

http://joape.uma.ac.ir

A Novel Hybrid Multi-Objective Evolutionary Algorithm for Optimal Power Flow in Wind, PV, and PEV Systems

R. K. Avvari^{*}, V. Kumar D M

Department of Electrical Engineering, National Institute of Technology Warangal, Telangana, 506004, India

Abstract-In this paper, a new hybrid decomposition-based multi-objective evolutionary algorithm (MOEA) is proposed for the optimal power flow (OPF) problem including Wind, PV, and PEVs uncertainty with four conflicting objectives. The proposed multi-objective OPF (MOOPF) problem includes minimization of the total cost (TC), total emission (TE), active power loss (APL), and voltage magnitude deviation (VMD) as objectives and a novel constraint handling method, which adaptively adds the penalty function and eliminates the parameter dependence on penalty function evaluation is deployed to handle several constraints in the MOOPF problem. In addition, summation-based sorting and improved diversified selection methods are utilized to enhance the diversity of MOEA. Further, a fuzzy min-max method is utilized to get the best-compromised values from Pareto-optimal solutions. The impact of intermittence of Wind, PV, and PEVs integration is considered for optimal cost analysis. The uncertainty associated with Wind, PV, and PEV systems are represented using probability distribution functions (PDFs) and its uncertainty cost is calculated using the Monte-Carlo simulations (MCSs). A commonly used statistical method called the ANOVA test is used for the comparative examination of several methods. To test the proposed algorithm, standard IEEE 30, 57, and 118-bus test systems were considered with different cases and the acquired results were compared with NSGA-II and MOPSO to validate the suggested algorithm's effectiveness.

Keyword: Wind energy, Solar energy, Multi-objective optimization, Electric vehicle, Optimal power flow.

1. INTRODUCTION

The increase in integration of renewable energy sources (RESs) and the rise in load demand is making the power system planning and operation highly challenging[1]. In power systems, the OPF is a tool for determining the optimal operating point in terms of control variables for planning and operation. The OPF aims to optimize the selective objective function by tuning the control variables and also meeting the various constraints [2, 3]. The main decision variables are the generator's real power, the magnitude of the bus voltage, the shunt compensators, and the off-nominal transformer tap settings.

In the literature, numerous scholars have proposed optimization approaches to handle the OPF problem with and without RESs. In general, two types of optimization approaches exist i) deterministic

Received: 12 Mar. 2022 Revised: 31 Mar. 2022 Accepted: 02 May 2022 *Corresponding author: E-mail: avvari.ravi@gmail.com (Ravi Kumar Avvari) DOI: 10.22098/JOAPE.2023.10371.1746

Research Paper

© 2023 University of Mohaghegh Ardabili. All rights reserved.

optimization techniques and ii) meta-heuristic optimization techniques. The deterministic methods are programming, linear non-linear programming, Quadratic programming, gradient technique, etc. In [4], the authors proposed a quadratic programming method to minimize power loss in the OPF problem. In [5] interior point method was proposed by the authors for solving the OPF problem. However, these deterministic approaches [6] are sensitive to initial values of the problem, sensitive to problem dimensions, and also theoretical assumptions related to problems that lead to trapping the solution to local optima. Moreover, these methods are difficult to handle mixed variable problems and constraints. It also exhibits poor convergence.

To overcome the problems with deterministic methods, various meta-heuristic methods are deployed to solve the OPF problems with and without RES. In [7], the Symbiotic organisms search (SOS) algorithm was proposed to solve security-constrained AC-DC OPF including uncertainty of Wind, PV, and PEV systems. In [8], a robust cross-entropy covariance matrix adaption evolutionary strategy (CE-CMAES) was proposed for solving the dynamic OPF problems. In this work, the dynamic OPF problem is modelled by considering the uncertainties of RESs and PEVs. In [9],

the authors proposed an SOS algorithm for resolving the optimal AC power flow problem with thermal-windsolar-tidal systems. The uncertainties associated with wind-solar-tidal systems were modelled using Weibull, Lognormal, and Gumbel PDFs respectively. In [10], the authors developed and solved different constrained OPF problems for power systems containing RESs like wind and solar power using a hybrid modified imperialist competitive algorithm and sequential quadratic programming (HMICA-SQP). Numerous authors [11-14] focused on single-objective optimization issues in the literature. The researchers presented multi-objective optimization strategies to circumvent these limitations.

The MOEAs are gaining popularity for solving multiobjective optimization problems. The MOOPF is a nonlinear, non-convex, constrained optimization problem and demands efficient methods [15]. In [16], to solve the OPF problem, a weighted sum-based differential evolutionary (DE) algorithm was presented. In this method, multiple objectives are transformed into a single-objective optimization problem by multiplying each objective with a weight such that the sum of the weights must be unity. In [17], the authors proposed a weighted sum-based Manta-Ray Foraging optimization (MRFO) algorithm to solve both single and multiobjective OPF problems with RES. The authors modified the test systems by incorporating wind and solar units at different buses and the results were analyzed for the original test system, Modification-1, and Modification-2 scenarios. In [18-20], the authors proposed weighted sum-based methods to solve the MOOPF problem. These methods are simple and easy to implement. However, the drawback of this method is, that it depends on the weights that are allocated to each objective and it fails to obtain the trade-off solutions.

In [21], the authors proposed a parallel epsilon variable multi-objective genetic algorithm (PeV-MOGA) approach for probabilistic OPF with hybrid Wind-PV-PEV systems. In this approach, the MCS was merged with the antithetic variable method (AVM) to compute the PDF of the power generated by the wind-PV-PEV system. To reduce the computational burden, the POPF problem was solved using a master-slave PeV-MOGA. In [22], a novel multi-objective glowworm swarm optimization (MO-GSO) algorithm was introduced for tackling the MOOPF in a wind integrated power system. In [23], a new hybrid algorithm based on modified GAPSO was proposed for solving the MOOPF problem. In comparison to normal PSO, PSO-GA is more trustworthy in terms of producing high-quality solutions in a fair amount of time, because the hybrid strategy avoids early convergence to local optima and allows for better exploration of the search process. In [24-26], the authors proposed Pareto dominance-based methods for the MOOPF problem. However, the Pareto-based methods suffer from limitations, such as the deterioration of selection pressure as the number of objectives increases, as a result, the effectiveness of the solution reduces.

In this work, the uncertainties associated with wind, PV, and PEV systems are represented using Weibull, lognormal and normal PDFs, and uncertainty costs are calculated using MCSs. However, in the literature, there are many uncertainties to consider and several ways to calculate the uncertainty cost. In [27], the authors introduced the stochastic optimization process by considering uncertainties in electricity demand, natural gas infrastructures, PV units, and wind generation using mixed-integer linear programming (MILP). To prove the effectiveness of the stochastic optimization approach, a modified IEEE 31-bus system was used. In [28], the authors proposed a modified Metropoliscoupled Markov chain Monte Carlo $(MC)^3$ simulation to predict the stochastic behavior of different uncertain sources. Solar radiation, wind speed, the water flow of a river, load consumption, and electricity prices are considered primary sources of uncertainty. In addition, a novel curve-fitting approach is proposed to improve the accuracy of distribution functions. Generally, MOEAs are modeled to handle conflicting goals like convergence and diversity [29].

Novelties	Pros	Cons		
1. A new selection	1. More uniformly	1. The performance		
approach called	distributed Pareto	of the algorithm		
	fronts and improved	depends on parameter		
normalized objectives	convergence	settings.		
	characteristics are			
introduced.	obtained.			
2. Efficient constant	2. A penalty-free	2. Parameters are to		
handling method	constraint handling	be selected by trial		
	technique was			
of feasible solutions	proposed which can			
(SF) method is used to	handle constraints very			
tackle various				
constants.	3. A single run is	3. More		
	sufficient to achieve	computational time is		
	the Pareto optimal	needed, when the		
		number of objective		
	4. It is capable of	functions increases.		
	optimizing many			
	objectives concurrently			
	without the decision-			
	makers knowledge			

Table1. Novelties, pros, and cons of the proposed method

Convergence is about achieving a globally optimal solution, while diversity is about searching a wide search space. Since these are conflicting objectives, both cannot be optimized at a time and therefore a tradeoff between convergence and diversity is used to select a good quality solution. Hence, a novel hybrid MOEA is developed and evaluated on standard test systems for resolving the MOOPF using Wind, PV, and PEVs. In this paper, IEEE 30, 57, and 118-bus test systems were modified by adding wind, solar, and PEV energy systems. The conventional OPF itself is a large-scale, non-linear, non-convex constrained optimization problem, while integrating the Wind, PV, and PEVs, the complexity further escalates due to the intermittency of these sources. To address this problem, a new hybrid MOEA along with an effective constant handling method called superiority of feasible solutions (SF), is proposed to solve the MOOPF problem with Wind-PV-PEV.

The main contributions of the paper include:

- Proposing a unique hybrid MOEA for solving the MOOPF problem based on the decomposition and summation of normalized objectives with an enhanced diverse selection.
- ▶ Integrating Wind, PV, and PEV energy systems into the traditional OPF to investigate the effect of the stochastic nature of the sources.
- ▶ Modeling uncertainty associated with Wind, PV, and PEV systems using PDFs, and the associated uncertain cost are evaluated using Monte-Carlo simulations.
- > Considering the total cost (TC), total emission (TE), APL, and VMD are the objective functions.
- > Using an efficient constant handling method called the superiority of feasible solutions (SF) method to tackle various constants in the MOOPF problem.

The rest of the paper is structured as follows: Section 2 discusses the formulation of the problem. Section 3 deals with the mathematical modelling of Wind, PV, and PEV systems. Section 4 presents the proposed algorithm. Section 5 deals with simulation studies. Conclusions are made in section 6.

2. PROBLEM FORMULATION

The objectives and constants for the considered MOOPF problem are expressed as follows:

2.1. Optimization objectives

Total cost (TC):

$$\min f_{TC} = \sum_{i=1}^{NTC} (a_i + b_i P_{TGi} + c_i P_{TGi}^2)$$

$$+ \sum_{j=1}^{NWG} [C_{w,j}(P_{wi,j}) + C_{Rw,j}(P_{wi,j} - P_{wav,j}) + C_{Pw,j}(P_{wav,j} - P_{wi,j})]$$

$$+ \sum_{k=1}^{NSG} [C_{i,k}(P_{si,k}) + C_{Ri,k}(P_{si,k} - P_{siv,k}) + C_{Pi,k}(P_{sav,k} - P_{si,k})]$$

$$+ \sum_{l=1}^{NPEV} [C_{pev,l}(P_{pevi,l}) + C_{Rpev,l}(P_{pevi,l} - P_{pevi,l}) + C_{Ppev,l}(P_{peviv,l} - P_{pevi,l})]$$

$$(1)$$

where f_{TC} -total cost of generation (\$/h); P_{TGi} -real power generation of a i^{th} thermal generator; a_i, b_i, c_i . i^{th} generator cost coefficients;

Total emission (TE):

$$\min f_{TE} = \sum_{i=1}^{NTG} (\alpha_i + \beta_i P_{TGi} + \gamma_i P_{TGi}^2 + \xi_i e^{\lambda_i P_{Gi}})$$
(2)

where f_{TF} -total emission of generators (ton/h); $\alpha_i, \beta_i, \gamma_i, \xi_i, \lambda_i - i^{th}$ generator emission coefficients;

Active power loss (APL):

$$\min f_{APL} = \sum_{k=1}^{NL} (G_k (V_i^2 + V_j^2 - 2V_i V_j \cos \theta_{ij}))$$
(3)

where f_{APL} -active power loss (MW); G_k conductance of k^{th} line;

Voltage magnitude deviation (VMD):

$$\min f_{VMD} = \sum_{i=1}^{NPQ} |(V_i - V_{ref})|$$
(4)

where f_{VMD} -voltage magnitude deviation (p.u.); $V_{ref} = 1.0$ p.u. i.e., reference voltage.

