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Abstract. In a Finsler spaces, we consider a special (α, β)-metric L satisfying

L2(α, β) = c1α
2 + 2c2αβ + c3β

2, where ci are constant. In this paper, the

existence of invariant vector fields on a special homogeneous (α, β)-space with

L metric is proved. Then we study geodesic vectors and investigate the set of

all homogeneous geodesics of invariant (α, β)-metric L on homogeneous spaces

and simply connected.

Keywords: Homogeneous Finsler space, L-metric, invariant vector field, hy-

percomplex manifold, Geodesic vector.

1. INTRODUCTION

The geometry of invariant Finsler structures on homogeneous manifolds is an

interesting topic in Finsler geometry, which has been studied by some Finsler

geometers in recent years (for example, see [1, 14, 15, 19]. An important family

of Finsler metrics is the family of (α, β)-metrics. These metrics are introduced

by Matsumoto (see [16]). They are considered not only by Finsler geometers

because of their simple and interesting structure but also by physicists because

of their applications in physics. In fact, the first type of (α, β)-metrics, Randers

metrics, introduced by Randers in 1941 for its application in general relativity

(see [18]). On the other hand, physicists are also interested in these metrics.
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Invariant (α, β)-metrics have been studied by some Finsler geometers, during

recent years.

In this paper, we deal with special (α, β)-metric satisfying

L2(α, β) = c1α
2 + 2c2αβ + c3β

2,

where ci, (i = 1, 2, 3) are constants. We study the existence of invariant vector

fields on homogeneous Finsler spaces with a special (α, β)-metric L. Homoge-

neous geodesics have important applications to mechanics. For example, the

equation of motion of many systems of classical mechanics reduces to the ge-

odesic equation in an appropriate Riemannian manifold M . Then we study

geodesic vectors and investigate the set of all homogeneous geodesics of invari-

ant (α, β)-metric L on homogeneous spaces and simply connected 4-dimensional

real Lie groups admitting invariant hypercomplex structure. For more recent

papers, see [9] and [11].

2. Preliminaries

In this section, we recall briefly some known facts about Finsler spaces (for

details, see [2, 20]). Let M be a n-dimensional C∞ manifold and TM =

∪x∈MTxM the tangent bundle. A Finsler metric on a manifold M is a non-

negative function F : TM → R with the following properties:

1) F is smooth on the slit tangent bundle TM0 := TM\0,
2) F (x, λY ) = λF (x, Y ) for any x ∈M , Y ∈ TxM and λ > 0,

3) The n× n Hessian matrix

[gij ] =
1

2

[
∂2F 2

∂yi∂yj

]
is positive definite at every point (x, y) ∈ TM0.

The following bilinear symmetric form gy : TxM × TxM → R is positive

definite:

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(x, y + su+ tv)

]
|s=t=0.

By the homogeneity of F , we have

gy(u, v) = gij(x, y)u
ivj , F =

√
gij(x, y)uiuj .

Let M be an n-dimensional manifold. A special (α, β)-metric L is a Finsler

structure L on TM that has the form

L(x, y) :=
√
c1α2(x, y) + 2c2α(x, y)β(x, y) + c3β(x, y)2,
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where

α(x, y) :=
√
ãijyiyj , β(x, y) := b̃i(x)y

i, ci, i = 1, 2, 3 constant.

The aij are the components of a Riemannian metric and the bi are those of a

1-form. Due to the presence of the β term, L metrics do not satisfy

L(x,−y) = −L(x, y)

when b̃ ̸= 0. In fact, the Finsler function of a L- space is absolutely homoge-

neous if and only if it is Riemannian. Also, in order for L to be positive if and

only if

∥ b̃ ∥:=
√
b̃ib̃i < b0, where b̃i := ãij b̃j .

The Riemannian metric ã = ãijdx
i⊗dxj induces the musical bijection between

1-forms and vector fields on M , namely ♭ : TxM → T ∗
xM given by X →

ãx(X, ◦) and its inverse ♯ : T ∗
xM → TxM . (see [2]) In the local coordinates we

have

(X♭)i = ãijy
j (θ∗)i = ãijθj ∀X ∈ TxM , ∀θ ∈ T ∗

xM.

Now the vector field corresponding to 1-form b̃ will be denoted by b̃♯. Obviously,

we have

∥ b̃ ∥=∥ b̃♯ ∥
and

β(x, y) = (b♯)♭(y) = ãx(b
♯, y).

