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Abstract. In this paper, we find a new non-Riemannian quantity for («, §)-
metrics that is closely related to the S-curvature. We call it the S-curvature.
Then we show that an («, 8)-metric is Riemannian if and only if S =0. For a
Randers metric, we find the relation between S-curvature and S-curvature.
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1. Introduction

The study of Finsler spaces with («, 8)-metrics is quit old, but it is a very
important aspect of Finsler geometry and its applications. An («, 8)-metric is
a scalar function on T'M defined by F := @(g)a, s = B/a, where ¢ = ¢(s) is
a C on (—bg,by) with certain regularity, & = y/a;;(z)y’y? is a Riemannian
metric and 8 = b;(x)y’ is a 1-form on a manifold M. Then (M, «) is called the
associated Riemannian manifold.

Randers metrics are special («, 8)-metrics defined by ® = 1+ s, i.e, F =
a+ . The most important case of («, 8)-metrics is the Randers metrics which
were introduced by Randers in 1941 [8] in the context of general relativity.
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They play a prominent role in Ingarden’s study of electron optics [1]. For other
properties of Randers metrics see [3] and [4].

In Finsler geometry, there are several important non-Riemannian quantities:
the distortion 7, the Cartan torsion C, the Berwald curvature B, the mean
Berwald curvature E, the S-curvature and the new non-Riemannian curvature
H in paper [7], etc. They all vanish for Riemannian metrics, hence they are
said to be non-Riemannian.

In this paper, we first introduce a new non-Riemannian quantity for an
(o, B)-metric, by using the geodesic coefficient of «. Indeed, this curvature is
obtain for the associated Riemannian manifold (M, «). This new quantity is
closely related to the S-curvature. Therefore we call it S-curvature. Then for
a Randers metric ' = o + 3, we find the relation between S-curvature and
S-curvature.

For an (a, §)-metric F' = ®(8/a)a, we can introduce some non-Riemannian
quantity. Let us denote the Levi-Civita connection of o by V. We define the
function S defined over T M as follows:

g = @{,T,
where Vv is the Riemannian spray associated to a and the function 7 is the
so-called distortion.
The curvature S is closely related to the S-curvature. S is related to (o, B)-
metrics, especially to the associated Riemannian manifold (M, ). But we show
that S is a non-Riemannian quantity and prove the following theorem.

Theorem 1.1. Let F = @(g)a be an («, B)-metric and « has positive (nega-
tive) sectional curvature. Then S =0 if and only if F' is Riemannian.

There are many connections in Finsler geometry. One is referred to [5] and
[11] for some of these connections. Throughout this paper, we set the Chern
connection on Finsler manifolds.

2. Preliminaries.

Let M be a n-dimensional C'*° manifold. T, M denotes the tangent space
of M at z. The tangent bundle of M is the union of tangent spaces TM :=
Uzem Tz M. We will denote the elements of TM by (z,y) where y € T, M.
Let TMy = TM \ {0}. The natural projection 7 : TMy — M is given by
m(x,y) = .

A Finsler structure on M is a function F': TM — [0, 00) with the following
properties; (i) F' is C* on T My, (ii) F is positively 1-homogeneous on the
fibers of tangent bundle TM, and (iii) the Hessian of F? with elements

1
9ij (Ia y) = §[F2($, y)]y’y’
is positively defined on T'My. The pair (M, F') is then called a Finsler manifold.



A new non-Riemannian curvature related to the class of («, 3)-metrics 45

Let x € M and F,, := F|r,p. To measure the non-Euclidean feature of F,,
one can define Cy : T, M x T, M x T, M — R by

1d
2dt
The family C := {C, },ecrar, is called the Cartan torsion. It is well known that

C =0 if and only if F' is Riemannian.
For y € T, My, define I, : T, M — R by

n

L (u) := Z 97 (y)Cy(u, d;,9;),

i=1
where {0;} is a basis for T, M at € M. The family I := {I,},ern, is called

the mean Cartan torsion. By definition, I, (y) = 0 and I, = A7'I,, A > 0.
Therefore, I,(u) := I;(y)u’, where I; := g/kCj.

Cy(u,v,w) :=

|:gy+tw (’U,, 1)):| , U,V,W € TzM

F' is Riemannian if g;;(x,y) are independent of y # 0. Then Riemannian
metrics are special Finsler metrics. Traditionally, a Riemannian metric is de-
noted by a;;(z)dz’@dz?. 1t is a family of inner products on tangent spaces. Let
a(y) = 9 (@)y'yl y = ' g%
tangent spaces. Throughout this paper, we also denote a Riemannian metric
by o = /a;;(x)y'yd.

