to ‘CSV’ files with the help of 

MS-EXCEL. These CSV files are exported to Python 

software for further signal processing and noise analysis 

and the application of different MLT. All the 

simulations, signal processing, noise analysis, training, 

and testing of different MLT are performed in a laptop 

PC having an Intel core i3-4005U CPU@1.70GHz 

processor with 4GB RAM.  

Table 2. Variation of Parameters for simulation of fault scenarios 

Parameter Possible values Count 

Operating Mode Grid Connected mode, 

Islanded mode 

2 

Configuration Radial, Loop or Interconnected 2 

Fault line DL1, DL2, DL3, DL4, DL5 5 

Fault Location from sending 
end (km) 

3, 6, 9, 12, 15, 18, 21, 24, 27 9 

Fault Inception Angle 

(degree) 

0, 22.5, 45, 67.5, 90, 112.5, 

135, 157.5, 180 

9 

Fault Resistance 0.01 Ω, 0.1 Ω, 1 Ω,  10 Ω, 20 

Ω, 30 Ω, 40 Ω, 50 Ω, 60 Ω, 70 

Ω, 80 Ω, 90 Ω, 100 Ω 

13 

Fault Type No-fault, AG,BG, 

CG,ABG,ACG, BCG, ABCG, 

AB, AC and BC 

11 

Total fault scenarios (2 X 2 X 5 X 9 X 9 X 13 X 10) = 210600 
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Fig.  4. IEC microgrid used for simulation of the fault and non-

fault scenarios to create the feature set for training of the 

proposed model [30] 

 
Fig. 5. The method of training and testing the proposed technique 

in one fold of k-fold cross-validation 

Table 3. Variation of parameters for simulation of non-fault 

scenarios operation 

Parameter Possible values Count 

Operating Mode 
Grid-Connected mode, Islanded 

mode 
2 

Configuration Radial, Loop or Interconnected 2 

Simultaneous load change 

in all the loads w. r. t base 
load 

+5%, +10%, +15%, +20%, -

5%, -10%, -15%, -20% 
8 

No. of distribution lines DL1, DL2, DL3, DL4, DL5 5 

Non-fault scenarios due to load variation (2 x 2 x 8 x 5) = 160 
 Non-fault scenarios from Table 1 (2 X 2 X 5 X 9 X 9 X 13 X 1) = 

21060 

total non-fault scenarios = 21220 

Instead of the usual train/test split, a ten-fold cross-

validation method is applied in this study to validate the 

identification and classification capabilities of proposed 

method. This ten-fold cross-validation method divides 

the entire data set (all differential, time-series, 

frequency series, and THD parameters) into ten random 

equal parts.  

In the first fold of validation, as shown in Figure 5, 

the first part of the data is reserved for testing, and the 

remaining nine parts (i.e., 2 to 9) are used for MLT 

training. In the second fold of validation, the second 

part of the data is reserved for testing. The remaining 

nine parts (i.e., 1, 3 to 9) are used to train the MLTs. 

This process is repeated until all parts of the data are 

utilised for the testing, with the remaining parts used as 

training data.The properly trained model can be 

installed in the computers of the microgrid operator or 

microgrid control center.  

5. RESULTS AND DISCUSSIONS 

In this work, eleven classes (No-fault, AG, BG, CG, 

ABG, ACG, BCG, ABCG, AB, AC, and BC) are 

considered. The classification capabilities of the 

proposed method are expressed using classification 

metrics called accuracy, precision, F1-score, and recall. 

Calculation of these metrics requires the quantitative 

values of True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). The confusion 

matrix can obtain quantitative TP, TN, FP, and FN 

values in a multi-class classification problem. TP is the 

total number of scenarios or instances in which the 

estimated or predicted class is the same as the actual 

class. FP is the total number of instances in which a 

class, C1 is predicted as one of the remaining C–1 

classes, where C is the total number of classes. FN is the 

total number of instances in which the classes that 

belong to C–1 classes are predicated as class C1. TN is 

the total number of instances in which the classes 

belonging to C–1 classes are predicted as classes 

belonging to C–1 classes. As already mentioned, the 

evaluation is carried out using a ten-fold cross-

validation procedure. The evaluation metrics range from 

0 to 1.0, where 0.0 indicates the worst performance and 

1.0 indicates the best possible performance. 

The output parameters of the confusion metrics are 

TP, TN, FP and FN, which are utilised for computing 

accuracy, F-1 precision, and recall, as shown in (9)-(12). 