2.2. Constraints

Power flow constraints

$$P_{Gi} - P_{Di} - V_i \sum_{j=1}^{NB} V_j (G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij}) = 0; \ i = 1, 2, ...NB$$
(5)

$$Q_{Gi} - Q_{Di} - V_i \sum_{j=1}^{NB} V_j (G_{ij} \sin \theta_{ij} - B_{ij} \cos \theta_{ij}) = 0; \ i = 1, 2, ... NB$$
(6)

Generator constraints

$P_{TGi}^{\min} \leq P_{TGi} \leq P_{TGi}^{\max}$	<i>i</i> = 1, 2, <i>NTG</i>	(7)
$P_{{\scriptscriptstyle WS},j}^{\min} \leq P_{{\scriptscriptstyle WS},j} \leq P_{{\scriptscriptstyle WS},j}^{\max}$	<i>j</i> = 1, 2, <i>NWG</i>	(8)
$P_{ss,k}^{\min} \leq P_{ss,k} \leq P_{ss,k}^{\max}$	k = 1, 2,NSG	(9)
$P_{pev,l}^{\min} \leq P_{pev,l} \leq P_{pev,l}^{\max}$	<i>l</i> = 1, 2, <i>NPEV</i>	(10)
$Q_{TGi}^{\min} \leq Q_{TGi} \leq Q_{TGi}^{\max}$	<i>i</i> = 1, 2, <i>NTG</i>	(11)
$Q_{ws,j}^{\min} \leq Q_{ws,j} \leq Q_{ws,j}^{\max}$	<i>j</i> = 1, 2, <i>NWG</i>	(12)
$Q_{ss,k}^{\min} \leq Q_{ss,k} \leq Q_{ss,k}^{\max}$	k = 1, 2,NSG	(13)
$V_{Gi}^{\min} \leq V_{Gi} \leq V_{Gi}^{\max}$	<i>i</i> = 1, 2, <i>NG</i>	(14)
Shunt compensat	or constraints	
$Q_{Ci}^{\min} \leq Q_{Ci} \leq Q_{Ci}^{\max}$	<i>i</i> = 1, 2, <i>NC</i>	(15)
Transformer cons	straints	
$T_k^{\min} \leq T_k \leq T_k^{\max}$	k = 1, 2,NT	(16)
Security constrain	nts	
$V_{Lp}^{\min} \leq V_{Lp} \leq V_{Lp}^{\max}$	<i>p</i> = 1, 2, <i>NLB</i>	(17)
$\mid S_{lq} \mid \leq S_{lq}^{\max}$	q = 1, 2,NL	(18)

where P_{G_i} , Q_{G_i} -real and reactive power injection at i^{th} bus; P_{Di} , Q_{Di} -real and reactive power demand at i^{th} bus ; G_{ii}, B_{ii} -conductance and susceptance between buses *i* and j; NB, NTG, NWG, NSG, NPEV, NC, NPO, NT, NLB and NL -number of buses, thermal generators, wind generators, solar units, PEVs, shunt VAR compensators, PQ buses, transformers, load buses and lines respectively; P_{TGi}^{\min} , P_{TGi}^{\max} -min-max limits on i^{th} thermal generator real power; $P_{ws,j}^{\min}$, $P_{ws,j}^{\max}$ -min-max limits on j^{th} wind generator real power; $P_{ss,k}^{min}$, $P_{ss,k}^{max}$ min-max limits on k^{th} solar unit real power; P_{nonl}^{min} , P_{TGi}^{max} -min-max limits on l^{th} PEV real power; Q_{TGi}^{min} , O_{rec}^{max} -min-max limits on i^{th} thermal generator reactive power; $Q_{ws,j}^{\min}$, $Q_{ws,j}^{\max}$ -min-max limits on j'' wind generator reactive power; $Q_{ss,k}^{\min}$, $Q_{ss,k}^{\max}$ -min-max limits on k^{th} solar unit reactive power; S_{la} , S_{la}^{max} -apparent power flow and its maximum limit respectively; Q_{Ci}^{\min} , O_{Ci}^{max} -min-max limits of i^{th} shunt VAR compensator; T_{k}^{\min} , T_{k}^{\max} -min-max limits of k^{th} transformer tap positions; V_{Gi}^{\min} , V_{Gi}^{\max} - min-max limits of i^{th} bus voltages; θ_{ii} -voltage angle between buses \dot{i} and j;

Two equality constraints (Eqs.5 and 6) are automatically satisfied when the power flow converges to an optimal solution. The generator buses' real power (excluding slack bus), transformer tap ratios, voltage limits, and shunt compensator ranges are considered control variables that are self-limiting. The remaining inequality constraints require a constraint handling method.

3. MODELING OF STOCHASTIC WIND, PV, AND PEV SYSTEMS

In this part, the Wind, PV, and PEV systems are integrated into the conventional OPF problem. Modeling of Wind, PV, and PEV systems are discussed below:

3.1. Wind, PV, and PEV Modeling

3.1.1. Wind Energy Modelling

The wind speed distribution likely follows the Weibull PDF [30, 31]. And it is mathematically written as:

$$f(v) = \left(\frac{k}{c}\right) \left(\frac{v}{c}\right)^{(k-1)} \left(e^{\left(\frac{v}{c}\right)^k}, 0 < v < \infty\right)$$
(19)

where v is the wind speed (m/sec); k, c are the shape, and scale factors set at 2,10 respectively.

The power output of a wind turbine in terms of wind speed is expressed as:

$$p_{w}(v) = \begin{cases} 0, & \text{for } v < v_{in} \text{ and } v > v_{out} \\ p_{wr}\left(\frac{v - v_{in}}{v_{r} - v_{in}}\right), & \text{for } v_{in} \le v_{w} \le v_{r} \\ p_{wr}, & \text{for } v_{r} < v_{w} \le v_{out} \end{cases}$$
(20)

where p_{wr} is the rated wind power output; v_{in} , v_r and v_{out} are the cut-in, rated and cut-out wind speeds with 3 m/sec, 16 m/sec, and 25 m/sec respectively.

Referring to Eq. (20), it is noticed that the power output is zero when the wind speed lies between cut-in and cut-out speeds. The wind turbine gives its rated power when the wind speed lies between its rated and cut-out speeds. The power production is continuous while the wind speed ranges between the cut-in and the rated speed. For discrete regions, the probabilities are expressed as:

$$f_w(p_w = 0) = 1 - \exp\left(-\left(\frac{v_{in}}{c}\right)^k\right) + \exp\left(-\left(\frac{v_{out}}{c}\right)^k\right)$$
(21)

$$f_w(p_w = p_{wr}) = \exp\left(-\left(\frac{v_r}{c}\right)^k\right) + \exp\left(-\left(\frac{v_{out}}{c}\right)^k\right)$$
(22)

$$f_{w}(p_{w}) = \left(\frac{k(v_{r} - v_{in})}{cp_{wr}}\right) \left(\frac{v_{in}p_{wr} + p_{w}(v_{r} - v_{in})}{cp_{wr}}\right)^{(k-1)} \exp\left(-\left(\frac{v_{in}p_{wr} + p_{w}(v_{r} - v_{in})}{cp_{wr}}\right)^{k}\right) (23)$$

3.1.2. Photo-voltaic (PV) Energy Modelling

The output of a PV unit is determined by solar irradiance (G_s) which most often follows a lognormal distribution [31, 32]. The lognormal PDF is mathematically expressed as:

$$f_G(G_s) = \frac{1}{G_s \sigma \sqrt{2\pi}} \exp\left\{\frac{-(\ln G_s - \mu)^2}{2\sigma^2}\right\}, \text{ for } G_s > 0$$
(24)

where μ and σ are the mean and standard deviations set as 6 and 0.6 respectively.

The conversion of solar irradiance to energy can be described as:

$$P_{s}(G_{s}) = \begin{cases} P_{sr}\left(\frac{G_{s}^{2}}{G_{std}R_{c}}\right) \text{ for } 0 < G_{s} < R_{c} \\ P_{sr}\left(\frac{G_{s}}{G_{std}}\right) \text{ for } G_{s} \ge R_{c} \end{cases}$$

$$(25)$$

where G_{std} is the standard solar irradiance set to 800 W/m²; R_c is the particular irradiance point set to 120 W/m²; P_{sr} is the PV unit rated power output.

3.1.3. Plug-in electric vehicle (PEV) Modelling

In recent days, public transport electric vehicles ply most of the time during the day and are charged during off-peak periods and so are not suitable for V2G application. The use of privately-owned vehicles is observed to be opposite to that of public transport PEVs. The privately-owned PEVs are generally idle for most of the time during the day and hence these PEVs are suitable for the vehicle to grid (V2G) power fed capability.

The availability of electric vehicles as V2G source follows the normal distribution as follows [33]:

$$f(P_{pev}) = \frac{1}{\varphi \sqrt{2\pi}} \exp\left\{-\frac{(P_{pev} - \mu)^2}{2\varphi^2}\right\}$$
(26)

where μ and φ are the mean and standard deviations set as 3.2 and 0.88 respectively. P_{pev} is the available V2G power;

Here, the PEVs are used as a source of power feeding grid through suitable infrastructure. The following assumptions are made regarding the use of PEV as a power source.

- All PEVs supply battery power to the power network through DC/AC inverter.
- All PEVs represent one big V2G charging/discharging station.
- V2G system as power source controller.

Depending on the probability of PEVs available, the direct, reserve, and penalty costs are calculated

Since Wind, PV, and PEV sources are intermittent in nature, the Monte-Carlo simulations are used to account for uncertainty and to calculate the uncertainty cost. The estimated price for the intermittency of Wind, PV, and PEV powers is reflected in three ways: direct price, reserve price, and penalty price. Whenever power is underestimated, extra unusable power is wasted; however, in practical power system applications, such power can be saved in an energy storage system and thus counted as the reserve price. The price of overestimating power that is lower than the scheduled power is considered a penalty price in the case of overestimation.

3.2. Direct cost calculation of Wind, PV and PEV

Direct cost associated with j^{th} wind unit is modelled as

$$C_{w,j}(P_{ws,j}) = g_j \times P_{ws,j}$$
⁽²⁷⁾

The direct cost associated with k^{th} PV unit is modelled below:

$$C_{s,k}(P_{ss,k}) = h_k \times P_{ss,k} \tag{28}$$

Similarly, the direct cost pertaining to l^{th} PEV unit is modelled below:

$$C_{pev,l}(P_{pevs,l}) = d_l \times P_{pevs,l}$$
⁽²⁹⁾

where P_{ws} , P_{ss} and P_{pevs} are the scheduled powers of wind, PV, and PEV system respectively; g_j , h_k and d_l are the direct cost coefficients of j^{th} wind, k^{th} PV and l^{th} PEV systems respectively set as 1.75, 1.60, and 1.60;

3.3. Uncertainty cost calculation of wind power

When the wind farm's actual output falls short of the predicted value, the system operator must maintain a spinning reserve to ensure that consumers receive uninterrupted power. This is called overestimation of power delivered from uncertain sources and the cost incurred to maintain the spinning reserve is known as Reserve cost [30, 31]. Reserve cost associated with j^{th} wind unit is defined as:

$$C_{Rw,j}(P_{ws,j} - P_{wav,j}) = K_{Rw,j}(P_{ws,j} - P_{wav}, j) = K_{Rw,j} \int_{0}^{P_{ws,j}} (P_{ws,j} - P_{w,j}) f_{w}(p_{w,j}) dp_{w,j}$$
(30)

In contrast to the overestimation case, when the actual power produced by the wind farm exceeds the predicted value, the surplus power is squandered if it cannot be utilized. As a result, the independent system operator (ISO) is required to pay a penalty fee for excess power. This is referred to as the underestimation of power delivered from uncertain sources. Penalty cost associated with j^{th} wind unit is defined as:

$$C_{P_{w,j}}(P_{wav,j} - P_{ws,j}) = K_{P_{w,j}}(P_{wav,j} - P_{ws,j}) = K_{P_{w,j}} \int_{P_{ws,j}}^{P_{ws,j}} (p_{w,j} - P_{ws,j}) f_w(p_{w,j}) dp_{w,j}$$
(31)

where $K_{Rw,j}$ and $K_{Pw,j}$ are the reserve and penalty cost coefficients of j^{th} wind power plant set as 3 and 1.5 respectively; $P_{wr,j}$ and $P_{wav,j}$ are the rated and actual available powers of j^{th} wind unit; $f_w(p_{w,j})$ be the possibility of j^{th} wind power.