An (o, B)-metric is a scalar function on TM defined by
B

(%

z € T M. «is a family of Euclidean norms on

F:= a@( ), s=f/a,

where ¢ = ¢(s) is a C* on (—bg, by) with certain regularity, o = \/a;;(z)y’y’
is a Riemannian metric and 8 = b;(x)y’ is a 1-form on a manifold M. Randers
metrics are special (a, §)-metrics defined by ® =1+ s, i.e, F' = a+ 5.

Given a Finsler manifold (M, F'), then a global vector field G is induced by
F on T My, which in a standard coordinate (2%, y*) for T My is given by
.0
G=y'—
Y o

; 0
-2G"(z,y) =,

(z,9) oy
where G*(z,y) are local functions on T'Mj satisfying G*(x, \y) = \2Gi(x,y) A >
0. G is called the associated spray to (M, F). The projection of an integral
curve of G is called a geodesic in M. In local coordinates, a curve c¢(t) is a
geodesic if and only if its coordinates (c’(t)) satisfy

&+ 2G4 ¢e) = 0.

If F is Riemannian, then G*(x,y) = %F;k(x)yjyk are quadratic in (y*) at every
point z € M. A Finsler metric is called a Berwald metric if the geodesic
coeflicients have this property.
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For a Finsler metric F' on an n-dimensional manifold M, the Busemann-
Hausdorff volume form dVp = op(z)dz! - - - dz™ is defined by

Vol(B"(1))
SRS

Vol{(yi) €Rn F(ya%
In general, the local scalar function op(z) can not be expressed in terms of

O'F(LL') :

elementary functions, even F is locally expressed by elementary functions [9].
Let

det (gij(x, y))
Vol(B™(1))

P grl) <1}]

T = 7(x,y) is a scalar function on T'My, which is called the distortion [9]. For
a vector y € T, M, let ¢(t), —e <t < ¢, denote the geodesic with ¢(0) = z and
¢(0) = y. Define

-Vol{(yi) eR”

7(z,y) :==1n [

S(y) := %[T(e(t))] l—o-

We call S the S-curvature. This quantity was first introduced in [10] for a
volume comparison theorem.

Let G'(z,y) denote the geodesic coefficients of F in the same local coordinate
system. The S-curvature can be express by

() = - (e.0) ~ ' 5z [moe(a)],

where y = yi%h € T, M. It is proved that S = 0 if F' is a Berwald metric
[10]. There are many non-Berwald metrics satisfying S = 0.

Now, we recall the definition of Riemann curvature. Let F' be a Finsler
metric on an n-manifold and G* denote the geodesic coefficients of F. For a
vector y = y1%|x € Ty M, define Ry, = Rik(x,y)dxk ® %h Ty M — T, M
by

, oG" - 0%GY - 0%GH 0G" 0GI
Riy =200 i OO | ggi 060G 00
Oxk OxI Oyk Oyidyk  Oyi Oy
Let us put
. 1(0R, ORI\ ., _ 1(®R. ORi
B = 5{ oyl oyt } gk §{ayjayl  Ayioy* }
Then

R;, = Ré‘ vy, R, = R; Y R; kT Rj‘ 1w =0,

Rhijk + thki + thij =0.
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3. Proof of Theorem 1.1.
Let (M, F) be an n-dimensional Finsler space. For every z € M, let
S, M = {y € T,M|F(z,y) = 1}.

Sz M is called the indicatrix of F' at x € M and it is a compact hyper surface
of T, M, for every x € M. Let

v: S M — T, M

be its canonical embedding, where ||v|| = 1. Let (¢,U) be a coordinate system
on S, M. Then, S, M is represented locally by v* = vi(t*), a =1,2,...,(n—1).
One can show that:
0 0
- = F'—
o' oy’
The (n — 1) vectors {(v%,)} form a basis for the tangent space of S, M in each
point, where

i o'
’Ua:@, 04:172,,(77,71)
For the sake of simplicity, put
0
Op = —-
ot
One can easily show that
.0
6a = F'Uzai.
ay’

g = gij(z,y)dy'dy’ is a Riemannian metric on T, M. Inducing g on S, M, one
gets the Riemannian metric g = gagdt“dtﬁ, where

Jap = Uiaviﬁgij~

The canonical unit vertical vector field V(z,y) = azi together the (n — 1)
vectors 0y, form the local basis for T, M, B = {u',u?, ...,u"}, where, u® = (v',)

and u” = V. We conclude that
g (‘/7 aa) =0,

that is
yivia =0.

