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1. Introduction

The 4-th Hilbert’s Problem is related to characterize the distance functions

on an open subset in Rn such that straight lines are shortest paths [13]. Very

soon, it turns out that there are lots of solutions to the problem. For 2- and

3-dimensions cases, one can see [1], [2], [6], [17] and [30].

Distance functions induced by a Finsler metrics are regarded as smooth ones.

The Hilbert Fourth Problem in the smooth case is to characterize Finsler met-

rics on an open subset in Rn whose geodesics are straight lines. Such Finsler

metrics are called projective Finsler metrics. In [12], Hamel characterized pro-

jective Finsler metrics by a system of PDE’s. It is well-known that every

projective Finsler metric has scalar flag curvature, namely, the flag curvature

K = K(x, y) is a scalar function of tangent vectors. In [8] and [9], Funk classi-

fied all projective Finsler metrics with constant curvature on convex domains in

R2. With additional conditions, he showed that the standard Riemannian met-

ric is the unique of projectively Finsler metrics with K = 1 on S2 [10]. Based
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on the mentioned research, he obtained an interesting class of non-Riemannian

projectively flat Finsler metric, namely, Funk metrics.

Let Ω be a strongly convex bounded domain in Rn. For p, q ∈ Ω, let ℓpq
denote the ray issuing from p to q passing through q. Define

df (p, q) := ln
|z − p|
|z − q|

, (1.1)

where z ∈ ∂Ω is the intersection point of ℓpq with ∂Ω. Then df is an inner

metric on Ω, which is called the Funk metric. The Funk metric df in (1.1) is

regular and the induced Finsler metric Ff is determined by

x+
y

Ff (y)
∈ ∂Ω, y ∈ TxΩ, (1.2)

where Ω ⊆ Rn is a strongly convex bounded domain. The following holds

x+
y

Ff (y)
∈ ∂Ω, ⇐⇒

∥∥∥∥x+
y

Ff (y)

∥∥∥∥2 = 1.

Rewriting this condition as

F 2
f (1− ∥x∥2)− 2Ff · ⟨x, y⟩ − ∥y∥2 = 0

the non-negative root of this quadratic equations is given by

Ff (x, y) =

√
⟨x, y⟩2 + (1− ∥x∥2)∥y∥2 + ⟨x, y⟩

(1− ∥x∥2)
. (1.3)

The Funk metric is the most important metric in Finsler Geometry. It is

non-reversible, positively complete and projectively flat metric of constant flag

curvature K = −1
4 . It is easy to show that the Funk metric satisfies:

Fxk = FFyk .

The Hilbert metric is regular too and its induced Finsler metric Fh is deter-

mined by

Fh(y) :=
1

2

(
Ff (y) + Ff (−y)

)
. (1.4)

Symmetrizing the metric (1.3), we obtain the Hilbert metric in the unit ball

Bn as follows

Fh(x, y) =

√
(1− ∥x∥2)∥y∥2 + ⟨x, y⟩2

(1− ∥x∥2)
. (1.5)

Observe that this is a Riemannian metric. It is reversible, complete and pro-

jectively flat with constant flag curvature K = −1.

In [27], Shen conjectured that there exist non-trivial positively complete,

projectively flat Finsler metrics of constant curvature K = 0. In [28], he

proved the existence of projectively flat Finsler metrics of curvature K = 0 by

constructing a projectively flat and R-flat spray using the Funk metrics. This

fact proves the importance of Funk metrics and shows that it deserve to study

these metrics for more deep progress in Finsler geometry.
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In this paper, inspired by the related PDE for Funk metrics, we are going

to study a family of Finsler metrics that satisfy an special partial differential

equation.

Definition. Let (M,F ) be a Finsler manifold. Then F is called a Funk-type

Finsler metric if it satisfies the following PDE

Fxk = gFFyk + hF 2Fymykxm, (1.6)

where g = g(r) and h = h(r) are two functions and

r := Fyjxj .

Some interesting metrics belong to this class of Finsler metric. Obviously,

the Funk metrics satisfy (1.6) with g = 1 and h = 0. Thus, these Finsler

metrics can be viewed as a generalization of Funk metric. Many well-known

Finsler metrics belong to this class.