3.4. Uncertainty cost calculation of PV

Like the wind, PV power also shows intermittency in output power. The approach to calculating the over and underestimation costs of PV is as follows [32]. Reserve cost associated with κ^{th} PV plant is defined as:

 $C_{Rs,k}(P_{ss,k} - P_{sav,k}) = K_{Rs,k}(P_{ss,k} - P_{sav,k}) = K_{Rs,k} * f_s(P_{sav,k} < P_{ss,k}) * [P_{ss,k} - E(P_{sav,k} < P_{ss,k})] (32)$

Penalty cost associated with k^{th} PV plant is defined as: $C_{P,k}(P_{soc,k}-P_{s,k}) = K_{P,k}(P_{soc,k}-P_{s,k}) = K_{P,k}*f_{s}(P_{soc,k}>P_{s,k})*[E(P_{soc,k}>P_{s,k})-P_{s,k}]$ (33) where $K_{Rs,k}$ and $K_{Ps,k}$ are the reserve and penalty cost coefficients of k^{th} PV plant respectively set as 3 and 1.5; $P_{sav,k}$ is the actual available power of k^{th} PV plant; $f_{s}(P_{sav,k} < P_{ss,k})$ and $f_{s}(P_{sav,k} > P_{ss,k})$ are the probabilities of solar power shortage and surplus respectively; $E(P_{sav,k} < P_{ss,k})$ and $E(P_{sav,k} > P_{ss,k})$ are the expectations of solar power below and above $P_{ss,k}$ respectively.

3.5. Uncertainty cost calculation of PEV

Similarly, PEVs also show intermittency in output power. The approach to calculating the over and underestimation costs of PEV is as follows [34, 35].

Reserve cost associated with l^{th} PEV is defined as: $C_{Rper,l}(P_{per,l} - P_{per,r,l}) = K_{Rper,l}(P_{per,l} - P_{per,r,l}) = K_{Rper,l} \int_{0}^{p_{er,l}} (P_{per,l} - P_{per,l}) f_{per}(P_{per,l}) dP_{per,l}$ (34) Penalty cost associated with l^{th} PEV is defined as: $C_{Pper,l}(P_{per,r,l} - P_{per,l}) = K_{Pper,l}(P_{per,r,l} - P_{per,l}) = K_{Pper,l} \int_{p_{per,l}}^{p_{per,l}} (p_{per,l} - P_{per,l}) dP_{per,l}$ (35) where $K_{Rpev,l}$ and $K_{Ppev,l}$ are the reserve and penalty cost coefficients of l^{th} PEV set as 3 and 1.5 respectively; $P_{pevr,l}$ and $P_{pev,l}$ are the rated and actual available powers of l^{th} PEV respectively; $f_{pev}(P_{pev,l})$

is the l^{th} PEV power probability.

3.6. Constraint Handling Method (CHM)

A CHM must be used in conjunction with an evolutionary algorithm to guide the search process toward a globally optimal solution. Among the many CHMs, the most frequently employed is the penalty approach, which involves adding a penalty to the fitness of a non-feasible solution. Despite its simplicity and ease of implementation, this method's performance is highly dependent on the penalty factor, which must be calibrated through trial and error. To tackle this difficulty, in this study a new parameter-free CHM superiority of feasible solution (SF) is introduced in the study for solving the MOOPF problem.

In [36], Deb introduced the SF method for handling different constraints efficiently. In the SF method, a comparison is drawn between a pair of solutions. When a pair of solutions is compared, the following cases emerge:

(1) While comparing two non-feasible solutions, the solution having the smallest constraint violation is selected.

- (2) When two feasible solutions are compared, the one with a better fitness solution is selected.
- (3) When a feasible solution is compared to a non-feasible solution, the feasible solution is selected.

Comparing non-feasible solutions based on constraint violation helps push non-feasible answers into the feasible region while comparing viable solutions based on the fitness value enables solution quality to be improved.

By incorporating these three rules into the proposed algorithm to solve the MOOPF problem, two situations arise, the first of which is when the population size is lower than the number of feasible solutions, and the second method is to ignore non-feasible solutions. The use of the summation-based method is to select feasible solutions if the number of feasible solutions is greater than the population size.

4. PROPOSED ALGORITHM

The MOEAs are normally modeled to handle different conflicting goals, such as maximizing the spread of solutions along the Pareto front (i.e., diversity) and minimizing the distance between the solutions along the Pareto front (i.e., convergence) [37]. The trade-off between convergence and diversity is important to choose the best solution among the obtained solutions. Therefore, a new strategy is proposed in this study to strike a compromise between convergence and diversity.

In this paper, a summation of normalized objective values (SNOV) with improved diversified selection (IDS) is suggested and integrated with the multiobjective evolution algorithm based on the decomposition (MOEA/D) [38] method to solve the MOOPF problem with RES. The MOEA/D method decomposes the multi-objective optimization problem into several single scalar optimization problems and optimizes them all at the same time using weight vectors. The weight vectors' distance is used to create neighborhoods. In every population evolution, information from the neighborhood is used to find a solution. The non-dominated sorting used in MOEA/D is complex and time-taking. Some useful information may be lost if the dominant solutions are completely discarded. In addition, diversity may be lost during the search process and lead to local optima. To overcome these problems, the summation of normalized objectives values [39] with IDS is employed in this paper instead of non-dominated sorting selection to get uniformly distributed Pareto front and improved convergence characteristics.

A new constraint handling strategy called the superiority of feasible solutions (SF) approach is employed to tackle various constraints (i.e. equality and inequality) of the MOOPF problem. The suggested algorithm employs the fuzzy method to get the best-compromised values. The outcomes of the suggested method are compared with popular methods like NSGA-II [40] and MOPSO [41] for different cases.

The main steps in the proposed method can be stated as follows:

Step 1: Input:

- Dimensions of the problem.
- Population size (*N*).
- Stopping criteria.
- Decision variable size.
- Limits of decision variables in vector form.
- Control parameters of the corresponding method.
- Test system data.

Step 2: Initialization:

- POP: Generate an initial population (Pt) of size *N*.
- Generate uniformly distributed weight vectors using a systematic sampling approach (SSA) [42] with the number of weight vectors defined as:

$$N(D,M) = \begin{pmatrix} D+M-1 \\ M-1 \end{pmatrix}$$
(36)

where M be the number of objective functions.

- Run the load flow, and calculate the fitness of the selected objective and total constraint violation.
- Locate neighbors with the smallest angles for each weight vector using angle criteria [43] as follows:

$$\tan \theta = \frac{d_2}{d_1}$$
(37)

$$d_{1} = \frac{\left\| w_{i}^{T} w_{j} \right\|}{\left\| w_{j} \right\|}, \ d_{2} = \left\| w_{i} - d_{1} \frac{w_{j}}{\left\| w_{j} \right\|} \right\|$$
(38)

where W_i , W_i are the weight vectors.

- Find the smallest objective values to form the present ideal point.
- Find the largest objective values to form the present nadir point.
- Set iteration count=1.

Step 3: Reproduction:

• Use an angle criterion to choose *N* pair of mating parents. A set of mating parents is

picked from neighbors with a probability of δ for each weight vector.

- Perform two-point crossover and mutation operations to generate a new population (Qt).
- Calculate the fitness of objective functions for the newly generated population (Qt).
- Calculate the total constraint violation for the new population (Qt).
- Merge the original population (Pt) and the new population (Qt).

Step 4: Investigation of feasible solutions:

- Sort the total population ascending by total constraint violation values.
- Discover feasible solutions.
- If the number of feasible solutions is lower than the population size (*N*), **Go to Step 6.**
- If minimum *N* feasible solutions exist in the combined population, **Go to Step 5**.

Step 5: Normalization and selection:

• Determine the normalized objective value for each objective and solution using the below equation [39, 44].

$$f_{i}^{*}(x^{m}) = \frac{f_{i}(x^{m}) - f_{i,\min}}{f_{i,\max} - f_{i,\min}}$$
(39)

where $f_i^{"}(x^m)$ is the normalized value of x^m for *i* -th objective, $f_{i,\min}, f_{i,\max}$ are the min, max.values of the *i* -th objective.

• Obtain a summation of the normalized objective values for all solutions [39, 44].

$$F^{*}(x^{m}) = \sum_{i=1}^{M} f^{*}_{i}(x^{m})$$
(40)

- Calculate the Euclidian distance between the origin and the sum of all normalized objective values. The stopping point is determined by the solution that produces total normalized objective values close to the origin.
- Equally, divide the objective space into 100 bins where scanning of the bins should continue until the scanning procedure reaches a stopping point. The solution with the shortest sum of normalized objective values is chosen to enter the preferred set for each scanned bin.
- The backup set includes unselected solutions as well as solutions dominated by the stopping point.

Step 6: Termination:

• Increase iteration number by one i.e. iter=iter+1.

• If the stopping requirement is met, Stop else Go to Step 3.

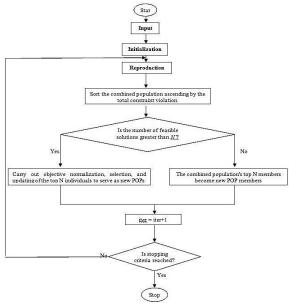


Fig.1. Flow chart of the suggested method

5. SIMULATION AND RESULTS

To evaluate the efficacy of the suggested method, it is implemented on three test systems, namely, IEEE 30, 57, and 118-bus power systems. The suggested method for the MOOPF problem was executed in MATLAB R2016a and the simulations were carried out on i3-Processor with 4GB RAM.

S. No.	Method	Control Parameters						
1.	Proposed	Population size	(N) = 1	00, No	. of divis	ions made		
	Method	along with every	/ objec	t (D) =	12, neigl	nbourhood		
	:	size (T) =20, Ci	ossove	r rate ($(P_c) = 1.0$, Mutation		
	1	rate $(P_m) = 0.05$, No. of iterations=100.						
2.	NSGA-II	Population size	(N) =1	00, No	. of itera	tions=100,		
	[40]	Crossover rate $(P_c) = 0.8$, Mutation rate $(P_m) = 0.01$.						
3.	MOPSO	Population size (N) =100, C1=C2=2, W=0.5, No.						
	[41]	of iterations=100.						
Table 3. Various cases considered in this paper								
S.	Test system	Case	TC	TE	APL	VMD		
No								
		Case-1	✓	\checkmark	-	-		
	IEEE 30-bus	Case-2	✓	-	✓	-		
1.	system	Case-3	\checkmark	\checkmark	\checkmark	-		
	system	Case-4	~	✓	-	✓		

1

~

./

~

~

~

~

V

 \checkmark

 \checkmark

Case-5

Case-6

Case-7

Case-8

Case-9

Case-10

Case-11

Case-12

5.1. Modified IEEE 30-bus system

IEEE 57-bus

system

IEEE 118-bus

system

2.

3.

Table 2. Control parameters of various methods

generator acts as a slack generator) with 41 lines. In this paper, 4 off-nominal transformers are considered between lines 6-10, 6-9, 4-12, and 27-28 and 9 shunt VAR compensators are placed at the buses. The whole real and reactive power demand on the system is 238.40MW and 126.20MVAR respectively [45]. In addition to the above, the system is modified by connecting Wind, PV, and PEV systems at buses 21, 7, and 30 respectively.

5.1.1. Case-1: Minimize TC and TE simultaneously

In this case, TC and TE are the objectives considered for minimizing simultaneously. The optimal decision variables obtained by the suggested method are included in Table 4. The best-compromised values using the proposed algorithm have a TC of 858.9256\$/h and TE of 0.2093ton/h which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 5. The best-compromised values achieved using the above methods are 859.9519\$/h, 0.2101ton/h, and 863.2138\$/h, 0.2116ton/h respectively. Fig. 2 depicts the Pareto optimal (PO) fronts for each approach.