For an (a, §)-metric F' = ®(8/a)a, we can introduce some non-Riemannian
quantity. Let us denote the Levi-Civita connection and the Rieman curvature
of a by V and R’ jki» Tespectively. Put

;0 ; 0 v v
:u/\‘ uUu=uu — u:— u = —
Szt dxt’ o’ F

1=

where {%} and {%} are the natural locally horizontal basis of TT M, with

i

respect to F' and a, respectively.
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We define the function S defined over T My as follows:

S := VT,
where Vv is the Riemannian spray associated to « and the function 7 is the
so-called distortion. Define:

’ Cryz’ Y QCryjéyz.
The S;—Cur Va(ure can be eXpI‘eSS by

~ oGt
S(y) = —
(¥) oy

;0
(z,y) — ' e [lnap(x)},
where éz(az) denote the geodesic coefficients of a in the same local coordinate
system and op(z) is the volume form of the Finslerian manifold (M, F).

Elliptic differential operator: In an n-dimensional coordinate neighborhood U,
we consider a linear partial differential equation of second order called Elliptic
type,

P 0
Oxidxk oxt’
where ¢g7%(z) and h'(x) are continuous function of point p(z) in U, and qua-
dratic form ¢’ ij Z. is supposed to be positive definite every where in U. Then
we call L the elliptic differential operator.

L(p) = g™

Principle maximum of Hopf Theorem. In coordinate neighborhood U, if a
function ¢(p) of class C? satisfies

L(p) >0

where ¢ : M — R™, and if there exist a fixed point pg in U such that
¢(p) < ¢(po), Vp € U, then we have ¢(p) = ¢(po), Vp € U. If ¢ have
absolute maximum in U, then ¢ is constant on U.

Proof of Theorem 1.1: Let the S = 0 then, it results that the tensor 7;; be
V-parallel. Writing the Ricci identity of tensor 7;;

U v VAV _ DT DT
0=V, ViTjm = V,\V, Tjm = =Trm R j3y — Tjr B iy —

A simple use of Bianchi identity for V, results that

Vﬂ'jk =0.
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Multiplying the above relation in v/, v! and @*™, it results:

~ 1 0%r
D(r) = R~-97
(T) R 0 OQayraym

= TomRy" =0. (3.2)

Let x € M and denote by T the restriction of p on the indicatrix S, M of F
we have

.0
Ot = F ], ay:. (3.3)
and then
B , Ot s 5 g O ; OF , Or
aﬁaa'r = F aﬁva ayz +F vavﬂ 8y18y] Lvﬂ aiyj ’U& @, (34)
But, we have
. OF
g 9t _
Ug 9y 0
Thus,
o i 67— 2 i g 827—
030, = F 0gvy, oy + F* vyvp 3y 0y (3.5)
Multiplying the above relation in R*# = R # we have
. L 9?2 N ;0
BP0, = F2R' I T+ FRYP 00, < (3.6)

T Qyidyd oy
Put
B® = v Hf,. .
Therefore, rewrite (3.2) on S, M
D(7) := R*¥930,7 —B* 0,7 =0, (o, B=1,...,n—1) (3.7)

Sz M is compact and from the hypothesis of the theorem, we know that the
quantity H** X, X 5 is positive (or negative) for any vector X tangent to S, M.
In this case, the partial differential operator Disan elliptic operator. Therefore,
from the last equation and the maximum principle of Hopf it results that p is
constant on S, M and therefore,

m(z,y) = f(2).

It means that F' is a Riemannian metric. In this case 7 is a constant. The
converse of the theorem is trivial. O
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4. S-curvature of Randers Metrics

Randers metrics are among the simplest non-Riemannian Finsler metrics,
so that many well-known geometric quantities are computable. In this section,
we compute the non-Riemannian quantity S for a Randers metric. Let F =
®(B/a)a be an (a, f)-metric and V and V denote the Levi-Civita and Chern
connections associated to « and F, respectively. Put

§-Vor,

where v denotes the Riemannian spray associated of a. Suppose that we denote
the geodesic spray coefficients of a and F by the notions G* and G*, respectively.
Let FF = o+ 8 be a Randers metric on a manifold M, where

aly) = \Jai;(x)y'yd,  Bly) = bi(x)y'
with [|8]. == SUp,er, M B(y)/a(y) < 1. Define b by
by 67 == db; — b0,

ilj i
where 6 := da’ and 0,7 := f‘{kdxk denote the Levi-Civita connection forms of

«o. Let

1 1
rij = i(b”j + bj|'i)7 Sij = i(bzlj — bj”),
Sij = amshj, 55 1= bisij, €ij = Ti; +b;s; +b;s;.

Then G* are given by

G =G+ ;%yi — 50y’ + as’y, (4.1)
where
€00 ‘= eijyiij S0 = Siyiv Sio = Sijyj
and G* denote the geodesic coefficients of a. See [1].