Thus a special (α, β)-metric L with Riemannian metric ã = ãijdx
i ⊗ dxj and

1-form b̃ can be shown by

L(x, y) =

√
c1ãx(y, y) + 2c2

√
ãx(y, y)ã(b̃♯, y) + c3ãx(b̃♯, y)2, (2.1)

x ∈M , y ∈ TxM , ci : constant i = 1, 2, 3.

where

ãx(b̃
♯, b̃♯) < b0, ∀x ∈M.

Let π∗TM be the pull-back of the tangent bundle TM by π : TM0 → M .

Unlike the Levi-Civita connection in Riemannian geometry, there is no unique

natural connection in the Finsler case. Among these connections on π∗TM ,

we choose the Chern connection whose coefficients are denoted by Γi
jk (see [2],

p. 38). This connection is almost g-compatible and has no torsion. Since, in

general, the Chern connection coefficients Γi
jk in natural coordinates have a

directional dependence, we must define a fixed reference vector.

Let σ = σ(t) be a smooth regular curve in M , with velocity field T . Let

W (t) :=W i(t)
∂

∂xi
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be a vector field along σ. The expression[
dW i

dt
+W jT k(Γi

jk)σ,T

]
∂

∂xi
|σ(t)

would have defined the covariant derivative DTW with reference vector T . A

curve σ(t), with velocity T = σ̇(t) is a Finslerian geodesic if

DT

[
T

F (T )

]
= 0 with reference vector T

that the constant speed geodesics are precisely the solution of

DTT = 0 with reference vector T .

Since

T :=
dσi

dt

∂

∂xi
,

then the differential equations that describe constant speed geodesics are:

d2σi

dt2
+
dσj

dt

dσk

dt
(Γi

jk)(σ,T ) = 0.

Before defining homogeneous Finsler spaces, we discuss here some basic con-

cepts required.

Definition 2.1. Let G be a smooth manifold having the structure of an ab-

stract group. G is called a Lie group, if the maps i : G→ G and µ : G×G→ G

defined as

i(g) = g−1, and µ(g, h) = gh,

respectively, are smooth.

Let G be a Lie group and M , a smooth manifold. Then a smooth map

f : G×M →M satisfying

f
(
g2, f(g1, x)

)
= f(g2g1, x), ∀g1, g2 ∈ G, x ∈M.

is called a smooth action of G on M .

Definition 2.2. Let M be a smooth manifold and G, a Lie group. If G acts

smoothly on M , then G is called a Lie transformation group of M .

The following theorem gives us a differentiable structure on the coset space

of a Lie group.

Theorem 2.3. Let G be a Lie group and H, its closed subgroup. Then there

exists a unique differentiable structure on the left coset space G/H with the

induced topology that turns G
H into a smooth manifold such that G is a Lie

transformation group of G/H .
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Definition 2.4. Let (M,L) be a connected Finsler space and I(M,L) the

group of isometries of (M,L). If the action of I(M,L) is transitive on M, then

(M,L) is said to be a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M . Then for

a ∈M , the isotropy subgroup Ga of G is a closed subgroup and by (2.3), G is

a Lie transformation group of G/Ga. Further, G/Ga is diffeomorphic to M .

Theorem 2.5. [5] Let (M,L) be a Finsler space. Then G = I(M,L), the

group of isometries of M is a Lie transformation group of M . Let a ∈M and

Ia(M,L) be the isotropy subgroup of I(M,L) at a. Then Ia(M,L) is compact.

Let (M,L) be a homogeneous Finsler space, i.e. G = I(M,L) acts transi-

tively on M . For a ∈M , let H = Ia(M,L) be a closed isotropy subgroup of G

which is compact. Then H is a Lie group itself being a closed subgroup of G.

Write M as the quotient space G/H.

Definition 2.6. [17] Let g and h be the Lie algebras of the Lie groups G and

H respectively. Then the direct sum decomposition of g as

g = h+m,

where m is a subspace of g such that Ad(h)(m) ⊂ m, ∀h ∈ H, is called a

reductive decomposition of g, and if such decomposition exists, then (G/H,L)

is called reductive homogeneous space.

Therefore, we can write any homogeneous Finsler space as a coset space of a

connected Lie group with an invariant Finsler metric. Here, the Finsler metric

L is viewed as G invariant Finsler metric on M .

Definition 2.7. A one-parameter subgroup of a Lie group G is a homomor-

phism ψ : R → G, such that ψ(0) = e, where e is the identity of G.