5.1.2. Case-2: Minimize TC and APL simultaneously

In this case, TC and APL are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 4. The best-compromised values using the proposed algorithm have a total cost of 853.6756\$/h and an APL of 2.3263MW which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 5. The best-compromised values achieved using the above methods are 855.2758\$/h, 2.4230MW, and 858.9110\$/h, 2.5328MW respectively. Fig. 3 depicts the PO fronts for each approach.

5.1.3. Case-3: Minimize TC, TE and APL simultaneously

In this case, TC, TE, and APL are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 4. The best-compromised values using the proposed algorithm have a TC of 868.3559\$/h, TE of 0.2079ton/h, and APL of 2.1775MW which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 5. The best compromised values achieved using the above methods are 869.2563\$/h, 0.2078ton/h, 2.3740MW and 876.5231\$/h, 0.2058ton/h, 3.2157MW respectively. Fig.4 depicts the PO fronts for each approach.

5.1.4. Case-4: Minimize TC, TE and VMD simultaneously.

The IEEE 30-bus power system has 6 thermal generators placed at buses 1, 2, 5,8,11, and 13 (# 1

In this case, TC, TE, and VMD are the objectives

considered for minimizing simultaneously. The optimal decision variables obtained by the suggested method are included in Table 4. The best-compromised values using the proposed algorithm have a TC of 842.3661\$/h, TE of 0.2184ton/h, and VMD of 0.0973p.u.which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 5. The best compromised values achieved using the above methods are 843.7067\$/h, 0.2154ton/h, 0.1335p.u.and 854.4809\$/h, 0.2142ton/h, 0.1606p.u.respectively. Fig. 5 depicts the PO fronts for each approach.

5.1.5. Case-5: Minimize TC, TE, APL, and VMD simultaneously.

In this case, TC, TE, APL, and VMD are the objectives considered to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 4. The best-compromised values using the proposed algorithm have a TC of 865.0922\$/h, TE of 0.2095ton/h, APL of 2.2978MW, and VMD of 0.1336p.u. which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 5. The best compromised values achieved using the above methods are 869.8337\$/h, 0.2107ton/h, 2.5380MW, 0.2561p.u.and 918.3540\$/h, 0.2026ton/h, 1.8499MW, 0.1804p.u. respectively.

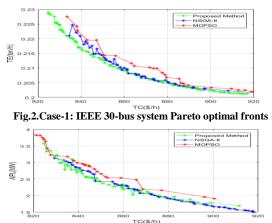


Fig.3. Case-2: IEEE 30-bus system Pareto optimal fronts

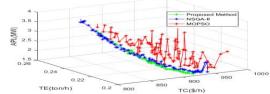


Fig.4. Case-3: IEEE 30-bus system Pareto optimal fronts

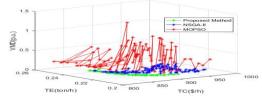


Fig.5. Case-4: IEEE 30-bus system Pareto optimal fronts

Table 4. IEEE 30-bus system: best-compromised values achieved by the suggested method for Case-1 to 5

by the suggested method for Case-1 to 5									
		Control	Lir	nits					
S.No.	Control	variables			Case-1	Case-2	Case-3	Case-4	Case-5
5.110.	variables	at	Min	Max	Case-1	Case-2	Case-5	Case-4	Case-5
		bus/line							
1.		2	20	80	45.9458	43.7045	45.7895	45.0363	45.0262
2.		5	15	50	27.8704	32.3782	32.0212	24.5831	31.3830
3.		8	10	35	25.4106	22.3175	22.3489	20.9377	25.9356
4. 5.	Power	11	10	30	23.7889	15.9720	22.8090	16.0211	18.7876
	(MW)	13	12	40	26.8761	18.4583	23.7380	22.8131	23.3002
6.		21	0	50	34.2826	38.0159	36.5405	33.2034	34.9378
7.		7	0	50	36.6994	44.6478	41.7745	41.6915	41.3679
8.		30	0	15	3.4689	8.9195	8.1977	9.6364	9.8781
9.		1	0.95	1.1	1.0366	1.0412	1.0395	1.0115	1.0296
10.		2	0.95	1.1	1.0239	1.0339	1.0323	1.0098	1.0199
11.	Voltage	5	0.95	1.1	0.9942	1.0128	1.0103	0.9947	0.9953
12.	(p.u)	8	0.95	1.1	1.0172	1.0213	1.0238	0.9926	1.0028
13.		11	0.95	1.1	1.0222	1.0305	1.0377	1.0176	0.9882
14.		13	0.95	1.1	1.0210	1.0386	1.0291	1.0192	1.0209
15.		11	0.9	1.1	0.9851	0.9929	1.0002	1.0266	1.0108
16.	Tap ratio	12	0.9	1.1	0.9905	0.9912	1.0128	1.0231	1.0012
17.	Tap ratio	15	0.9	1.1	1.0200	0.9904	0.9873	0.9744	0.9872
18.		36	0.9	1.1	0.9873	0.9814	0.9976	0.9859	0.9827
19.		10	0	5	2.0773	2.2870	2.8454	2.2417	2.2433
20.		12	0.	5	2.8681	2.2815	5.5854	2.4882	3.5771
21.		15	0	5	2.2181	3.0105	3.8380	2.2779	2.2404
22.	Shunt VAR	17	0	5	1.5441	2.4913	2.5731	1.9535	2.3970
23.	compensator	20	0	5	2.1519	2.7815	2.8305	4.0611	3.2049
24.	(MVAR)	21	0	5	2.1637	2.3464	2.2532	1.7295	2.5201
25.		23	0	5	2.0966	2.4114	1.4699	3.1976	2.6193
26.		24	0	5	2.8898	2.8234	3.0354	3.6187	2.9410
27.		29	0	5	2.6363	2.4902	3.1590	3.4609	1.8377
1.	TC(\$/h)	-	-	-	858.9256	853.6756	868.3559	842.3661	865.0922
2	TE(ton/h)	-	-	-	0.2093	-	0.2079	0.2184	0.2095
3.	APL(MW)	-	-	-	-	2.3263	2.1775	-	2.2978
4.	VMD(p.u.)	-	ł	-	-	-	-	0.0973	0.1336

Table 5. IEEE 30-bus system: Comparison of the suggested method with NSGA-II [40] and MOPSO [41] for Case-1 to 5

method with NSGA-II [40] and MOPSO [41] for Case-1 to 5								
Case	Objective	Proposed	NSGA-II	MOPSO [41]				
Name	Functions	Method	[40]					
Case-1	TC(\$/h)	858.9256	859.9519	863.2138				
Case-1	TE(ton/h)	0.2093	0.2101	0.2116				
Case 2	TC(\$/h)	853.6756	855.2758	858.9110				
Case-2	APL(MW)	2.3263	2.4230	2.5328				
	TC(\$/h)	868.3559	869.2563	876.5231				
Case-3	TE(ton/h)	0.2079	0.2078	0.2058				
	APL(MW)	2.1775	2.3740	3.2157				
	TC(\$/h)	842.3661	843.7067	854.4809				
Case-4	TE(ton/h)	0.2184	0.2154	0.2142				
	VMD(p.u.)	0.0973	0.1335	0.1606				
Case-5	TC(\$/h)	865.0922	869.8337	918.3540				
	TE(ton/h)	0.2095	0.2107	0.2026				
Case-5	APL(MW)	2.2978	2.5380	1.8499				
	VMD(p.u.)	0.1336	0.2561	0.1804				

5.2. Modified IEEE 57-bus system

To demonstrate the scalability of the proposed approach, the MOOPF problem is solved using the IEEE 57-bus system. It contains 7 thermal generators placed at buses 1, 2, 3, 6, 8, 9, and 12 (# 1 generator acts as a slack generator) with 80 lines. In this paper, 15 off-nominal transformers are considered along with 3 shunt VAR compensators. The entire real and reactive power demand on the system is 1250.80MW and 336.40MVAR respectively [45]. The standard system is modified by connecting Wind, PV, and PEV systems at buses 45, 16, and 49 respectively.

5.2.1. Case-6: Minimize TC and TE simultaneously

In this case, TC and TE are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the recommended method are included in Table 6. The best compromise solution using the proposed algorithm has a TC of 35815.04\$/h and TE of 0.8950ton/h which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 7. The best-compromised values achieved using the above methods are 35850.00\$/h, 0.9928ton/h, and 35910.00\$/h, 1.0120ton/h respectively. Fig. 6 depicts the PO fronts for each approach.

5.2.2. Case-7: Minimize TC and APL simultaneously

In this case, TC and APL are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 6. The best compromise solution using the proposed algorithm has a total cost of 35169.27\$/h and an APL of 9.8050MW which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 7. The best-compromised values achieved using the above methods are 35344.00\$/h, 9.9855MW, and 35404.00\$/h, 11.2682MW respectively. Fig. 7 depicts the PO fronts for each approach.

5.2.3. Case-8: Minimize TC, TE and APL simultaneously

In this case, TC, TE, and APL are the objectives that need minimizing simultaneously. The optimal decision variables obtained by the suggested method are included in Table 6. The best-compromised values using the proposed algorithm have a TC of 35558.26\$/h, TE of 0.9673ton/h, and APL of 10.0796MW, which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 7. The best compromised values achieved using the above methods are 1.2498ton/h, 36336.00\$/h, 11.0813MW and 36402.69\$/h, 1.0450ton/h, 12.5591MW respectively. Fig. 8 depicts the PO fronts for each approach.

5.2.4. Case-9: Minimize TC, TE and VMD simultaneously

In this case, TC, TE, and VMD are the objectives that need minimizing simultaneously. The optimal decision variables obtained by the suggested method are included in Table 5. The best-compromised values using the proposed algorithm have a TC of 35888.04\$/h, TE of 0.9012ton/h, and VMD of 0.7043p.u. which is the lowest value compared with NSGA-I[40] and MOPSO [41] as reported in Table 6. The best compromised values achieved using the above methods are 36224.00\$/h, 0.9074 ton/h, 0.8284p.u. and 36989.00\$/h, 1.0916ton/h, 0.8060p.u. respectively. Fig.9 depicts the PO fronts for each approach.

5.2.5. Case-10: Minimize TC, TE, APL, and VMD simultaneously

In this case, TC, TE, APL, and VMD are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 6. The best-compromised values using the proposed algorithm have a TC of 35980.02\$/h, TE of 1.1696ton/h, APL of 10.5229MW, and VMD of 0.8308p.u. which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 7. The best compromised values achieved using above methods are 36250.00\$/h, 1.4175ton/h, 12.3871MW, 1.0481p.u. and 36662.59\$/h, 0.9367ton/h, 14.1833MW, 1.0669p.u respectively.

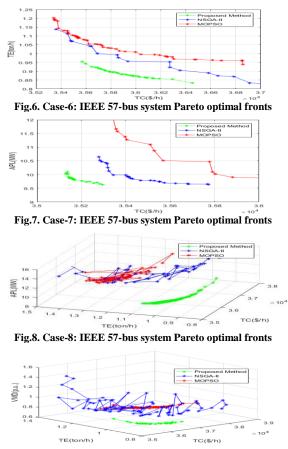


Fig.9. Case-9: IEEE 57-bus system Pareto optimal fronts

5.3. Modified IEEE 118-bus system

To show the scalability of the proposed algorithm for a large-scale test system in solving the MOOPF problem, IEEE 118-bus system was considered. It contains 54 thermal generators (# 69 generator as a slack generator), and 186 lines. In this paper, 9 off-nominal transformers and 12 shunt VAR compensators are considered. The sum of real and reactive power demand on the system is 4242.00MW and 1439.00MVAR respectively [45]. The test system is modified by connecting Wind, PV, and PEV systems at buses 81, 64, and 117 respectively.

5.3.1. Case-11: Minimize TC and APL simultaneously

In this case, TC and APL are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 8. The best compromise values using the suggested algorithm have a total cost of 129019.12\$/h and APL of 36.7616MW, which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 8. The best-compromised values achieved using the above methods are 129582.23\$/h, 37.3464MW, and 130673.5\$/h, 38.0368MW respectively. Fig. 10 depicts the PO fronts for each approach.