We have the following interesting Riemannian metrics defined on Bn

F =

√
|y|2 − |x|2|y|2+ < x, y >2)√

1− |x|2
,

F̄ =
|y|√

1− |x|2
.

F has constant curvature K = 1. It is easy to show that

Fxk = F0FFyk ,

F̄xk = F̄0F̄ F̄yk + F̄ 2F̄ymykxk,

where F0 := Fymxm and F̄0 := F̄ymxm.

Let (M,F ) be a Finsler manifold. In local coordinates, a curve c(t) is a

geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0, where the

local functions

Gi :=
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
are called the spray coefficients. The special forms of the spray coefficients of

a Finsler metric can define some interesting classes of Finsler metrics as follows:

(i) A Finsler metric F = F (x, y) on U is projective if and only if its geodesic

coefficients Gi are in the form

Gi(x, y) = P (x, y)yi,

where P : U = U × Rn → R is positively homogeneous with degree one.
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(ii) F is called a Berwald metric, if Gi are quadratic in y ∈ TxM for any

x ∈ M or equivalently

Gi =
1

2
Γi
jk(x)y

jyk.

(iii) As a generalization of Berwald curvature, Bácsó-Matsumoto introduced the

notion of Douglas metrics which are projective invariants in Finsler geometry

[3]. F is called a Douglas metric if

Gi =
1

2
Γi
jk(x)y

jyk + P (x, y)yi.

(iv) A Finsler metric F = F (x, y) on a manifold is locally dually flat if at every

point there is a coordinate system (xi) in which the spray coefficients are in

the form

Gi = −1

2
gijHyj .

In this paper, we consider the class of Funk-type Finsler metrics. We find

the necessary and sufficient condition under which a Funk-type Finsler metric

is projectively flat, locally dually flat and Douglas metric. More precisely, we

prove the following.

Theorem 1.1. Let F = F (x, y) be a Finsler metric satisfies (1.6) on a mani-

fold M . Then the following hold

(a) F is a projectively flat Finsler metric if and only if g′(r) = 2h(r);

(b) F is a locally dually flat Finsler metric if and only if g′(r) = 3h(r);

(c) F is a Douglas metric if and only if

g′(r)− 2h(r) =
H00

F 2
(1.7)

where H00(x, y) := Hij(x)y
iyj is a homogeneous polynomial in (yi) of

degree two.

Taking a trace of Berwald curvature B give us the mean Berwald curvature

E. A Finsler metric F on an n-dimensional manifold M has isotropic mean

Berwald curvature if

E =
n+ 1

2
cF−1h,

where h = hijdx
i ⊗ dxj is the angular metric and c = c(x) is a scalar function

on M . It is easy to see that the Funk metric has isotropic mean Berwald

curvature c = 1/2. It is interesting to find the form of mean Berwald curvature

of Funk-type Finsler metric. Then, we prove the following.

Theorem 1.2. Let F = F (x, y) be a special Funk-type Finler metric in Rn

such that satisfies

Fxk =
(
t(n− 1)r + q

)
FFyk − tF 2Fymykxm,

where t and q are real constants. Then F has isotropic mean Berwald curvature.



Funk-type Finsler metrics 81

2. Preliminary

Let M be an n-dimensional C∞ manifold, TM =
∪

x∈M TxM the tangent

bundle and TM0 := TM − {0} the slit tangent bundle. A Finsler structure

on M is a function F : TM → [0,∞) with the following properties: (i) F

is C∞ on TM0; (ii) F is positively 1-homogeneous on the fibers of tangent

bundle TM , i.e., F (x, λy) = λF (x, y), ∀λ > 0; (iii) The following quadratic

form gy : TxM × TxM → R is positively defined on TM0

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Then the pair (M,F ) is called a Finsler manifold.

For a Finsler manifold (M,F ), a global vector field G is induced by F on

TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where Gi = Gi(x, y) are local functions on TM given by

Gi :=
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM. (2.1)

G is called the associated spray to (M,F ). F is called a Berwald metric if Gi

are quadratic in y ∈ TxM for all x ∈ M .

DefineBy : TxM×TxM×TxM → TxM byBy(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi |x,

where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.

