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Abstract. In this paper, we study the projective vector fields on two special

(α, β)-metrics, namely Kropina and Matsumoto metrics. First, we consider

the Kropina metrics, and show that if a Kropina metric F = α2/β admits

a projective vector field, then this is a conformal vector field with respect to

Riemannian metric α or F has vanishing S-curvature. Then we study the

Matsumoto metric F = α2/(α− β) and prove that if the Matsumoto metric

F = α2/β admits a projective vector field, then this is a conformal vector field

with respect to Riemannian metric α or F has vanishing S-curvature.

Keywords: Projective vector field, Kropina metric, Matsumoto metric, S-

curvature.

1. Introduction

The projective Finsler metrics are smooth solutions to the historic Hilberts

fourth problem. Unlike the Riemannian metrics, a non-projective Finsler met-

ric may be of constant flag curvature in Finsler geometry [2]. A good way

to characterizing the projective metrics is the projective vector fields. A vec-

tor field V is called projective if its flow takes (unparameterized) geodesics

to geodesics. The collection of all projective vector fields on a Finsler space

(M,F ) is a finite dimensional Lie algebra with respect to the usual Lie bracket,

called the projective algebra and denoted by p(M,F ). Searching about projec-

tive vector fields and determining the dimension of this algebra is of interest in

physical and geometrical discussions.
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In this paper, we study a class of Finsler metric called general (α, β)-metrics.

An (α, β)-metric is a scalar function F on TM defined by F := αϕ(s), s = β/α,

where ϕ = ϕ(s) is a C∞ function on an open interval (−b0, b0) with certain

regularity, α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)y

i is a 1-

form on M . The Randers metric F = α + β, the Kropina metric F = α2

β ,

the generalized Kropina metric F = α1−mβm and Matsumoto metric F =

α2/(α− β) are special (α, β)-metrics with ϕ(s) = 1+ s, ϕ(s) = 1/s, ϕ(s) = sm

and ϕ = 1/(1− s), respectively. The class of Randers metrics are popular

Finsler metrics appearing in many physical and geometric studies. In [10],

M. Rafie-Rad and B. Rezaei studied the projective vector fields on Randers

metrics. They proved that if (M,F ) be an n-dimensional (n ≥ 3) equipped

with a Randers metric of constant flag curvature and M be compact, then

the dimension of the projective algebra p(M,F ) is either n(n + 2) or at most

equals n(n+ 1)/2. Moreover, they showed that a vector field V on Randers

space (M,F ) is projective vector field if and only if V is projective vector field

on (M,α) and

ℓV̂ (s
i
0) = 0.

In [9], Rafie-Rad studied the projective vector fields on the class of Randers

metrics. He introduced Lie sub-algebra of projective vector fields of a Finsler

metric and proved that a Randers metric of non-zero constant S-curvature is

projective if and only if the dimension of this sub-algebra is n(n+ 1)/2.

In this paper, we study the projective vector fields on two important subclass

of (α, β)-metrics. First, we study the Kropina metrics. The Kropina metrics are

closely related to physical theories. These metrics, was introduced by Berwald

in connection with a two-dimensional Finsler space with rectilinear extremal

and was investigated by Kropina [8]. We prove the following.

Theorem 1.1. Let F = α2/β be a Kropina metric on manifold M . Suppose

that F admits a projective vector field V . Then one of the following holds

a) V is a conformal vector field with respect to α;

b) F has vanishing S-curvature S = 0.

The Matsumoto metric was introduced by Matsumoto as a realization of

Finsler’s idea “a slope measure of a mountain with respect to a time measure”

[12]. He gave an exact formulation of a Finsler surface to measure the time on

the slope of a hill and introduced the Matsumoto metrics in [6]. Here we study

the projective vector fields on Matsumoto metric and prove the following.

Theorem 1.2. Let F = α2

α−β be a Matsumoto metric on a manifold M . suppose

that F admits a projective vector field V . Then one of the following holds

a) V is a conformal vector field with respect to α;

b) F has vanishing S-curvature S = 0.
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2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM as the tangent

space at x ∈ M , and by TM = ∪x∈MTxM as the tangent bundle of M .

Each element of TM has the form (x, y), where x ∈ M and y ∈ TxM . Let

TM0 = TM\{0}. The natural projection π : TM → M is given by

π(x, y) = x.

The pull-back tangent bundle π∗TM is a vector bundle over TM0 whose fiber

π∗
vTM at v ∈ TM0 is just TxM , where π(v) = x. Then

π∗TM =
{
(x, y, v)|y ∈ TxM0, v ∈ TxM

}
.