 Table 6. IEEE 57-bus system: best-compromised values achieved

 by the proposed method for Case-6 to 10

-		Control	I in	nits					
	Control	variables	LII	mts					
S.No.	variables	at	Min	Max	Case-6	Case-7	Case-8	Case-9	Case-10
	variables	at bus/line	IVIIII	wax					
1			0	100	95.7907	25.0904	84.1793	100.0000	57.9085
1.		2	0	140		49.7571	53.1935	75.5083	
			÷		69.0738				80.1009
3.		6	0	100	97.6214	54.1223	95.7712	79.7732	57.4498
4.	Power	8	0	550	304.0230	369.2352	302.8312	314.7732	329.5786
5.	(MW)	9 12	0	100	82.3521	70.0209	98.7022	83.9870	64.9448
6.			0	410	294.0245	384.9806	331.1684	282.9023	379.1110
7.		45	0	80	79.8467	79.8727	79.7886	79.4149	78.2859
8.		16	0	80	79.7469	79.9213	79.9465	79.8968	78.5326
9.		49	0	20	19.3799	19.9008	19.8993	19.6642	14.6734
10.		1	0.95		1.0385	1.0398	1.0340	1.0394	1.0226
11.		2	0.95		1.0279	1.0305	1.0286	1.0267	1.0102
12.	Voltage	3	0.95		1.0313	1.0244	1.0252	1.0227	1.0144
13.	(p.u)	6	0.95		1.0343	1.0185	1.0203	1.0228	1.0127
14.	(1.1)	8	0.95	1.1	1.0394	1.0135	1.0201	1.0253	1.0224
15.		9	0.95		1.0214	1.0013	1.0123	1.0102	1.0125
16.		12	0.95		1.0341	1.0209	1.0353	1.0217	1.0421
17.		19	0.9	1.1	1.0362	1.0148	1.0016	1.0159	1.0101
18.		20	0.9	1.1	1.0250	0.9987	0.9939	1.0109	0.9964
19.		31	0.9	1.1	1.0036	0.9842	0.9826	0.9953	1.0142
20.		35	0.9	1.1	1.0307	0.9945	1.0275	0.9830	0.9855
21.		36	0.9	1.1	0.9769	0.9873	0.9881	1.0323	0.9927
22.		37	0.9	1.1	1.0448	1.0182	1.0359	0.9926	1.0270
23.		41	0.9	1.1	1.0065	1.0187	0.9990	1.0269	1.0064
24.		46	0.9	1.1	0.9927	0.9800	0.9800	0.9426	0.9956
25.	Tap ratio	54	0.9	1.1	1.0014	0.9573	0.9536	0.9030	0.9065
26.		58	0.9	1.1	0.9821	0.9654	0.9724	0.9762	0.9780
27.		59	0.9	1.1	0.9530	0.9667	0.9719	0.9575	0.9732
28.		65	0.9	1.1	0.9719	0.9724	0.9847	0.9902	0.9799
29.		66	0.9	1.1	0.9873	0.9397	0.9485	0.9260	0.9536
30.		71	0.9	1.1	0.9720	0.9465	0.9750	0.9538	0.9620
31.		73	0.9	1.1	0.9815	0.9910	1.0087	1.0263	1.0091
32.		76	0.9	1.1	0.9844	0.9750	0.9706	0.9188	0.9641
33.		80	0.9	1.1	1.0118	0.9906	0.9973	1.0165	1.0106
34.	Shunt VAR	18	0	20	11.6868	10.7152	8.9393	7.2739	11.0809
35.	compensator	25	0	20	10.5195	11.2397	10.2799	13.0381	11.1002
36.	(MVAR)	53	0	20	10.8182	8.9104	6.1637	10.1057	8.4158
1.	TC(\$/h)	-	-	-	35815.04	35169.27	35558.26		35980.02
2.	TE(ton/h)	-	-	-	0.8950	-	0.9673	0.9012	1.1696
3.	APL(MW)	-	-	-	-	9.8050	10.0796	-	10.5229
4.	VMD(p.u.)	-	-	-	-	-	-	0.7043	0.8308
L	L		Ļ			L	0 17		
,	Fable 7. IF	сюю 57.	hiis	svet	em• (`oi	mnarisc	n of the	SILGGES	ted

Table 7. IEEE 57-bus	system. Col	nparison or u	ie suggesteu
method with NSGA-II	[40] and MC	OPSO [41] for	Case-6 to 10

Case Name	Objective	Proposed	NSGA-II	MOPSO [41]
	Functions	Method	[40]	
Case-6	TC(\$/h)	35815.04	35850.00	35910.00
Case-0	TE(ton/h)	0.8950	0.9928	1.0120
Case-7	TC(\$/h)	35169.27	35344.00	35404.00
Case-7	APL(MW)	9.8050	9.9855	11.2682
	TC(\$/h)	35558.26	36336.00	36402.69
Case-8	TE(ton/h)	0.9673	1.2498	1.0450
	APL(MW)	10.0796	11.0813	12.5591
	TC(\$/h)	35888.04	36224.00	36989.00
Case-9	TE(ton/h)	0.9012	0.9074	1.0916
	VMD(p.u.)	0.7043	0.8284	0.8060
Case-10	TC(\$/h)	35980.02	36250.00	36662.59
	TE(ton/h)	1.1696	1.4175	0.9367
Case-10	APL(MW)	10.5229	12.3871	14.1833
	VMD(p.u.)	0.8308	1.0481	1.0669