B is called the Berwald curvature and F is called a Berwald metric if B = 0.

For y ∈ TxM0, define Ey : TxM ⊗ TxM → R by

Ey(u, v) := Eij(y)u
ivj ,

where

Eij :=
1

2
Bm

ijm,

u = ui ∂
∂xi |x and v = vi ∂

∂xi |x. The non-Riemannian quantity E is called the

mean Berwald curvature. F is called a weakly Berwald metric if E = 0.

For a two-dimensional plane P ⊂ TxM and y ∈ TxM0, the flag mean Berwald

curvature E(P, y) is defined by

E(P, y) :=
F 3(x, y)Ey(u, u)

gy(y, y)gy(u, u)− [gy(y, u)]2
,

where P := span{y, u}. F is called of isotropic mean Berwald curvature if for

any flag (P, y), the following holds

E(P, y) =
n+ 1

2
c ⇐⇒ Eij =

n+ 1

2
cFyiyj ⇐⇒ Eij =

n+ 1

2
cF−1hij ,(2.2)
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where c = c(x) is a scalar function on M . The Funk metrics have isotropic

mean Berwald curvature with c = 1
2 .

The Douglas metrics are extension of Berwald metrics, which introduced by

Douglas as a projective invariant in Finsler geometry. A Finsler metric is called

a Douglas metric if

Gi =
1

2
Γi
jk(x)y

jyk + P (x, y)yi,

where Γi
jk = Γi

jk(x) is a scalar function onM and P = P (x, y) is a homogeneous

function of degree one with respect to y on TM0 (see [20], [21] and [22]).

Also, by using the Berwald and mean Berwald curvatures of F , one can define

the Douglas curvature Dy : TxM ⊗ TxM ⊗ TxM → TxM by Dy(u, v, w) :=

Di
jkl(y)u

ivjwk ∂
∂xi |x, where

Di
jkl := Bi

jkl −
2

n+ 1

{
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i
}
.

The Finsler metric F satisfies D = 0 is called a Douglas metric. Equivalently,

a Finsler metric is a Douglas metric if and only if Giyj−Gjyi are homogeneous

polynomials in (yi) of degree three.

A distance function on a set U is a function d : U×U → R with the following

properties

(a): d(p, q) ≥ 0 and equality holds if and only if p = q;

(b): d(p, q) ≤ d(p, r) + d(r, q).

A distance function on a convex domain U ⊂ Rn is said to be projective (or

rectilinear) if straight lines are shortest paths. The Hilbert’s Fourth Problem

is to characterize projective distance functions.

A distance function d on a manifold M is said to be smooth if it is induced

by a Finsler metric F on M ,

d(p, q) := inf
c

∫ 1

0

F (ċ(t))dt,

where the infimum is taken over all curves c(t), 0 ≤ t ≤ 1, joining p = c(0) to

q = c(1). Thus smooth distance functions can be studied using calculus.

Now we start to discuss smooth projective distance functions, or projective

Finsler metrics on an open domain U ⊂ Rn. First, let us use the following

notations. The local coordinates of a tangent vector y = yi ∂
∂xi |p ∈ TxU will

be denoted by (x, y). Hence all quantities are functions of (x, y) ∈ U × Rn. It

is known that a Finsler metric F = F (x, y) on U is projective if and only if its

geodesic coefficients Gi are in the form

Gi(x, y) = P (x, y)yi,
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where P : U = U × Rn → R is positively homogeneous with degree one,

P (x, λy) = λP (x, y), λ > 0. The scalar function P = P (x, y) is called the pro-

jective factor of F . The following lemma plays an important role for studying

the projective Finsler metrics.

Lemma 2.1. (Rapcsák [18]) Let F (x, y) be a Finsler metric on an open subset

U ⊂ Rn. F (x, y) is projective on U if and only if it satisfies

Fxkylyk = Fxl . (2.3)

In this case, the projective factor P (x, y) is given by

P =
Fxkyk

2F
. (2.4)

In [12], Hamel proved that a Finsler metric F = F (x, y) on U ⊂ Rn is

projective if and only if

Fxkyl = Fxlyk . (2.5)

Thus (2.4) and (2.3) are equivalent.