A Finsler metric on a manifold M is a function F : TM → [0,∞) which has

the following properties:

(1) F is C∞ on TM0;

(2) F (x, λy) = λF (x, y), λ > 0;

(3) For any tangent vector y ∈ TxM , the vertical Hessian of F 2/2 given by

gij(x, y) =

[
1

2
F 2

]
yiyj

is positive definite.

Every Finsler metric F induces a spray

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi

by

Gi(x, y) :=
1

4
gil(x, y)

{
2
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)
}
yjyk. (2.1)

The homogeneous scalar functions Gi are called the geodesic coefficients of F .

The vector field G is called the associated spray to (M,F ).

The Busemann-Hausdorff volume form dVF = σF (x)dx
1 ∧ · · · ∧ dxn related

to F is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn

∣∣∣ F(yi ∂
∂xi |x

)
< 1
} ,

where Bn(1) denotes the unit ball in Rn.

The distortion τ = τ(x, y) on TM associated with the Busemann-Hausdorff

volume form on M , i.e., dVBH = σ(x)dx1 ∧ dx2...∧ dxn, is defined by following

τ(x, y) = ln

√
det(gij

(
x, y)

)
σ(x)

.
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Then the S-curvature is defined by

S(x, y) =
d

dt

[
τ
(
c(t), ċ(t)

)]
t=0

,

where c = c(t) is the geodesic with c(0) = x and ċ(0) = y. In a local coordinates,

the S-curvature is given by

S =
∂Gm

∂ym
− ym

∂(lnσ)

∂xm
.

A Finsler metric F has vanishing S-curvature if S = 0.

As we know, the geodesic coefficients Gi of F and geodesic coefficients Gi
α

of α are related as follows [7]:

Gi = Gi
α + αQsi◦ + α−1Θ{r00 − 2αQs◦}yi +Ψ{r00 − 2αQs◦}bi, (2.2)

where

Q =
ϕ′

ϕ− sϕ′ ,

Θ =
ϕϕ′ − s(ϕϕ′′ − ϕ′ϕ′)

2{(ϕ− sϕ′) + (b2 − s2)ϕ′′}
,

Ψ =
ϕ′′

2{(ϕ− sϕ′) + (b2 − s2)ϕ′′}
.

Denote the Levi-Civita connection of α by ∇ and define bi|j by (bi|j)θ
j :=

dbi − bjθ
j

i , where θi := dxi and θ j
i := Γj

ikdx
k. For a generic (α, β)-metric, we

use usually the following notations:

rij :=
1

2

(
bi|j + bj|i

)
, sij :=

1

2

(
bi|j − bj|i

)
.

Furthermore, we denote

rij := aikrkj , r00 := rijy
iyj , ri0 := rijy

j , r := rijb
ibj ,

sij := aikskj , sj := bisij , s0 := siy
i, si0 := sijy

j , b2 := bibi.

Let us define

∆ := 1 + sQ+ (b2 − s2)Q′, (2.3)

Φ := −(Q− sQ′)(n∆+ 1 + sQ)− (b2 − s2)(1 + sQ)Q′′. (2.4)

In [3], Cheng-Shen characterized (α, β)-metrics with isotropic S-curvature.

Theorem A. ([3]) Let F = αϕ(s) , s = β/α, be an non-Riemannian (α, β)-

metric on a manifold and b := ∥βx∥α. Suppose that F is not a Finsler metric

of Randers type. Then F is of isotropic S-curvature, S = (n+1)cF , if and only

if one of the following holds
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(i) β satisfies

rij = ε(b2aij − bibj), sj = 0, (2.5)

where ε = ε(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
, (2.6)

where k is a constant. In this case, S = (n+ 1)cF with c = kε.

(ii) β satisfies

rij = 0, sj = 0. (2.7)

In this case, S = 0, regardless of choices of a particular ϕ.

One of special type of the (α, β)-metrics that we are interested to study in

this paper is Kropina metric. Let F = α2/β be a Kropina metric on a manifold

M . Then geodesic coefficients Gi(x, y) are given by

Gi = Gi
α − α2

2β
si0 +

1

2b2

(α2

β
s0 + r00

)
bi − 1

b2

(
s0 +

β

α2
r00

)
yi. (2.8)

For more details, see [15].