Here, accuracy is the measure of how many positive and 

negative predictions are correctly classified by the 

algorithm. Accuracy is defined as the ratio of total 

correct predictions to the total number of predictions. 

F1-score is the single metric that quantifies the effect of 

both precision and recall. F1- score is defined as the 

harmonic mean of recall and precision. Precision 

measures how many positive predictions are actually 
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positive. Precision is defined as the ratio of the total 

number of correctly predicted positives to the total 

number of predicted positives. Recall measures how 

many positive data points are correctly predicted. The 

recall is the ratio of the total number of correctly 

predicted positives to the total number of actual 

positives. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9) 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑋(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

5.1. Fault Classification without any noise by the 

proposed SVM method 

This subsection discusses kernel function and 

hyperparameters used in the SVM, and the classification 

results for the actual generated data using the proposed 

method. SVM is a popular classification method used 

for classifying different classes present in the data [42]. 

SVM method uses the concept of a hyperplane to draw 

the boundary between the classes [42]. Hyperplane 

provides the maximum possible gap between the border 

candidates of each class [42]. Besides binary 

classification problems, the SVM algorithm can also 

classify the data with multiple classes by converting the 

multi-class problem into a binary classification problem. 

The outcome of this conversion is the division of 

multiple classes into two classes, M1 and M2. For C1, 

C2, ….., CN classes, M1 represents C1 and M2 

represents C2 to CN after conversion.   

In SVM, the kernel draws a clear boundary between 

the classes by projecting the features into a different 

plane. This work uses the radial basis function (RBF) as 

the kernel function because of its localised nature and 

finite response along the x-axis. The RBF kernel used in 

this work is as given as 

 𝐾(𝑥𝑖 ,  𝑥𝑗) = exp(−𝛾||𝑥𝑖 − 𝑥𝑗||2) , 𝛾 > 0 (13) 

Where, 𝐾(𝑥𝑖 ,  𝑥𝑗) is the output of the kernel, and 𝛾 as 

the hyperparameter considered as 0.1. 

As mentioned earlier, ten-fold cross-validation is 

used for the performance evaluation of the proposed 

method. The performance of the proposed method for 

each fold and the average performance over the ten 

folds are stated in Table 4. The data set used for the 

performance computation of the proposed SVM model 

does not consider any noise. It is clear from Table 4, 

that the folds 5, 6, 7, and 9 can classify the faults with 

100 % accuracy. The accuracy for the remaining folds is 

at least 99.99871%. From this figure, it can be inferred 

that the SVM can classify faults accurately. The overall 

accuracy of the proposed method is found to be 

99.9948%, which is highly desirable for fault 

classification. 

5.2. Fault Classification Results with distorted data 

(with noise) by the proposed SVM method 

In order to test the robustness of the proposed method 

under noisy measurements, white noise is added to the 

measured voltage and current samples. With these 

distorted voltages and currents, the features are 

calculated in the same manner as that for the data 

without any noise. Noise with Gaussian distribution and 

SNR noise of 30 dB, 35 dB, and 40 dB is added to the 

actual measured data and then performance evaluation 

is carried out.  

Table 4. Fold wise classification performance indices for fault 

classification by using SVM for data set without any noise 

Fold Accuracy F1 Score Precision Recall 

1 0.999957 0.999957 0.999957 0.999957 

2 0.999871 0.999871 0.999871 0.999871 
3 0.999957 0.999957 0.999957 0.999957 

4 0.999957 0.999957 0.999957 0.999957 

5 1 1 1 1 
6 1 1 1 1 

7 1 1 1 1 

8 0.999784 0.999784 0.999785 0.999784 
9 1 1 1 1 

10 0.999957 0.999957 0.999957 0.999957 

Avg 0.999948 0.999948 0.999948 0.999948 

Table 5. Fold wise classification performance indices for fault 

classification by using SVM for data set with 30 dB noise 

Fold Accuracy F1 Score Precision Recall 

1 0.999957 0.999957 0.999957 0.999957 

2 0.999914 0.999914 0.999914 0.999914 
3 0.999957 0.999957 0.999957 0.999957 

4 1 1 1 1 

5 0.999957 0.999957 0.999957 0.999957 
6 1 1 1 1 

7 0.999784 0.999784 0.999785 0.999784 

8 0.999827 0.999827 0.999828 0.999827 
9 0.999871 0.999871 0.999871 0.999871 

10 0.999871 0.999871 0.999871 0.999871 
Avg 0.999914 0.999914 0.999914 0.999914 

 