Let F (x, y) be a projective Finsler metric on U ⊂ Rn and P (x, y) its projec-

tive factor. Let us put

Ξ := P 2 − Pxkyk. (2.6)

The Riemann curvature Ry = Ri
kdx

k ⊗ ∂
∂xi |p : TpM → TpM is defined by

Ri
k = 2

∂Gi

∂xk
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.7)

Plugging Gi = Pyi into (2.7) yields

Ri
k = Ξ δik + τk yi, (2.8)

where

τk = 3(Pxk − PPyk) + Ξyk . (2.9)

See [24] for more discussion. It follows from (2.8) and (2.9) that the Ricci

curvature Ric := Rk
k is given by

Ric = (n− 1)Ξ. (2.10)

By the symmetry property that

gjiR
i
k = gkiR

i
j ,

one can show that

Ri
k = Ξ

{
δik − F−1Fykyi

}
. (2.11)

Comparing (2.9) and (2.11), we obtain

Pxk − PPyk = −
(ΞF )yk

3F
. (2.12)

From (2.10) and (2.11), we immediately obtain the following
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Lemma 2.2. For a locally projectively flat Finsler metric F on an n-manifold

M , the flag curvature and the Ricci curvature are related by

K(P,y) =
1

n− 1

Ric(y)

F 2(y)
, y ∈ P ⊂ TpM.

It follows from Lemma 2.2 that a locally projectively flat Finsler metric has

constant Ricci curvature if and only if it has constant flag curvature.

In [23], Shen studied projectively flat Finsler metrics of constant flag curva-

ture. He found the following lemma to determine the local metric structure of

projective Finsler metrics with constant curvature.

Lemma 2.3. Let F = F (x, y) be a Finsler metric on an open subset U ⊂ Rn.

Then F is projective if and only if there is a positively homogeneous function

with degree one, P = P (x, y), and a positively homogeneous function of degree

zero, λ(x, y), on TU = U × Rn such that

Fxk = (PF )yk (2.13)

Pxk = PPyk − 1

3F
(λF 3)yk . (2.14)

In this case, P = 1
2F

−1Fxkyk and F is of scalar curvature K = λ.

There is another important notion in Finsler geometry, that is locally dually

flat Finsler metrics. A Finsler metric F = F (x, y) on a manifold is locally

dually flat if at every point there is a coordinate system (xi) in which the spray

coefficients are in the following form

Gi = −1

2
gijHyj (2.15)

Dually flat Finsler metrics on an open subset in Rn can be characterized by a

simple PDE.

Lemma 2.4. [26] A Finsler metric F = F (x, y) on an open subset U ⊂ Rn is

locally dually flat if and only if it satisfies the following equations:[
F 2

]
xmyky

m = 2
[
F 2

]
xk

In this case, local function H = H(x, y) in (2.15) is given by

H =
1

6

[
F 2

]
xmym.
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3. Proof of Theorems

In this section, we are going to prove theorem 1.1. For this aim, we need

the following Lemma.

Lemma 3.1. Let F = F (x, y) be a Finsler metric on a manifold M . Suppose

that F satisfies (1.6). Then the following hold

Fxmykym − Fxk =
(
g′(r)− 2h(r)

)
F 2Fymykxm, (3.1)[

F 2
]
xmyky

m −
[
F 2

]
xk = 2g(r)F 2Fyk + 2

(
g′(r)− 2h(r)

)
F 3Fymykxm,(3.2)[

F 2
]
xmyky

m − 2
[
F 2

]
xk = 2

(
g′(r)− 3h(r)

)
F 3Fymykxm, (3.3)

Gi =
F

2

(
g(r)− rg′(r) + 2rh(r)

)
yi +

F 2

2

(
g′(r)− 2h(r)

)
xi. (3.4)

Proof. Differentiating (1.6) with respect to yj and contracting it with yk, we

get

Fxkyk = g(r)F 2, (3.5)

Fxkyjyk = g(r)FFyj + F 2
(
g′(r)− h(r)

)
Fykyjxk. (3.6)

By (1.6), (3.5) and (3.6) we have[
F 2

]
xj = 2g(r)F 2Fyj + 2h(r)F 3Fykyjxk, (3.7)[

F 2
]
xmyjy

m = 4g(r)F 2Fyj + 2
(
g′(r)− h(r)