Another metric that we study in this paper is named Matsumoto metric

F = α2/α− β. In this case, by (2.2) the geodesic coefficients of F are as

follows

Gi = Gi
α − α

A1
si0 +

(2αs0 +A1r00)

2αA1A2

[
(2A1 + 1)yi − 2αbi

]
, (2.9)

where

A1 = A1(s) := 2s− 1,

A2 = A2(s) := 3s− 2b2 − 1.

See [13].

Every vector field V on M induces naturally a transformation under the

following infinitesimal coordinate transformations on TM , (xi, yi) −→ (x̄i, ȳi)

given by

x̄i = xi + V idt,

ȳi = yi + yk
∂V i

∂xk
dt.
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This leads to the notion of the complete lift V̂ (or traditionally denoted by V C ,

see [14]) of V to a vector field on TM0, given by

V̂ = V i ∂

∂xk
+ yk

∂V i

∂xk

∂

∂yi
. (2.10)

Since almost geometric objects in Finsler geometry depends on the both points

and velocities, the Lie derivatives of such geometric objects should be regarded

with respect to V̂ (Receives a family to the theory of Lie derivatives in Finsler

geometry in [12]). It is a notable remark in the Lie derivative computations that

ℓV̂ y
i = 0 and the differential operators ℓV̂ ,

∂
∂xi and ∂

∂yi commute. A smooth

vector field V on (M,F ) is called projective if each local flow diffeomorphism

associated with V maps geodesics onto geodesics. If V is projective and each

such map preserves affine parameters, then V is called affine, otherwise it is

said to be proper projective. It is easy to prove that a vector field V on the

Finsler space (M,F ) is a projective if and only if there is a function P defined

on TM0 such that

ℓV̂ G
i = Pyi (2.11)

and V is affine if and only if P = 0.

3. Proof of Main Theorems

Kropina metrics were first introduced by L. Berwald in connection with a

two-dimensional Finsler space with rectilinear extremal and were investigated

by Kropina [5]. This metric seem to be among the simplest nontrivial Finsler

metric with many interesting applications in physics, electron optics with a

magnetic field, dissipative mechanics, irreversible thermodynamics and general

dynamical system represented by a Lagrangian function [1, 4, 11]. We consider

that there is a projective vector field on Kropina space and prove it.

Proof of Theorem 1.1. A vector field V on (M,F ) is projective if and only

if there is a 1-form P = Pi(x, y)y
i on M such that ℓV̂ G

i = Pyi. In the case of

Kropina metrics, by (2.8) we can write this equation as follows

ℓV̂

(
Gi

α − α2

2β
si0 +

1

2b2
(α2

β
s0 + r00

)
bi − 1

b2
(
s0 +

β

α2
r00
)
yi
)

= Pyi.
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Let ℓV̂ aij = tij where tij = tij(x) is a scalar function on M , then equation

mentioned above is equivalent to the following equality

0 = ℓv̂G
i
α − Pyi −

(2βt00 − 2α2ℓV̂ β

4β2

)
si

0
− α2

2β
ℓV̂ s

i
0

− 1

2b4
ℓV̂ b

2bi
(α2

β
s0 + r00

)
+

1

2b2

(βt00 − α2ℓV̂ β

β2
s0 +

α2

β
ℓV̂ s0 + ℓV̂ r00

)
bi

+
1

2b2

(α2

β
s0 + r00

)
ℓV̂ b

i +
ℓV̂ b

2

b4
yi
(
s0 +

β

α2
r00

)
− 1

b2

(
ℓV̂ s0 +

α2ℓV̂ β − βt00
α4

r00 +
β

α2
ℓV̂ r00

)
yi. (3.1)

Multipling both sides of this very equation by 2α4β2b4 to remove denominators

and sorting by α, we can rewrite (3.1) as follows

0 = Ai
2α

6 +Ai
4α

4 +Ai
6α

2 +Ai
8, (3.2)

where

Ai
2 = b4ℓV̂ βs

i
0 − βb4ℓV̂ s

i
0 − βs0ℓV̂ b

2bi + βb2biℓV̂ s0 − ℓV̂ βs0b
2bi

+βℓV̂ s0b
2bi,

Ai
4 = 2β2b4ℓV̂ G

i
α − βb4t00s

i
0 − β2r00ℓV̂ b

2bi + βb2t00s
i
0 + β2b2ℓV̂ r00b

i

+β2b2r00ℓV̂ b
i + 2β2s0ℓV̂ b

2yi − 2β2b2ℓV̂ s0y
i − 2β2b4Pyi,

Ai
6 = 2β3r00ℓV̂ b

2yi − 2β2b2r00ℓV̂ βy
i − 2β3b2ℓV̂ r00y

i,

Ai
8 = −2β3b2t00r00y

i.