Table 6. Fold wise classification performance indices for fault 

classification by using SVM for data set with 35 dB noise 

Fold Accuracy F1 Score Precision Recall 

1 0.999914 0.999914 0.999914 0.999914 

2 0.999827 0.999827 0.999828 0.999827 

3 0.999957 0.999957 0.999957 0.999957 
4 0.999914 0.999914 0.999914 0.999914 

5 1 1 1 1 

6 0.999871 0.999871 0.999871 0.999871 
7 0.999914 0.999914 0.999914 0.999914 

8 0.999827 0.999827 0.999828 0.999827 

9 1 1 1 1 
10 0.999957 0.999957 0.999957 0.999957 

Avg 0.999918 0.999918 0.999918 0.999918 

The performance of the proposed method for each 

fold and the average performance over the ten folds 

while considering noise with SNR of 30 dB, 35 dB and 

40 dB in the input data are stated in Tables 5, 6 and 7, 

respectively. From these three tables, it is observed that 
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only two out of 10 folds produced 100 % accuracy in 

each case. The overall accuracy of the prosed method in 

the most polluted environment, i.e., 30 dB noise level, is 

99.9914 %. With 35 dB noise levels and 40 dB noise 

levels, the overall accuracies for the proposed method 

are 99.9918 % and 99.9935 %, respectively. This 

demonstrates that the proposed SVM model can classify 

the faults even when the input data is corrupted with 

noise. 
 

Table 7. Fold wise classification performance indices for fault 

classification by using SVM for data set with 40 dB noise 

Fold Accuracy F1 Score Precision Recall 

1 0.999914 0.999914 0.999914 0.999914 

2 1 1 1 1 

3 0.999957 0.999957 0.999957 0.999957 
4 0.999914 0.999914 0.999914 0.999914 

5 1 1 1 1 

6 0.999957 0.999957 0.999957 0.999957 
7 0.999914 0.999914 0.999914 0.999914 

8 0.999827 0.999827 0.999828 0.999827 

9 0.999914 0.999914 0.999914 0.999914 
10 0.999957 0.999957 0.999957 0.999957 

Avg 0.999935 0.999935 0.999935 0.999935 

 

Table 8. Comparison of the performance of the fault classification 

model of the proposed method with other popular algorithms 

Noise Accuracy F1 Score Precision Recall Algorithm 

No noise 0.783151 0.777388 0.784194 0.783151 ABC 
30 dB 0.730791 0.72989 0.740443 0.730791 ABC 

35 dB 0.641575 0.621429 0.646285 0.641575 ABC 

40 dB 0.860042 0.859768 0.871698 0.860042 ABC 
No noise 0.999236 0.999236 0.999237 0.999236 DT 

30 dB 0.987922 0.987923 0.98793 0.987922 DT 

35 dB 0.991153 0.991153 0.99116 0.991153 DT 
40 dB 0.995203 0.995203 0.995206 0.995203 DT 

No noise 0.700556 0.700022 0.793125 0.700556 GNB 

30 dB 0.678134 0.67385 0.772852 0.678134 GNB 
35 dB 0.688879 0.682995 0.775827 0.688879 GNB 

40 dB 0.686369 0.682698 0.7766 0.686369 GNB 

No noise 0.999638 0.999638 0.999638 0.999638 KNN 
30 dB 0.873354 0.875816 0.888708 0.873354 KNN 

35 dB 0.953408 0.953541 0.955323 0.953408 KNN 

40 dB 0.988832 0.988841 0.988973 0.988832 KNN 
No noise 0.666539 0.645958 0.714193 0.666539 RF 

30 dB 0.755655 0.749317 0.764528 0.755655 RF 

35 dB 0.760241 0.753039 0.770742 0.760241 RF 
40 dB 0.789975 0.786445 0.803602 0.789975 RF 

5.3. Comparison of the performance of the proposed 

method with other Machine Learning Algorithms 

Table 8 presents the evaluation of different classification 

algorithms in terms of the average of ten-fold values of 

performance indices for the data set without any noise 

and data set with 30, 35 and 40 dB noise levels. The 

classification algorithms considered for this evaluation 

are such as Adaptive Boosting Classifier (ABC), 

Decision Tree (DT), Gaussian Naive Bayes (GNB), k-

Nearest Neighbours (kNN), Random Forest (RF) and 

SVM.  Out of the stated algorithms, the DT algorithm’s 

performance is somewhat near to the performance of 

SVM with a classification accuracy of at least 

98.7922%, which is reported for the noise level of 30 

dB. ABC algorithm performs well in 40 dB noise data 

with an accuracy of 86.0042%. However, its 

performance is worse in the 35 dB noise level with an 

accuracy of 64.1575%. 