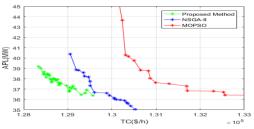


Fig.10. Case-11: IEEE 118-bus system Pareto optimal fronts

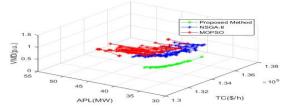


Fig.11. Case-12: IEEE 118-bus system Pareto optimal fronts

Table 8. IEEE 118-bus system: best-compromised values for Case-11 and Case-12

Min Max Method [40] [41] Method [40] [41] 1. 0 100 40.9447 48.3405 63.6501 63.4515 33.3504 63.3967 2. 4 0 100 49.9982 48.9338 53.5327 35.6629 33.2645 49.8533 3. 6 0 100 45.0837 44.6111 33.9415 47.8239 37.5502 42.1967 5. 10 0 550 193.3528 198.6711 225.9731 164.2240 212.8393 188.371 6. 118 0 100 48.9235 49.1643 56.4390 56.7994 31.823 47.2287 8. 100 12.20 100 22.1020.400 119.1804 91.3385 60.8414 105.1466.106.784 12. 26 0 414 120.6440 125.862 139.7833 169.9155 13.5220 138.899 13. 0 107 22.3999 23.2030		11 and Case-12									
S. No. variables line Min Max Proposed Method NSGA-II (40) MOPSO (141) Proposed Method NSGA-II (41) MOPSO (141) 1. 0 100 40.0474 48.3405 63.6501 63.4515 33.3944 63.3967 2. 4 0 100 49.982 48.9388 53.337 55.622 32.2645 49.8303 3. 6 0 100 45.087 44.6111 33.9415 47.2289 37.502 42.1967 7. 7. 15 0 100 45.9235 43.05411 10.42240 12.1893 18.31124 47.2287 8. 0 100 33.8075 37.6122 41.0475 48.7213 55.7882 41.0834 10. 100 33.8075 37.6122 41.0475 48.7214 55.7882 41.0989 11. 25 0 23.00 10.004 51.251 55.1331 43.0945 41.7435 43.2402 41.993 <td< td=""><td></td><td></td><td></td><td>Lir</td><td>nits</td><td></td><td>Case-11</td><td></td><td></td><td>Case-12</td><td></td></td<>				Lir	nits		Case-11			Case-12	
2. 4 0 100 49.938 53.5327 35.6629 33.264 49.833 3. 6 0 100 45.0837 44.6111 33.9415 47.8228 37.5502 42.1675 5. 10 0 550 193.3528 198.6711 225.9731 164.2240 212.8393 188.371 6. 12 0 185 0 100 48.9935 49.1643 56.4980 56.2799 43.1842 47.2287 8. 0 100 28.7879 28.7425 56.6487 70.2897 41.3202 60.0661 10. 24 0 100 28.7879 28.7425 66.4481 42.217 41.988 11. 26 0 31.0 107 22.399 23.203 14.1244 22.4692 15.4927 26.9107 13. 20 100 51.6724 43.5945 21.159 29.3347 43.8183 14. 10 100 55.7364 <t< td=""><td>S. No.</td><td></td><td></td><td>Min</td><td>Max</td><td></td><td></td><td></td><td></td><td></td><td>MOPSO [41]</td></t<>	S. No.			Min	Max						MOPSO [41]
3. 6 0 100 59.1167 59.3328 47.0428 35.0138 42.7372 55.9243 4. 8 0 100 45.0837 44.6111 33.9415 47.8239 37.5502 42.1967 5. 10 0 55.01 16.2371 16.2271 16.2371 16.2271 16.2371 16.2271 16.2371 16.2271 16.2371 16.2271 17.8271 18.8217 7. 7 10 0 100 43.9735 40.1613 56.4980 56.2799 31.842 47.2887 8. 0 100 43.9725 43.0544 38.1805 39.0496 58.9581 51.8238 9. 19 0 100 42.8772 55.181 55.1882 41.0988 11. 25 0 320 120.0440 12.8832 13.3221 13.3221 13.3221 14.124 22.4692 15.4333 14.1244 22.4692 15.4333 14.1244 22.4692 15.4333 1	1.		1	0	100		48.3405	63.6501	63.4515	33.3504	63.3967
4. 8 0 100 45.087 44.6111 33.9415 47.8259 37.5502 42.1967 5. 10 0 550 193.3528 198.6711 22.9731 164.2240 212.8393 188.371 6. 112 0 185 66.1489 65.2799 43.1842 47.2287 7. 15 0 100 48.7256 43.0544 38.105 30.0496 58.9581 51.8238 9. 19 0 100 23.7877 28.7425 56.6487 70.2897 41.3026 60.0896 10. 24 0 100 23.8775 28.7425 66.847 70.2897 41.9915 133.522 60.3883 138.8391 13. 27 0 100 64.2456 40.4613 42.21967 15.3522 53.3524 139.4333 169.9155 133.522 153.55135 133.522 153.55135 133.522 153.55135 153.2551 153.2551 153.2551 153.2551 153.255						.,.,,					49.8530
5. 10 0 5 193.3528 198.6711 125.9731 164.2240 212.8932 188.371 6. 12 0 185 66.1489 65.0707 7.07034 88.2417 86.2172 7. 15 0 100 43.9256 43.0544 38.1805 50.0496 58.9581 51.8238 9. 9 0 100 23.8757 23.7425 56.6487 70.2897 13.3022 60.0696 10. 25 0 320 120.0409 119.1804 91.3355 60.8414 105.1466 160.6784 12. 26 0 410 100.446.2456 46.4613 42.2751 61.7409 59.321 13.3220 18.3871 14. 10 100 51.7218 55.1034 43.5945 27.1559 29.6347 53.5314 15. 32 0 100 51.6765 49.7872 30.0776 56.3221 50.3914 43.2179 14. 0											
6 12 0 185 66.1489 65.9076 77.3970 76.0734 88.2172 7. 15 0 100 48.9935 49.1643 56.4980 56.2799 43.1842 47.2887 8. 19 0 100 28.7879 28.7425 56.6487 70.2897 41.302 60.0966 10. 25 0 320 120.0400 119.1804 91.385 60.8414 105.1866 160.6784 12. 26 0 414 120.6440 125.8632 139.7833 169.9155 13.3220 138.8399 13. 27 0 100 46.2456 40.4613 42.2751 61.915 43.8399 14. 31 0 107 22.3999 23.2030 14.1244 22.4692 15.843 35.944 35.9514 35.9246 34.3171 15. 32 0 100 51.6716 49.7873 32.4403 34.171 36.36 49.2427 14.1743											
7. 15 0 100 48.9933 49.1643 56.4980 56.2799 43.1842 47.2873 8. 18 0 100 23.7256 43.0544 38.1803 30.9046 58.9581 51.8233 9. 10 0 100 28.7425 56.6487 70.2897 41.3202 60.06744 11. 22 0 03 20.0409 11.91804 91.335 60.8144 105.1466 106.7484 12. 26 0 414 120.6401 125.8632 139.7833 109.9155 133.5207 138.839 13. 27 0 100 55.1251 55.1034 43.2945 27.1559 29.3347 43.8189 16. 32 0 100 55.7278 55.8064 46.3354 26.4301 47.3615 38.8590 17. 36 0 100 58.7278 55.8064 46.3354 26.4301 47.3615 38.3905 44.117 38.3905 44.144											
9. 19 0 100 28.7879 28.7425 56.6487 70.2897 41.3202 60.0969 10. 24 0 100 3.8075 37.0122 41.0475 48.7321 55.7882 41.0988 11. 25 0 320 120.0409 119.1804 91.3385 60.8414 105.1466 106.7844 12. 26 0 414 120.6440 125.8652 139.7833 169.9155 133.202 131.88.391 13. 0 107 22.3099 23.2030 14.1244 22.4692 15.4927 20.6347 33.8851 15. 32 0 100 55.1251 55.1364 46.3354 26.4301 47.3615 38.850 18. 40 0 100 58.4975 53.246 54.400 51.4255 63.4347 54.3414 40.8547 19. 42 0 100 55.9364 49.207 78.9208 58.3905 54.3417 120.						48.9935		56.4980		43.1842	47.2287
10. 24 0 100 33.8075 37.6122 41.0475 48.7321 55.782 41.0988 11. 25 0 320 120.0400 119.1804 91.3385 60.8414 105.136 610.6784 12. 26 0 414 102.6440 125.8632 139.7833 169.9155 133.5220 183.5220 183.7220 161.7409 59.3027 26.9107 13. 0 100 55.1231 55.1034 42.24569 26.3221 50.3974 43.8189 16. 34 0 100 55.7278 55.8064 46.3354 26.4307 43.8189 17. 36 0 100 58.4597 53.2461 59.451 54.2550 45.3044 40.8131 20. 100 61.690 55.9346 49.207 78.3028 86.8035 51.814 40.60.1522 21. 49 0 304 178.3057 43.8133 64.4180 44.1605 60.1522								38.1805			51.8238
11. 25 0 320 120.0400 119.1804 91.3385 60.8414 105.1866 106.784 12. 26 0 414 120.6440 125.8632 139.7833 169.9155 133.5220 138.839 13. 27 0 100 46.2456 46.4613 42.2751 61.7409 59.3025 41.752 14. 31 0 107 22.3099 23.2030 14.1244 22.4692 15.9327 25.0511 44.3544 21.559 99.6347 33.819 15. 36 0 100 51.6716 49.7872 30.0776 56.3221 50.3744 43.819 16. 40 0 100 51.7278 55.9464 49.207 78.9208 58.3905 43.4171 20. 131.2010 54.4254 14.7433 32.4406 30.1424 49.083 44.1615 64.0255 21. 49 0 304 178.332.4406 30.152 84.6901 54.1401											
12. 26 0 414 120.6440 125.8632 139.7833 169.9155 133.520 138.839 13. 27 0 100 46.2456 46.4613 42.2751 61.7409 59.3025 41.7592 14. 31 0 107 22.3999 23.2030 14.1244 22.4692 15.4927 26.9177 16. 34 0 100 51.728 55.8064 46.3354 26.4301 47.3615 38.850 18. 40 0 100 58.4597 53.2461 59.4651 54.2550 45.0434 49.0854 19. 42 0 100 68.4597 53.2046 49.207 78.208 85.3905 43.1171 20. 46 0 119 42.4237 41.7433 33.4917 131.1200 18.4015 21. 40 0 34.8473 133.33494 163.7371 131.200 134.836 11.966 22. 55 0 100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>55.7882</td> <td></td>										55.7882	
13. 27 0 100 46.2456 46.4613 42.2751 61.7409 59.3024 11.7802 14. 31 0 107 22.3999 23.2030 14.1244 22.4692 15.921 53.5134 43.5945 27.1559 29.6347 35.5141 16. 34 0 100 55.1251 55.1054 55.321 50.321 43.8198 17. 36 0 100 55.728 55.8064 46.354 26.4301 47.3615 38.8305 44.49.0854 19. 42 0 100 51.6765 59.461 54.2550 45.044 49.0854 12. 49 0 304 178.0955 148.7433 183.1493 177.0897 131.1200 184.071 50.601 50.601 50.576 93.0152 84.601 51.601 57.787 53.4436 51.180 51.180 51.180 51.180 51.180 55.769 53.4436 51.180 55.759 51.181.005 57.579 53.										133.5220	
14. 31 0 107 22.309 23.2030 14.1244 22.4902 15.29.107 15. 32 0 100 51.1251 55.1034 43.5944 27.1559 29.6347 33.314 16. 34 0 100 51.251 55.8064 46.3354 26.4301 47.3615 38.850 17. 36 0 100 55.278 55.8064 46.3354 26.4301 47.3014 49.085 18. 40 0 100 55.2346 49.207 78.9208 58.3005 43.4171 20. 100 61.1690 55.9346 49.207 78.9208 58.3051 43.1071 21. 49 0 304 178.0355 148.7433 18.1403 117.0897 13.1200 184.077 22. 54 0 104 48.657.209 39.1371 53.480.56.11.180 65.778 15.3805 61.190 65.7787 17.979 13.894.16.63.778 17.966 66.						46.2456		42.2751		59.3025	41.7592
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						22.3999					26.9107
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											53.5314
18. 40 0 100 58.4577 53.2461 59.4651 54.2550 45.0434 49.0854 19. 42 0 100 61.1690 55.9346 49.2207 78.9208 88.3905 43.4171 20. 46 0 119 42.4237 41.7433 32.4406 36.1427 54.2950 48.1913 21. 49 0 304 178.0959 148.7433 183.1493 177.0897 131.1200 184.0771 22. 54 0 148 68.7727 61.0638 69.9757 93.0152 84.6901 56.01522 24. 56 0 100 56.0731 52.3832 56.7499 31.3140 165.7378 117.196 25. 0 100 50.0731 52.3871 153.7518 207.0259 49.112 128.3472 152.7499 133.840 165.738 117.1856 137.5718 207.0259 12.043 100.53.427 120.24837 200.8274 28.055 29.120.433											
19. 42 0 100 61.690 55.9346 49.207 78.9208 88.3005 43.4171 20. 46 0 119 42.4237 41.7433 32.4406 36.1427 54.2950 48.1913 21. 49 0 148 68.7727 61.9638 69.9576 93.0152 84.6901 64.020 23. 55 0 100 54.0727 61.9638 69.9576 93.0152 84.6901 64.020 23. 55 0 100 56.0731 52.8332 56.7499 39.1371 53.4836 51.1180 25. 59 0 255 141.0298 123.3472 152.7499 133.840 165.7371 153.4836 51.1180 26. 0 100 60.6401 105.3442 125.34871 120.725 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726 100.726<											
20. 46 0 119 42.4237 41.7433 32.4406 36.1427 54.290 84.913 21. 49 0 304 178.0395 148.7433 183.1431 177.0897 131.1200 184.0712 22. 54 0 148 68.7727 61.9638 69.9576 93.0152 84.6901 54.0201 23. 55 0 100 41.4856 40.9559 43.803 64.1480 44.6150 60.152 24. 56 0 100 56.0731 52.832 56.7499 93.1371 53.4836 51.180 27. 62 0 100 60.09986 61.0078 33.7938 56.6838 57.5269 49.112 28. Power 65 0 491 220.8747 23.0483 171.156 137.5718 200.825 192.0831 30. 70 0 100 52.4747 33.626 32.217 43.344.444 31. 72 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>55.9346</td> <td></td> <td></td> <td></td> <td>43.4171</td>							55.9346				43.4171
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.		46	0	119				36.1427	54.2950	48.1913
23. 55 0 100 41.4886 40.9559 43.8303 64.4180 44.6180 60.1522 24. 56 0 100 56.0731 52.8332 56.7499 33.1371 53.4836 61.1180 25. 59 0 256 100 56.0731 52.8332 56.7499 33.8940 163.7378 117.966 26. 61 0 260 106.4001 105.3442 123.2472 152.7499 133.8940 163.7378 117.956 49.1312 27. 62 0 100 60.9986 61.0078 37.7938 56.6383 57.5269 49.112 120.8373 29. (MW) 66 0 492 204.3118 208.6433 171.8156 137.5718 207.02519 99.0833 38.5200 32.21747 32. 72 0 100 62.6285 49.9213 63.6268 52.5801 54.5198 44.4444 34. 76 0 100 58.757 <td></td> <td>184.0774</td>											184.0774
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
25. 59 0 255 141.028 123.3472 152.7499 133.8940 165.737 117.966 26. 61 0 260 106.4001 105.3442 125.3087 112.9021 60.7726 106.739 27. 62 0 100 60.9986 61.0078 33.7938 56.6338 57.5269 491.1312 28. Power 65 0 491 220.8472 220.5479 22.4857 200.8274 220.855 120.755 192.0833 30. 70 0 100 57.4597 59.8371 20.1797 45.9800 59.0853 58.5005 31. 72 0 100 62.6285 49.9213 63.6268 52.5801 54.5194 44.446 34. 74 0 100 58.4779 59.6641 45.42557 47.9148 68.9018 54.1347 35. 0 100 58.775 59.6641 45.42557 47.9148 68.9018 54.1347				0							
26. 61 0 260 106.4001 105.3442 125.3087 112.9721 60.739 27. 28. Power 65 0 491 220.5479 226.5447 23.4857 200.8274 228.8742 28. Power 65 0 491 220.5479 226.5447 23.4857 200.8274 228.8742 29. (MW) 66 0 492 204.318 208.6433 171.8156 137.5718 207.0257 22.1747 30. 70 0 100 33.4507 33.678 44.717 40.8232 30.1046 43.8123 74 0 100 62.6285 49.9213 63.6268 52.5801 54.5198 44.4444 33. 74 0 100 58.4797 55.8056 45.257 47.9148 68.9018 54.1347 35. 77 0 100 58.4797 55.8056 45.257 47.9148 68.9018 56.9262 44.9444											
28. Power 65 0 491 220.8742 220.8477 224.847 232.4857 200.8747 228.055 29. (MW) 66 0 492 204.3118 208.6433 171.8156 137.5718 207.0259 192.0833 30. 70 0 100 40.2247 39.6023 45.6147 35.5260 32.217 21.737 45.9807 32.171 40.8232 50.1046 43.8125 33. 74 0 100 62.6285 49.9213 63.6268 52.5801 54.9164 43.8125 33. 76 0 100 62.6285 49.9213 63.6268 52.5801 56.9626 46.9866 35. 77 0 100 58.7759 59.6641 45.4257 47.9148 68.9018 51.347 36. 80 0 577 277.4282 275.521 251.2416 30.73935 213.9730 62.9797 37. 85 0 104 8.7870			61	0							106.7391
29. (MW) 66 0 492 204.3118 208.6433 171.8156 137.5718 207.023 192.083 30. 70 0 100 57.4597 59.8371 20.1797 45.9800 59.0833 88.5005 31. 72 0 100 40.2247 39.0603 45.6147 35.5260 32.2217 52.1747 32. 73 0 1000 33.4670 33.2678 44.7217 40.8232 50.1046 43.8125 33. 74 0 1000 58.4797 58.0876 49.2420 60.1585 56.9626 46.9866 34. 76 0 100 58.7757 59.6611 45.4257 47.9148 68.9018 54.1347 36. 0 577 20.100 45.6938 45.1100 25.7903 50.9420 41.9730 44.7471 38. 87 0 104 8.7870 8.4396 5.1801 9.0718 22.7644 47.3719											49.1312
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(MW)									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											43.8125
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							49.9213				44.4446
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
40. 90 0 100 37.1972 37.4954 48.6774 40.2967 42.941 47.3719 41. 91 0 100 38.8539 38.8713 44.3201 31.8664 40.5407 43.0382 42. 92 0 100 48.4612 53.1343 25.952 49.3316 51.6978 44.133 43. 99 0 100 37.8606 38.6321 13.4615 30.9745 50.4100 54.8767 44. 100 0 352 97.0986 96.499 125.8402 130.6671 13.9189 123.357 45. 103 0 140 71.3612 71.9647 55.1600 50.4524 63.5971 50.3507 46. 104 0 100 54.0455 55.9685 47.1531 51.1611 43.8495 52.8388 47. 100 100 46.0688 47.0195 37.3201 36.9148 56.251 53.656 51. 110 0											15.9175
41. 91 0 100 38.8539 38.8713 44.3201 31.8664 40.5407 43.0382 42. 92 0 100 48.4612 53.1343 25.952 49.3316 51.678 44.1538 43. 99 0 100 37.8606 38.621 13.4615 30.9745 50.4100 54.876 44. 100 0 352 97.0986 96.8499 125.8402 130.9657 138.1789 123.337 45. 103 0 140 71.3612 71.9647 55.1600 50.4524 63.3971 50.360 46. 104 0 100 34.9455 35.3885 47.153 51.610 50.4524 63.577 31.8361 43.3539 31.4387 47.6009 48. 107 0 100 46.0688 47.0195 37.321 33.497 40.095 57.37.418 50. 1111 0 136 30.3153 40.2204 42.3744 42.3214 52.6515 </td <td></td> <td>234.4638</td>											234.4638
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
43. 99 0 100 37,8606 38,6321 13,4615 30,9745 50,4100 44. 100 0 352 97,0986 96,8499 125,8402 130,9657 138,1789 123,337 45. 103 0 140 71,3612 71,9647 55,1600 50,4527 53,371 50,333,37 46. 104 0 100 54,0455 53,9685 47,1531 51,1611 43,8495 52,8388 47. 105 0 100 37,9765 36,6977 31,9361 43,3539 31,4387 47,0009 48. 107 0 100 46,0688 47,0195 37,6778 38,7497 40,0955 37,4718 49. 110 0 100 41,2864 40,7633 27,3727 31,8345 37,2201 33,6974 50. 111 0 100 38,6720 38,9172 37,9132 34,9093 43,7788 36,697 52. 113											
44. 100 0 352 97.0986 96.8499 125.8402 130.9657 138.1789 123.337 45. 103 0 140 71.3612 71.9647 55.1600 50.4524 63.5971 80.3507 46. 104 0 100 54.0455 53.9685 47.1531 51.1611 43.8495 52.8388 47. 105 0 100 37.9765 36.6977 31.9361 43.3539 31.4387 47.6009 48. 107 0 100 46.0688 47.0195 37.6778 38.7497 40.0955 37.3711 36.917 37.3711 36.9173 37.3211 36.9103 37.4718 38.7497 40.0955 37.3211 36.9103 37.3211 36.9103 37.3211 36.9103 37.3211 36.9103 37.3211 36.9103 37.3211 36.9103 36.9172 37.312 34.9093 43.7788 36.6470 36.8172 37.9112 34.9093 43.7788 36.6470 36.854 44.9313											
46. 104 0 100 54.0455 53.9685 47.1531 51.1611 43.8495 52.8388 47. 105 0 100 37.9765 36.6977 31.9361 43.3539 31.4387 47.6009 48. 107 0 100 46.0688 47.0195 37.6778 38.7497 40.0955 37.4718 49. 110 0 100 41.2868 40.7633 27.3572 31.8345 37.3201 36.9108 50. 111 0 136 30.3153 40.2204 42.3744 42.3214 52.651. 51. 112 0 100 51.6430 51.4637 36.8854 44.9313 61.3156 47.022 52. 113 0 100 43.0444 43.406 31.9503 42.0291 46.2930 45.0701 54. 81 0 150 95.3791 97.9346 146.8197 128.143 87.0087 91.1115 55. 64 0											123.3379
47. 105 0 100 37.9765 36.6977 31.9361 43.3539 31.4387 47.6009 48. 107 0 100 46.0688 47.0195 37.6778 38.7497 40.0955 37.4718 49. 110 0 100 41.2868 40.7053 27.357 31.8345 37.3211 36.9105 50. 111 0 136 30.3153 40.2204 42.3744 42.3214 52.651 53.6456 51. 112 0 100 38.6270 38.9172 37.9132 34.9093 43.7788 33.6974 52. 113 0 100 51.6430 51.4637 56.854 44.9313 61.3156 47.0229 53. 116 0 100 43.0444 43.406 31.9503 42.0291 46.2303 45.0701 54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 99.4261 145.955 14.114											
48. 107 0 100 46.0688 47.0195 37.6778 38.7497 40.0955 37.4718 49. 110 0 100 41.2868 40.7633 27.3572 31.8345 37.3201 36.9108 50. 111 0 130 0.3153 40.2204 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3214 42.3144 43.7498 33.6974 52. 112 0 100 38.6270 38.9172 37.9132 34.9093 43.7788 33.6974 52. 130 100 51.6430 51.6437 36.884 44.9313 61.3156 47.0225 53. 116 100 43.0444 43.1406 31.9503 42.0291 46.2930 45.0701 54. 81 0 150 95.791 97.9346 146.8197 128.3143 87.0087 99.4261											
49. 110 0 100 41.2868 40.7633 27.3572 31.8345 37.3201 36.9108 50. 111 0 136 30.3153 40.2204 42.3744 42.3214 52.6251 51. 112 0 100 38.6270 38.9172 37.9132 34.9093 43.7788 33.6974 52. 113 0 100 51.6430 51.4637 56.8854 44.9313 61.3156 47.0229 53. 116 0 100 43.0444 43.406 31.9503 42.0291 46.2930 45.0700 54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 91.115 55. 64 0 150 134.1229 147.8063 95.3558 142.1814 97.1495 99.4261											
50. 111 0 136 30.3153 40.2204 42.3744 42.3214 52.651 51. 112 0 100 38.6270 38.9172 37.9132 34.9093 43.7788 33.6974 52. 113 0 100 51.6430 51.4637 36.8854 44.9313 61.3156 47.0229 53. 116 0 100 43.0444 43.1406 31.9503 42.0214 46.2304 45.0701 54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 91.115 55. 64 0 150 134.1229 147.8063 95.3558 142.1814 97.1495 99.421											
51. 112 0 100 38.6270 38.9172 37.9132 34.9093 43.7788 33.6974 52. 113 0 100 51.6430 51.4637 36.8854 44.9313 61.3156 47.0229 53. 116 0 100 43.0444 43.1406 31.9503 42.0291 46.2930 45.0701 54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 91.115 55. 64 0 150 154.1229 147.8063 95.3558 142.1814 97.1495 99.4261											53.6456
53. 116 0 100 43.0444 43.1406 31.9503 42.0291 46.2930 45.0701 54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 91.1115 55. 64 0 150 154.1229 147.3063 95.3558 142.1814 97.1495 99.4261											33.6974
54. 81 0 150 95.3791 97.9346 146.8197 128.3143 87.0087 91.1115 55. 64 0 150 134.1229 147.8063 95.3558 142.1814 97.1495 99.4261											47.0229
55. 64 0 150 134.1229 147.8063 95.3558 142.1814 97.1495 99.4261											
56 117 0 40 15 9465 16 0712 17 8543 10 7254 10 5185 20 5103				ę							
50. 11/ 0 40 15.7405 10.0712 17.0545 19.7534 19.5165 20.5105	56.		117	0	40	15.9465	16.0712	17.8543	19.7354	19.5185	20.5103
57. 1 0.95 1.1 1.0263 1.0285 1.0389 1.0471 1.0250 1.0111	57.						1.0285	1.0389	1.0471	1.0250	1.0111
58. 4 0.95 1.1 1.0310 1.0321 1.0014 1.0050 1.0286 1.0148							1.0321			1.0286	
59. 6 0.95 1.1 1.0355 1.0349 1.0346 1.0291 1.0207 1.0179 60. 8 0.95 1.1 1.0093 1.0057 1.0157 1.0193 1.0126 1.0203	~ / .					1.0355					
61 Voltage 10 0.95 1.1 1.0374 1.0377 1.0172 1.0024 1.0057 1.0107											
62. (p.u.) 12 0.95 1.1 1.0158 1.0146 1.0379 1.0224 1.0187 1.0214		(p.u.)				1.0158		1.0379	1.0224		
63. 15 0.95 1.1 1.0206 1.0213 1.0179 1.0179 1.0016 1.0111			15					1.0179			
64. 18 0.95 1.1 1.0285 1.0294 1.0222 1.0259 1.0172 1.0135								1.0222	1.0259	1.0172	1.0135
65. 19 0.95 1.1 1.0193 1.0191 1.0255 1.0269 1.0224 1.0180	65.		19	0.95	1.1	1.0193	1.0191	1.0255	1.0269	1.0224	1.0180