By (3.2) we can conclude that Ai
8 must be coefficient of α2, i.e., there is scalar

function c(x) on M such that

r00 = c(x)α2

Then F must has vanishing S-curvature, or

t00 = c(x)α2.

Thus V is conformal projective vector field with respect to the Riemannian

metric α. □

The Matsumoto metric was introduced by Matsumoto as a realization of

Finsler’s idea (a slope measure of a mountain with respect to a time measure)

[12]. He gave an exact formulation of a Finsler surface to measure the time

on the slope of a hill and introduced the Matsumoto metric [6, 13]. In this

paper, we also study the projective vector field on Matsumoto space and get

the following result:
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Proof of Theorem 1.2: If a Matsumoto metric F = α2/(α− β) admits a

projective vector field V , then by (2.9) and (2.11) we can say

ℓV̂

(
Gi

α−
α

2s− 1
si0+

(2αs0 + (2s− 1)r00)

2α(2s− 1)(3s− 2b2 − 1)

[
(2(2s−1)+1)yi−2αbi

])
= Pyi.

(3.3)

We simplify the equation mentioned above by using Maple program and mul-

tiply this equation by 4α3(α− 2β)2((1+2b2)α− 3β)2 to remove denominators.

Then we get the following

0 = Bi
1α

8 +Bi
2α

7 +Bi
3α

6 +Bi
4α

5 +Bi
5α

4 +Bi
6α

3 +Bi
7α

2 +Bi
8α+Bi

9, (3.4)