 

Table 9. Performance comparison of the proposed fault 

classification model with methods reported in the literature 

Parameter 
Proposed 

Method 

The method reported in Reference 

[25] [27] [29] [30] [31] [45] 

Grid-

connected 

mode 

Yes Yes Yes Yes Yes Yes Yes 

Islanded mode Yes Yes Yes Yes Yes Yes Yes 

Radial 

configuration 
Yes Yes Yes Yes Yes Yes Yes 

Interconnected 

Configuration 
Yes Yes Yes Yes Yes Yes Yes 

Consideration 

of noise 

Levels 

30, 35 

and 40 

dB 

30, 35 

and 40 

dB 

NA 
30 and 

40 dB 
NA NA NA 

Considered 

Classes for 

classification 

NF, AG, 

BG, CG, 

ABG, 

ACG, 

BCG, 

ABCG, 

AB, AC 

and BC 

NF, 

AG, 

BG, 

CG, 

ABG, 

ACG, 

BCG, 

ABCG, 

AB, AC 

and BC 

LG, 

LLG, 

LL, 

LLLG 

NF, 

LG, 

LLG, 

LL, 

LLLG, 

LLL 

NF, 

LG, 

LLG, 

LL, 

LLLG, 

LLL 

NF, 

AG, 

BG, 

CG, 

ABG, 

ACG, 

BCG, 

ABCG, 

AB, AC 

and BC 

NF, 

AG, 

BG, 

CG, 

ABG, 

ACG, 

BCG, 

ABCG, 

AB, AC 

and BC 

Average 

Accuracy 

(percent) 

99.99 99.31 99 97.92 99.45 95.02 95.63 

Number of 

fault and non-

fault scenarios 

231820 47168 3904 944 1435 794 352 

The performance of the GNB algorithm is inferior in 

the case of data with a 30 dB noise level with an 

accuracy of 67.8134 %. Even in the case of data without 

any noise, also it has an accuracy of only 70.0556 %. 

kNN performs relatively well in the case of data without 

any noise and data with 35and 40 dB noise levels with 

classification accuracies of 99.9638 %, 95.3408 %, and 

98.8832 %, respectively. Nevertheless, in the case of 

data with a 30 dB noise level, its performance is rather 

poor, with a classification accuracy of 87.3354 %. The 

worst performer is the RF algorithm because it offers a 

classification accuracy of 66.6539%, even when the 

data without any noise is considered. 

5.4. Comparison of the performance of the proposed 

method with existing literature 

The qualitative comparison of the proposed fault 

classification and detection scheme with the earlier 

reported schemes is shown in Table 9, where NF 

represents no-fault scenario. 

The proposed SVM-based fault classification and 

detection scheme has been analysed for grid-tied and 

islanded mode, input data set with and without noise, 

and all possible types of fault and non-fault scenarios. 

The developed SVM algorithm can accurately detect 

and classify the fault regardless of the operating 

scenario. The earlier reported schemes either 

concentrate on a particular type of microgrid 
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configuration or type/s of faults only. The accuracy of 

the classification is higher than the earlier reported 

schemes. Moreover, the number of fault and non-fault 

scenarios considered in the study is also higher than the 

existing schemes.  

6. CONCLUSIONS 

The proposed method uses a differential, time series, 

frequency series, and THD parameters for fault 

identification and classification for microgrid 

protection. The proposed method is tested on a standard 

IEC microgrid model. All possible faults are simulated 

with the variation of fault resistance, fault inception 

angle, and fault location along the distribution line. 

Non-fault cases are also simulated with a variation in 

loading from −80% to +120% of rated values. The fault 

and non-fault scenarios are implemented in both grid-

connected microgrids with radial and interconnected 

configurations and islanded microgrids with radial and 

interconnected configurations. The results demonstrated 

that the SVM-based fault classification model has an 

accuracy of 99.9918% in the case of data with 30 dB 

noise case- the most polluted data set. The classification 

accuracy with the proposed algorithm is far better than 

that achieved with ABC, DT, GNB, kNN, and RF 

algorithms irrespective of whether the fault has 

occurred, type of fault, fault location, fault resistance, or 

angle of inception. The proposed SVM classifier 

outperforms the other algorithms with 30 dB, 35 dB, 

and 40 dB noise levels. This is also demonstrated 

through the comparative analysis presented. 
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