Recall [5] the following result which gives us the existence of one-parameter

subgroup of a Lie group.

Theorem 2.8. Let G be a Lie group having Lie algebra g. Then for any Y ∈ g,

there exists a unique one-parameter subgroup ψ such that ψ(0) = Ye, where e

is the identity element of G.

Definition 2.9. Let G be a Lie group with identity element e and g its Lie

algebra. The exponential map exp : g → G is defined by

exp(tY ) = ψ(t), ∀t ∈ R
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where ψ : R → G is unique one-parameter subgroup of G with

ψ̇(0) = Ye.

In the case of reductive homogeneous manifold, we can identify the tangent

space TH(G/H) of G/H at the origin eH = H with m through the map

Y → d

dt
exp(tX)H

∣∣∣∣∣
t=0

, Y ∈ m,

since M is identified with G/H and Lie algebra of any Lie group G is viewed

as TeG.

3. Invariant vector field

Lemma 3.1. Let (M,L) be a Finsler space with a special (α, β)-metric L

satisfying

L2(α, β) = c1α
2 + 2c2αβ + c3β

2,

where ci are constant. Let I(M, ã) and I(M,L) denote the isometry groups of

Riemannian manifold (M, ã) and Finsler manifold (M,L) respectively. Then,

I(M,L) is a closed subgroup of the I(M, ã).

Proof. Let η ∈ I(M,L) and q ∈M , we have

L(q, Yq) = L
(
η(q), dηqYq

)
.

So we have√
c1ã(Yq, Yq) + 2c2

√
ã(Yq, Yq)ã(Xq, Yq) + c3ã(Xq, Yq)2

=
√
c1ã(dηqYq, dηqYq) + 2c2Wã(Xη(q), dηqYq) + c3ã(Xη(q), dηqYq)2,(3.1)

where

W :=
√
ã(dηqYq, dηqYq).

Replacing y by −y in above equation, we get√
c1ã(Yq, Yq)− 2c2

√
ã(Yq, Yq)ã(Xq, Yq) + c3ã(Xq, Yq)2 (3.2)

=
√
c1ã(dηqYq, dηqYq)− 2c2Wã(Xη(q), dηqYq) + c3ã(Xη(q), dηqYq)2.

Subtracting equation (3.2) from equation (3.1), we get√
ã(Yq, Yq)ã(Xq, Yq) =

√
ã(dηqYq, dηqYq)ã

(
Xη(q), dηqYq

)
. (3.3)

Combining the above equations implies that{
ã(dηqYq, dηqYq)− ã(Yq, Yq)

}
·
{
c1ã(Yq, Yq)− c3ã(Xη(q), dηqYq)

2
}
= 0. (3.4)
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We suppose that

c1ã(Yq, Yq)− c3ã(Xη(q), dηqYq)
2 ̸= 0

that is c1 ̸= 0 and c2 ̸= 0. So we have

ã(dηqYq, dηqYq)− ã(Yq, Yq) = 0, (3.5)

which leads to

ã(Yq, Yq) = ã(dηqYq, dηqYq), (3.6)

Adding equations (3.2) and (3.1) and using equation (3.6), we get

ã(Xη(q), dηqYq) = ã(Xq, Yq). (3.7)

Thus η ∈ I(M, ã) and for any q ∈M we have

dηqXq = Xη(q).

This completes the proof. □

By Lemma (3.1), we conclude that if (M,L) is a homogeneous Finsler space

with metric

L2(α, β) = c1α
2 + 2c2αβ + c3β

2,

then the Riemannian space (M, ã) is homogeneous. Further, M can be written

as a coset space G
H , where G = I(M,L) is a Lie transformation group of M

and H, the compact isotropy subgroup Ia(M,L) of I(M,L) at some point

a ∈ M [6]. Let g and h be the Lie algebras of the Lie groups G and H,

respectively. If g can be written as a direct sum of subspaces h and m of g such

that Ad(h)m ⊂ m ∀h ∈ H , then from Definition (2.6), (G/H,L) is a reductive

homogeneous space.

Theorem 3.2. Let L2(α, β) = cα2 + 2c2αβ + c3β
2 be a G-invariant (α, β)-

metric on G/H. Then α is a G-invariant Riemannian metric and the vector

X corresponding to the 1-form β is also G-invariant.