where

Bi
1 = 16b4ℓV̂ s

i
0 + 16ℓV̂ b

2bis0 − 16ℓV̂ b
ib2s0 − 16ℓV̂ s0b

2bi

+16b2ℓV̂ s
i
0 − 8ℓV̂ b

is0 − 8ℓV̂ s0b
i + 8bis0 + 4ℓV̂ s

i
0,

Bi
2 = −8ℓV̂ b

2bir00 + 8ℓV̂ b
ib2r00 + 40ℓV̂ b

iβs0 − 16βbis0 − 16yiPb4

−8ℓV̂ s0y
ib2 − 16yiPb2 + 40ℓV̂ s0βb

i + 32ℓV̂ βb
2si0 − 32b4βℓV̂ s

i
0

+8ℓV̂ r00b
2bi − 40ℓV̂ βb

is0 + 32ℓV̂ βb
4si0 + 8ℓV̂ βs

i
0 + 4ℓV̂ r00b

i

+4ℓV̂ b
ir00 − 4bir00 + 16ℓV̂ G

i
αb

4 + 16ℓV̂ G
i
αb

2 − 4ℓV̂ s0y
i + 4yis0

−32ℓV̂ βb
2bis0 + 32ℓV̂ s0b

2βbi − 32ℓV̂ b
2βbis0 + 32ℓV̂ b

ib2βs0

+8ℓV̂ b
2yis0 − 32βℓV̂ s

i
0 − 80b2βℓV̂ s

i
0 + 4ℓV̂ G

i
α − 4Pyi,

Bi
3 = −64ℓV̂ G

i
αb

4β − 112ℓV̂ G
i
αb

2β + 36ℓV̂ s0y
iβ + 40yiPβ + 2t00s

i
0

−24yiβs0 − 48ℓV̂ biβ
2s0 − 48ℓV̂ s0β

2bi − 48ℓV̂ ββs
i
0 − 28ℓV̂ b

iβr00

+12ℓV̂ βb
ir00 − 4ℓV̂ b

2yir00 + 4ℓV̂ r00y
ib2 − 4ℓV̂ βy

is0 + 8b2t00s
i
0

−4bis0t00 + 2ℓV̂ r00y
i − 2yir00 − 8b2bis0r00 + 16ℓV̂ βy

ib2s0

+32ℓV̂ b
2βbir00 − 32ℓV̂ b

ib2βr00 − 32ℓV̂ r00b
2βbi + 96ℓV̂ ββb

is0

−48ℓV̂ b
2yiβs0 + 48ℓV̂ s0y

ib2β + 112yiPb2β + 84β2ℓV̂ s
i
0

+96b2β2ℓV̂ s
i
0 − 28ℓV̂ r00βb

i + 16βbir00 + 8b4r00s
i
0 + 64yiPb4β

−96ℓV̂ βb
2βsi0 − 40ℓV̂ G

i
αβ,
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Bi
4 = 148ℓV̂ G

i
αβ

2 + 32b2βbis0t00 + 72ℓV̂ ββ
2si0 + 64ℓV̂ b

iβ2r00

+64ℓV̂ r00β
2bi − 16β2bir00 − 20βt00s

i
0 + 64ℓV̂ G

i
αb

4β2

+256ℓV̂ G
i
αb

2β2 − 104ℓV̂ s0y
iβ2 − 148yiPβ2 + 32yiβ2s0

−22ℓV̂ r00y
iβ − 72ℓV̂ s

i
0β

3 − 2ℓV̂ βy
ir00 − 56b2βt00s

i
0

−32ℓV̂ b
2β2bir00 + 32ℓV̂ b

iβ2b2r00 + 32ℓV̂ r00b
2β2bi + 16yiβr00

−48ℓV̂ ββb
ir00 + 40βbis0r00 − 64yiPb4β2 + 64ℓV̂ b

2yiβ2s0

−64ℓV̂ s0y
ib2β2 − 256yiPb2β2 + 32ℓV̂ b

2yiβr00 − 32ℓV̂ r00y
ib2β

+48ℓV̂ βy
iβs0 − 32b4βt00s

i
0 − 16ℓV̂ βy

ib2r00,

Bi
5 = 192yiPb2β3 + 64ℓV̂ βy

ib2βr00 − 80ℓV̂ b
2yiβ2r00 − 72β2bis0t00

−192ℓV̂ G
i
αb

2β3 + 96b2β2t00s
i
0 − 96ℓV̂ betay

iβ2s0 − yir00t00

−48ℓV̂ r00β
3bi + 96ℓV̂ s0y

iβ3 − 2yib2r00t00 + 80ℓV̂ r00y
ib2β2

+8ℓV̂ βy
iβr00 + 88ℓV̂ r00y

iβ2 − 40yiβ2r00 − 240ℓV̂ G
i
αβ

3

+66β2t00s
i
0 − 6βbir00t00 + 48ℓV̂ ββ

2bir00 + 2yiβs0t00

−8yib2βs0t00 − 48ℓV̂ b
iβ3r00 + 240yiPβ3,

Bi
6 = −4β(16ℓV̂ βy

ib2βr00 − 16ℓV̂ b
2yiβ2r00 + 16ℓV̂ r00y

ib2β2

−6yib2r00t00 + 2ℓV̂ βy
iβr00 + 38ℓV̂ r00y

iβ2 − 8yiβ2r00

−36ℓV̂ G
i
αβ

3 + 18β2t00s
i
0 − 6βbir00t00 − 3yir00t00

+6yiβs0t00 + 36yiPβ3),

Bi
7 = 24β2(−3yib2r00t00 + 4ℓV̂ r00y

iβ2 + 2yiβs0t00

−βbir00t00 − 2yir00t00),

Bi
8 = 16yiβ3r00t00(4b

2 + 5),

Bi
9 = −48yiβ4r00t00.

From equation (3.4), we can get two fundamental equations

0 = Bi
1α

8 +Bi
3α

6 +Bi
5α

4 +Bi
7α

2 +Bi
9, (3.5)

0 = Bi
2α

6 +Bi
4α

4 +Bi
6α

2 +Bi
8. (3.6)

From these equations we can conclude that α2 divides Bi
8 and Bi

9, in this way

we have the following cases

Case 1: α2 divides t00, therefore there is scalar function c = c(x) on M

such that

t00 = ℓV̂ α
2 = c(x)α2.
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Then V is a conformal vector field respect on α.

Case 2: α2 divides r00, therefore there is scalar function c = c(x) on M

such that

r00 = c(x)α2.

Replacing this quantity into (3.3) and sorting again by α, we can get the

following equation

0 = B̄i
0α

7 + B̄i
1α

6 + B̄i
2α

5 + B̄i
3α

4 + B̄i
4α

3 + B̄i
5α

2 + B̄i
6α+ B̄i

7, (3.7)

where

B̄i
7 = 48yiβ3t00(βc+ s0). (3.8)

From (3.7) we have this fundamental equation

0 = B̄i
1α

6 + B̄i
3α

4 + B̄i
5α

2 + B̄i
7. (3.9)

By the equation mentioned above we can conclude that B̄i
7 must be divided by

α2, if α2 divide t00, then the equality and the reduce to the case 1, otherwise

(βc+ s0) must be remove. So, we have si = −bic. By contracting it with bi we

can obtain c(x) = 0. Then s0 = r00 = 0. It means that Matsumoto metric has

vanishing S-curvature. □
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