simultaneously In this case, TC, APL, and VMD are the objectives that need to be minimized simultaneously. The optimal decision variables obtained by the suggested method are

5.3.2. Case-12: Minimize TC, APL and VMD

heed to be minimized simultaneously. The optimal decision variables obtained by the suggested method are included in Table 8. The best-compromised values using the proposed algorithm have a total cost of 130796.33\$/h, APL of 32.5358MW, and VMD of 0.5165p.u., which is the lowest value compared with NSGA-II [40] and MOPSO [41] as reported in Table 8. The best compromised values achieved using the above methods are 134395.5\$/h, 40.0724MW, 0.6876p.u. and 133574.6\$/h, 41.3020MW, 0.9706p.u.respectively. Fig.11 depicts the PO fronts for each approach.

5.4. Statistical Analysis

111

116

Tap ratio

Shunt VAR

(MVAR)

VMD (p

74

The statistical inference including best value, worst value, and percentage of errors for Case-6 and Case-11 of IEEE 57 and 118-bus power systems are tabulated in

Tables 9a-9b. From Tables 9a-9b, it is evident that the proposed algorithm shows better performance compared to NSGA-II and MOPSO methods.

Table 9a. IEEE 57-bus system: Statistical inferences for Case-6

A 1		01.	Case-6				
Algorithms		Objectives	Best value	Worst value	% Error		
Proposed Metho	bd	TC(\$/h)	3.557E+4	3.645E+4	2.42		
		TE(ton/h)	0.833	0.9545	12.72		
NSGA-II [40]		TC(\$/h)	3.536E+4	3.742E+4	5.49		
		TE(ton/h)	0.8097	1.138	28.81		
MOPSO [41]	[41] TC(\$/h)		3.534E+4	3.686E+4	4.10		
		TE(ton/h)	0.9391	1.203	21.91		
Table 9b. IEEE 118-bus system: Statistical inferences for Case-							
A 1	0	L:4:	Case-11				
Algorithms	0	bjectives	Best value	Worst value	% Error		
Proposed	T	C(\$/h)	1.283E+5	1.296E+5	0.95		
Method	A	PL(MW)	36.38	39.19	7.17		
NSGA-II [40]	T	C(\$/h)	1.291E+5	1.309E+5	1.37		
	A	PL(MW)	35.04	40.38	13.22		
MOPSO [41]	T	C(\$/h)	1.302E+5	1.333E+5	2.36		
	A	PL(MW)	36.09	45.04	19.87		

Tuble 1	ua. Cas	e-1: TC (\$	/ n)	
SS	df	MS	F	P-value
326734	2	163367	140.37	1.2215E-43
345656.4	297	1163.8	-	-
672390.4	299	-	-	-
Table 10	b. Case	e-1: TE (to	n/h)	
SS	df	MS	F	P-value
0.00515	2	0.00257	29.81	1.5912E-12
0.02564	297	0.00009	-	-
0.03079	299	-	-	-
		0.235		
	326734 345656.4 672390.4 Table 10 SS 0.00515 0.02564 0.03079	326734 2 345656.4 297 672390.4 299 Table 10b. Case SS df 0.00515 2 0.02564 297 0.03079 299	326734 2 163367 345656.4 297 1163.8 672390.4 299 - Table 10b. Case-1: TE (tor SS df SS df MS 0.00515 2 0.00257 0.02564 297 0.00009 0.03079 299 -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Fig.12. Case-1: IEEE 30-bus system: Box plots of bestcompromised values

Fig.12(b)

Fig.12(a)

To further instigate the efficiency and robustness of the proposed algorithm on the MOOPF problem, oneway analysis of variance (ANOVA) [8] test was conducted to analyze the statistical significance of each of the tested algorithms over other algorithms. ANOVA is a statistical test that is used to determine the mean of many strategies generated for each trial that exhibits a significant difference. Within-group variation quantifies the degree to which individuals deviate from the group mean. The term "residual" refers to the difference between an individual's value and the group mean. The squares of these residuals are joined together to obtain the sum of squares (SS_{within}). Between-group variation

1.0480

1.0078

quantifies the degree to which group means deviate from the mean for the entire population ($SS_{between}$). This is done by conducting a hypothesis test to ensure the techniques' robustness. Here, the degree of significance is set to 0.05 to account for the variability in all of the procedures used in the hypothesis test. The F-ratio is calculated as the ratio of two mean square (MS) values. The P-values are calculated using the F-ratio, and the two degrees of freedom (df) are listed in Tables10a-10b. If the P-value for the one-way ANOVA test is less than 0.05, there is adequate evidence that one or more approaches are statistically different from one another.