Proof. Let L be G-invariant metric on G
H , we have

L(Ad(h)(y)) = L(y) ∀ h ∈ H , y ∈ m

By (2.1), we get√
c1ã(Ad(h)Y,Ad(h)Y ) + 2c2Zã(X,Ad(h)Y ) + c3ã(X,Ad(h)Y )2

=

√
c1ã(Y, Y ) + 2c2

√
ã(Y, Y )ã(X,Y ) + c3ã(X,Y )2,

where

Z :=
√
ã(Ad(h)Y,Ad(h)Y ).
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After simplification, we get

c1ã(Ad(h)Y,Ad(h)Y ) + 2c2Zã(X,Ad(h)Y ) + c3ã(X,Ad(h)Y )2

= c1ã(Y, Y ) + 2c2
√
ã(Y, Y )ã(X,Y ) + c3ã(X,Y )2. (3.8)

Replacing y by −y in (3.8) implies that

c1ã(Ad(h)Y,Ad(h)Y )− 2c2Zã(X,Ad(h)Y ) + c3ã(X,Ad(h)Y )2

= c1ã(Y, Y )− 2c2
√
ã(Y, Y )ã(X,Y ) + c3ã(X,Y )2. (3.9)

(3.9)-(3.8) yields√
ã(Y, Y )ã(X,Y ) =

√
ã(Ad(h)Y,Ad(h)Y ) ã

(
X,Ad(h)Y

)
.

Combining the above equations we have{
ã(Ad(h)Y,Ad(h)Y )− ã(Y, Y )

}
·
{
c1ã(Y, Y )− c3ã(X,Ad(h)Y )2

}
= 0.

We suppose that

c1ã(Y, Y )− c3ã(X,Ad(h)Y )2 ̸= 0

that is c1 ̸= 0 , c3 ̸= 0. So we get

ã
(
Ad(h)Y,Ad(h)Y

)
− ã

(
Y, Y

)
= 0,

which leads to

ã
(
Y, Y

)
= ã

(
Ad(h)Y,Ad(h)Y

)
, (3.10)

Adding equations (3.9) and (3.8) and using equation (3.10), we get

ã(X,Y ) = ã(X,Ad(h)Y ). (3.11)

Therefore, α is a G-invariant Riemannian metric and

Ad(h)X = X

which proves that X is also G-invariant. □

The following theorem gives us a complete description of invariant vector

fields.

Theorem 3.3. [7] There exists a bijection between the set of invariant vector

fields on G/H and the subspace

V =
{
Y ∈ m : Ad(h)Y = Y, ∀h ∈ H

}
. (3.12)
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4. Homogeneous Geodesics

In this section, we study the homogeneous geodesics of Finsler spaces equipped

with the following metric

L(x, y) =

√
c1ã(y, y) + 2c2

√
ã(y, y)ã(X, y) + c3ã(X, y)2

Definition 4.1. A Finsler space (M,L) is called a homogeneous Finsler space

if the group of isometries of (M,L), I(M,L) acts transitively on M

Also, we have the following.

Remark 4.2. Any homogeneous Finsler manifold M = G/H is a reductive

homogeneous space.

Definition 4.3. For a homogeneous Riemannian manifold (G/H, ã), or a ho-

mogeneous Finsler (G/H,L) manifold a non-zero vector X ∈ g is called a

geodesic vector if the curve

γ(t) = exp(tZ)(o)

is a geodesic on (G/H, ã), or on (G/H,L), respectively.

Suppose that (G/H, ã) is a homogeneous Riemannian manifold, and g =

m⊕ h is a reductive decomposition. In [12], it is proved that a vector X ∈ g is

a geodesic vector if and only if

ã([X,Y ]m, Xm) = 0, ∀Y ∈ m. (4.1)

In [14], Latifi proved a similar theorem for Finslerian case as follows.

Theorem 4.4. A vector X ∈ g− {0} is a geodesic vector if and only if

gXm
([X,Z]m, Xm) = 0, ∀Z ∈ g.

Also as a corollary of the above theorem he proved the following corollary:

Corollary 4.5. A vector X ∈ g− {0} is a geodesic vector if and only if

gXm
([X,Z]m, Xm) = 0, ∀Z ∈ m.

Now, we are going to study Theorem 4.4 for the mentioned Finsler metric.

More precisely, we prove the following.
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Theorem 4.6. Let (G/H,L) be a homogeneous Finsler space with

L(x, y) =

√
c1ã(y, y) + 2c2

√
ã(y, y)ã(X, y) + c3ã(X, y)2

defined by the Riemannian metric ã and the vector field X. Then, X is a

geodesic vector of (G/H, ã) if and only if X is a geodesic vector of (G/H,L).