Now, we calculate S for a Randers metric:

S = @{,T = @‘;ln det(gij) — @‘;ln OF
1 8gl iq =~ ym OJop
= —gT TyF _2¢CGF — T 4.2
597 50y 29" Cijn p (4.2)
where Cyji, = $[F?],iyi,+. By the relation (4.1) and (4.2), we get
a1 ;09 ij k ij v y" Oop
Since 5 5
L j99ij ij y™ dop
o J k_QZjCi'Gk_i
29" oY g ik op Oxm’

then we have

S=S+ 2T as). (4.4)
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Corollary 4.1. Let FF = a+ 8 be a Randerstetric on an n-manifold M,
where o = /a;j(x)y'y? and B = b;(x)y'. Then S =0 if and only if
S = —2[kask0.

Moreover, if 8 is a close 1-form then S=S8.

Example 4.2. ([9]) The Funk metric on a strongly convex domain 2 C R"
is a nonnegative function on T2 = Q x R", which in the special case 2 = B"
(the unit ball in the Euclidean space R™) is defined by the following explicit
formula:

Fly) = VIR = (2PlyP- <2,y >+ <a,y>
y T 1 _ |.’17|2 9

y e T,B" =R"

where |.| and <,> denote the Euclidean norm and inner product in R, re-
spectively. The Funk metric on B" is a Randers metric. For Funk metric we
have:

G'(y) = 5F )y
Then for every Funk metric we have S = %HF . Thus

g n+l

S = F + 2T as",. (4.5)

Regarding the Berwald curvature of Funk metric, Cheng-Shen introduced
the notion of isotropic Berwald metrics [6]. A Finsler metric F' is said to be
isotropic Berwald metric if its Berwald curvature is in the following form

Bijk:l = O‘{ijyk(sil + Fykyz(sij + Fylyj(sik + ijykylyi}7 (4.6)

for some scalar function ¢ = o(x) on M. Berwald metrics are trivially isotropic
Berwald metrics. Funk metrics are also non-trivial isotropic Berwald metrics
o=1

In [12], it is proved that every Finsler metric of isotropic Berwald curvature

(4.6) has isotropic S-curvature. Then we conclude the following.

Corollary 4.3. Let F = o + 8 be a Randers metric on an n-manifold M,

where o = \/a;;(x)y'y? and B = b;(x)y’. Suppose that F has isotropic Berwald
curvature (4.6). Then

S=(n+1)cF + 2T as™.

A Finsler metric on an open subset in R" is said to be projectively flat if all
geodesics of F' are straight in the domain. A Finsler metric on a manifold M
is said to be locally projectively flat if at any point, there is a local coordinate
system (x?) in which F is projectively flat. Let I be a smooth and strongly
convex Finsler metric on a convex domain & C R™. Then F is projectively flat
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if only if there exists scalar homogeneous function P : TU — R such that the
its spray coeflicients satisfy

G'(z,y) = P(z,y)y".

In this case, P = P(z,y) is called the projective factor.

Now, let F' = a + 8 be a locally projectively flat Randers metric on an
n-manifold M. Therefore by proposition 4.3.5, page 51 of Chern-Shen, « is
locally projectively flat and then

k _
55 = 0.

In this case, we get S=S.

The Douglas metrics are extension of Berwald metrics, which introduced by
Douglas as a projective invariant in Finsler geometry. A Finsler metric is called
a Douglas metric if

1. 4 ,
G' = ST (@)y’y" + Plz,y)y',

where I', =T, () is a scalar function on M and P = P(z,y) is a homogeneous
function of degree one with respect to y on T'My. Equivalently, a Finsler metric
is a Douglas metric if and only if Gy’ — G7y® are homogeneous polynomials in
(y*) of degree three. If P = 0, then F reduces to a Berwald metric. If I' = 0,
then F' is a projectively flat Finsler metric.

For non-zero vector y € T;; My, define D, : T, M @ T,M ® T, M — T, M by

Dy(u,v,w) := Dijkl(y)uivjwk% «, Where
. 83 ) 2 9G™ .
Diyyi= |G — —— i,
IR 9yi fyk oyt l n+1 oym Y

D is called the Douglas curvature. F' is called a Douglas metric if D = 0 [2].
By definition, it follows that the Douglas tensor D, is symmetric trilinear form
and has the following properties

D,(y,u,v) =0, trace(D,)=0.
We have the following.

Corollary 4.4. Let F = a+( be a Douglas—Randerf metric on an n-manifold
M, where a = \/a;;j(x)y'y7 and B = b;(z)y’. Then S =S.

Proof. In [2], it is proved that a Randers metric F' = a+ f is a Douglas metric
if and only if § is a closed one-form. Then by (4.4), we get the proof. O
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