)
F 3Fykyjxk. (3.8)

From (1.6), (3.6), (3.7) and (3.8) we obtain (3.1), (3.2) and (3.3). It is easy to

see that

gikFymyk = gik
(gmk − FymFyk

F

)
=

δim
F

− Fym

F 2
yi (3.9)

Then by contracting (3.2) with gik we get (3.4). □

Proof of Theorem 1.1: By Lemma 2.1 and (3.1) one can prove (a). lemma

2.4 and (3.3) suffice to prove (b). It follows from (3.4) that

Giyj −Gjyi =
F 2

2

(
g′(r)− 2h(r)

)
(xiyj − xjyi) (3.10)

It is known that F is a Douglas metric if and only if Giyj −Gjyi are homoge-

neous polynomials in (yi) of degree three. Then by (3.10) we conclude F is a

Douglas metric if and only if F 2(g′(r) − 2h(r)) are homogeneous polynomials

in (yi) of degree two. This proves (c).
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Corollary 3.2. Let F is a Finsler metric satisfies (1.6) on manifold M . Then

F is Douglas metric and locally dually flat metric if and only if

h(r) =
1

3
g′(r) =

H00

F 2
, (3.11)

where H00(x, y) := Hij(x)y
iyj is a homogeneous polynomial in (yi) of degree

two.

Proof. According to Theorem 1.1, F is locally dually flat Finsler metric if and

only if

g′(r) = 3h(r), (3.12)

and F is a Douglas metric if and only if

g′(r)− 2h(r) =
H00

F 2
, (3.13)

By (3.12) and (3.13) we get (3.11). □

By Theorem 1.1, we conclude the following

Corollary 3.3. Let F = F (x, y) be a Finsler metric satisfies (4.1) on a man-

ifold M . Then F is a projectively flat and locally dually flat Finsler metric if

and only if h = 0 and g = constant. In this case, F reduces to a Funk metric.

Proof of Theorem 1.2: By (3.4) we conclude

∂Gm

∂ym
=

(n+ 1

2

(
g(r)− rg′(r) + 2rh(r)

)
+ rg′(r)− 2rh(r)

)
F

+
F 2

2

(
g′′(r)− 2h′(r)

)
Fyjykxjxk. (3.14)

Substituting

g(r) = t(n− 1)r + q,

h(r) = −t

in (3.14) yields

∂Gm

∂ym
=

(n+ 1)q

2
F (3.15)

Thus we conclude F is of isotropic E-curvature. □
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4. Special Funk-type Finsler Metrics

It is interesting to study a special class of Funk-type metrics. Let (M,F ) be

a Finsler manifold. Then F is called s special Funk-type metric if it satisfies

the following PDE

Fxk = g
{
FFyk + F 2Fymykxm

}
, (4.1)

where g = g(r) is a scalar function and

r := Fyjxj .

By Theorem 1.1, we get the following

Corollary 4.1. Let (M,F ) be a compact Finsler manifold. Suppose that F

satisfies (4.1). Then the following hold

(a) F is a projectively flat metric if and only if it is locally Minkowskian

metric;

(b) F is a locally dually flat Finsler metric if and only if locally Minkowskian

metric.

Proof. By Theorem 1.1, F is a projectively flat Finsler metric if and only if

g′(r) = 2g(r).

It follows that

g(r) = e2rg(0).

Letting t → ±∞ and considering g < ∞ implies that g(0) = 0 and then g = 0.

In this case, we get Fxk = 0 and P = 0. Thus Gi = 0 and F reduces to a

locally Minkowskian metric.

For the case (b), we use the same argument. □
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Österreichische Akad. der Wiss. Math., Sitzungsberichte Abteilung II 172(1963), 251-

269.

11. E. Guo, H. Liu and X. Mo, On spherically symmetric Finsler metrics with isotropic

Berwald curvature. Int. J. Geom. Methods Mod. Phys., 10(10) (2013), 113.
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18. A. Rapcsák, Über die bahntreuen Abbildungen metrisher Räume, Publ. Math. Debrecen,
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