The statistical studies were also performed using box plots. A box plot is a graphical tool that summarizes numerous critical parameters in a distribution visually. A box plot ranges from the lower hinge (25th percentile) to the top hinge (75th percentile) and contains the distribution's middle half of scores. The median is denoted by a line that passes through the centre of the box. Thus, one-fourth of the distribution resides between this line and the box's top, and one-fourth lies between this line and the box's bottom. The box plots for the best-compromised values of Case-1 are shown in Fig.12. It shows that the proposed method achieves the best variance of distribution and mean value over other algorithms, which means that the proposed algorithm is more robust than other algorithms. From box plots, it is clear that the proposed algorithm gives better results. From all the ANOVA results, it is concluded that the proposed algorithm gives the best optimal results over other algorithms on the MOOPF problem.

6. CONCLUSIONS

This paper presents a solution to the MOOPF problem by combining Wind, PV, and PEV systems. The approach is based on MOEA-based decomposition and summing up of normalized objective functions with an improved diverse selection mechanism. It also deals with tackling various constraints in the MOOPF problem using the superiority of the feasible solution (SF) technique. The cost of thermal energy and the cost uncertainty associated with Wind, PV, and PEV energy systems are minimized along with the minimization of carbon emission, active power losses, and voltage magnitude deviation. Monte-Carlo simulations were used to assess the uncertainty of Wind, PV, and PEV power. Apart from conventional cost minimization, this paper chose factors that account for uncertain prices of available Wind, PV, and PEV power. It showed the OPF formulation along with factors affecting Wind, PV, and PEV power's intermittency. To show the efficacy of the proposed method, simulations were done on the same

test systems as with NSGA-II and MOPSO algorithms. The results show the superiority of the suggested method compared to other methods. The statistical analysis using the ANOVA test validates the proposed method by demonstrating that its mean is significantly superior from NSGA-II and MOPSO approaches. Further research can consider innovative OPF problems, such as varying time instances to model real-time changes in load demand including RESs and PEVs. The limitations of the proposed method are that the performance of this method depends on parameter settings and computing time grows as the number of objectives increases. Hence, the suggested method can be effectively used in operation when Wind, PV, and PEV power generations are included in the power system.

REFERENCES

- P. Biswas et al., "Multi-objective economic-environmental power dispatch with stochastic wind-solar-small hydro power", *Energy*, vol.150, pp.1039-1057, 2018.
- [2] D. Molzahm, "Identifying and characterizing nonconvexities in feasible spaces of optimal power flow problems", *IEEE Trans. Circuits Syst. II.*, vol. 65(5), pp. 672-676, 2018.
- [3] D. Wu et al., "A deterministic method to identify multiple local extreme for the AC optimal power flow problem", *IEEE Trans. Power Syst.*, vol. 33(1), pp. 654-668, 2018.
- [4] H. Dommel, W. Tinney, "Optimal power flow solutions", *IEEE Trans. Power Appar. Syst.*, vol.87, pp.1866-1876, 1968.
- [5] M. Lin et al., "A hybrid current-power optimal power flow technique", *IEEE Trans. Power Syst.*, vol. 23(1), pp.177-185, 2008.
- [6] W. Yan et al., "A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method", *IEEE Trans. Power Syst.*, vol. 21(1), pp.61-67, 2006.
- [7] S. Duman et al., "Symbiotic organisms search algorithmbased security-constrained AC-DC OPF regarding uncertainty of wind, PV and PEV systems", *Soft Comput.*, vol. 25, pp. 9389-9426, 2021.
- [8] J. Sarda et al., "Dynamic optimal power flow with cross entropy covariance matrix adaption evolutionary strategy for systems with electric vehicles and renewable generators", *Int J Energy Res.*, pp. 1-13, 2021.
- [9] S. Duman, J. Li, L. Wu, "AC optimal power flow with thermal-wind-solar-tidal systems using the symbiotic organisms search algorithm", *IET Renew. Power Gener.*, vol. 15, pp. 278-296, 2021.
- [10] H. Ben, T. Chambers and J. Lee, "Solving constrained optimal power flow with renewables using hybrid modified imperialist competitive algorithm and sequential quadratic programming", *Elect. Power Syst. Research.*, vol.177, p.105989, 2019.
- [11] A. Thorat, I. Korachgaon and A. Mulla, "Optimization of fuel cost incorporating with wind, solar PV and Electric vehicle energy sources using improved artificial bee colony algorithm", *Int. J. Electr. Engg. Tech. (IJEET)*, vol. 12(6), pp. 19-18, 2021.
- [12] K. Nusair and F. Alasali, "Optimal power flow management system for a power network with stochastic

renewable energy resources using golden ratio optimization method", *Energies*. vol.13, 2020.

- [13] M. Sulaiman and Z. Mustaffa, "Solving optimal power flow problem with stochastic wind-solar-small hydro power using barnacles mating optimizer", *Control Eng. Practice.*, vol. 106, 2021.
- [14] S. Pandya and H. Jariwala, "Single and Multi-objective Optimal Power Flow with Stochastic Wind and Solar power Plants Using Moth Flame Optimization Algorithm", *Smart Sci.*, 2021.
- [15] H. Bouchekara, "Solution of the optimal power flow problem considering security constraint using an improved chaotic electromagnetic field optimization algorithm", *Neural Comput. Appl.* vol. 32, pp. 2683-2703, 2020.
- [16] P. Biswas et al., "Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques", *Eng. Appl. Artificial Intell.*, vol. 68, pp. 81-100, 2018.
- [17] F. Alasali et al., "An analysis of optimal power flow strategies for a power network incorporating stochastic renewable energy resources", *Int. Trans. Electr. Energ. Syst.*, 2021.
- [18] A. Bhattacharya and P. Roy, "Solution of multi-objective optimal power flow using gravitational search algorithm". *IET Gener. Transm. Distrib.*, vol. 6, pp. 751-763, 2012.
- [19] A. Jasemi and H. Abdi, "Probabilistic Multi-Objective Optimal Power Flow in an AC/DC hybrid microgird considering emission cost, J. Oper. Autom. Power Eng., vol. 10, pp. 13-27, 2022.
- [20] M. Dehghani et al., "FOA: following' optimization algorithm for solving power engineering optimization problems", J. Oper. Autom. Power Eng., vol. 8 (1), pp. 57-64, 2020.
- [21] S. Li, W. Gong, L. Wang and Q. Gu. "Multi-objective optimal power flow with stochastic wind and solar power". *Appl. Soft Comput.* vol.114, 2022.
- [22] S. Reddy, "Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system", *Int. Journal of Green Energy*, vol.16, pp.1547-1561, 2019.
- [23] R. Effatnejad et al., "Solving multi-objective optimal power flow using modified GA and PSO based on hybrid algorithm", J. Oper. Autom. Power Eng., vol. 5(1), pp.51-60, 2017.
- [24] M. Morshed, J. Hmida and A. Fekih, "A probabilistic multi-objective approach for optimal power flow optimization in hybrid wind-PV-PEV systems". *Appl. Energy*, vol.211, pp. 1136-1149, 2018.
- [25] S. Galvani et al., "A multi-objective probabilistic approach for smart voltage control in wind-energy integrated networks considering correlated parameters", *Sustain. Cities Soc.*, vol.78, p.103651, 2022.
- [26] S. Sandya, P. Jangir and I. Trivedi, "Multi-objective Moth Flame Optimizer: A Fundamental visions for wind power integrated optimal power flow with FACTS devices", *Smart Sci.*, 2021.
- [27] G. Alvarez, "Stochastic optimization considering the uncertainties in the electricity demand, natural gas infrastructures, photovoltaic units, and wind generation", *Comput. Chem. Eng.*, vol.160, p.107712, 2022.

- [28] H. Bakhtiari et al., "Predicting the stochastic behavior of uncertainty sources in planning a stand-alone renewable energy-based micro grid using Metropolis-coupled Markov chain Monte Carlo simulation", *Appl. Energy*, vol. 290, p.116719, 2021.
- [29] K. Li et al., "An evolutionary many-objective optimization algorithm based on dominance and decomposition", *IEEE Trans. Evol. Comput*, vol. 19(5), pp. 694-716, 2015.
- [30] C. Mishra et al., "Optimal power flow in the presence of wind power using modified cuckoo search", *IET Gener. Transm. Distrb*, vol. 9(7), pp.615-626, 2015.
- [31] P. Biswas et al., "Optimal power flow solutions incorporating stochastic wind and solar power", *Energy Convers. Manage*, vol.148, pp.1194-1207, 2017.
- [32] M. Sulaiman et al., "Optimal power flow with stochastic solar power using barnacles mating optimizer", *Int. Trans. Electr. Energy Syst.*, vol. 66, pp. 88-93, 2021.
- [33] J. Zhao et al., "Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization", *IEEE Trans. Indus. Inform.*, vol. 8(4), pp. 889-899, 2012.
- [34] P. Hanemann et al., "Effects of electric vehicle charging strategies on the German power system", *Appl. Energy*. vol. 203, pp.608-622, 2017.
- [35] T. Wu et al., "Coordinated energy dispatching in micro grid with wind power generation and plug-in electric vehicles". *IEEE Trans. Smart Grid.* vol.4, pp.1453-63, 2013.
- [36] K. Deb. "An efficient constraint handling method for genetic algorithms", *Comput. Methods Appl. Mech. Engrg.*, vol.186, pp.311-338, 2000.
- [37] K. Li et al., "An evolutionary many-objective optimization algorithm based on dominance and decomposition". *IEEE Trans. Evol. Comput.*, vol. 19(5), pp.694-716, 2015.
- [38] Q. Zhang and H. Li, "MOEA/D: A multi objective evolutionary algorithm based on decomposition", *IEEE Trans. Evol. Comput.*, vol.11(6), pp.712-731, 2007.
- [39] B. Qu and P. Suganthan, "Multi-objective differential evolution based on the summation of normalized objectives and improved selection method", *IEEE Symp.*, pp.1-8, 2011.
- [40] K. Deb et al., "A fast and elitist multi objective genetic algorithm: NSGA-II", *IEEE Trans. Evol. Comput.*, vol.6(2), pp.182-197, 2002.
- [41] C. Coello, G. Pulido, and M. Lechuga. "Handling multiple objectives with particle swarm optimization", *IEEE Trans. Evol. Comput.*, vol. 8(3), pp.256-279, 2004.
- [42] I. Das and J. Dennis. "Normal-boundary intersection: A new method for generating Pareto optimal points in multicriteria optimization problems", *SIAM J. Optimiz.*, vol. 8(3), pp.631-657, 1998.
- [43] Y. Zhang and Y. Li. "A many-objective evolutionary algorithm based on decomposition and local dominance", 2018.
- [44] B. Qu and P. Suganthan, "Multi-objective evolutionary algorithms based on the summation of normalized objectives and diversified selection", *Inf. Sci.*, vol.180 (17), pp.3170-3181, 2010.
- [45] R. Zimmerman et al., "MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education", *IEEE Trans. Power Syst.*, vol. 26, pp. 9-12, 2011.