Proof. By using the formula

gy(u, v) =
1

2

∂2

∂t∂s

[
L2(y + su+ tv)

]
|s=t=0

and some computations, for the metric L, we have

gy(u, v) =c1ã(u, v) + c3ã(X,u)ã(X, v)− c2
ã(y, v)ã(u, y)ã(X, y)

ã(y, y)
3
2

(4.2)

+ c2
ã(u, v)ã(X, y) + ã(X, v)ã(u, y) + ã(u,X)ã(y, v)

ã(y, y)
1
2

.

So for all Z ∈ m, we have

gXm
(Xm, [X,Z]m) = ã(Xm, [X,Z]m)

{
c1 + 2c2

√
ã(X,X) + c3ã(X,X)

}
.

Thus, gXm
(Xm, [X,Z]m) = 0 if and only if the following holds

ã(Xm, [X,Z]m) = 0.

This completes the proof. □

Theorem 4.7. Let (G/H,L) be a homogeneous Finsler space with

L(x, y) =

√
c1ã(y, y) + 2c2

√
ã(y, y)ã(X, y) + c3ã(X, y)2

defined by the Riemannian metric ã and the vector field X. Let y ∈ g− {0} be

a vector which ã(X, [y, z]m) = 0 for all z ∈ m. Then, y is a geodesic vector of

(G/H,L) if and only if y is a geodesic vector of (G/H, ã).

Proof. By using the relation (4.2) and some computations, we have

gym
(ym, [y, z]m) = ã(ym, [y, z]m)

(
c1 + c2

ã(X, y)

ã(y, y)
1
2

)
+ã(X, [y, z]m)

(
c3ã(X, y) + c2ã(y, y)

1
2

)
.

This completes the proof. □
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5. Geodesic Vectors On Four Dimensional Real Group

Suppose that M is a 4n-dimensional manifold. Also let Ji, i = 1, 2, 3, be

three fiberwise endomorphism of TM such that

J1J2 = −J2J1 = J3, (5.1)

J2
i = −IdTM , i = 1, 2, 3, (5.2)

Ni = 0, i = 1, 2, 3. (5.3)

whereNi is the Nijenhuis tensor (torsion) corresponding to Ji defined as follows:

Ni(X,Y ) = [JiX, JiY ]− [X,Y ]− Ji([X, JiY ] + [JiX,Y ]), (5.4)

for all vector fields X,Y on M . Then the family H = {Ji}i=1,2,3 is called a

hypercomplex structure on M .

In fact three complex structures J1, J2 and J3 on a 4n-dimensional manifold

M form a hypercomplex structure if they satisfy in the relation (5.1) (since an

almost complex structure is a complex structure if and only if it has no torsion,

see [13] page 124.). A Riemannian metric ã on a hypercomplex manifold (M,H)

is called hyper-Hermitian if

ã(JiX, JiY ) = ã(X,Y )

for all vector fields X,Y on M and i = 1, 2, 3. A hypercomplex structure

H = {Ji}i=1,2,3 on a Lie group G is said to be left invariant if for any a ∈ G,

Ji = T la ◦ Ji ◦ T la−1 , (5.5)

where T la is the differential function of the left translation la.

In this section, we consider left invariant hyper-Hermitian Riemannian met-

rics on left invariant hypercomplex 4-dimensional simply connected Lie groups.

These spaces have been classified by M. L. Barberis as follows (see [3]).

She has shown that g is either Abelian or isomorphic to one of the follow-

ing Lie algebras:

(1) [e2, e3] = e4 , [e3, e4] = e2 , [e4, e2] = e3 , e1 : central,

(2) [e1, e3] = e1 , [e2, e3] = e2 , [e1, e4] = e2 , [e2, e4] = −e1,
(3) [e1, e2] = e2 , [e1, e3] = e3 , [e1, e4] = e4,

(4) [e1, e2] = e2 , [e1, e3] =
1
2e2 , [e1, e4] =

1
2e4 , [e3, e4] =

1
2e2.

where {e1, e2, e3, e4} is an orthonormal basis.

The case (1) is diffeomorphic to R × S3 and the other cases are diffeomor-

phic to R4 (see [3] and [4]).

Now we discuss about left invariant Finsler metrics L satisfying

L(x, y) =

√
c1ã(y, y) + 2c2

√
ã(y, y)ã(X, y) + c3ã(X, y)2,
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where ci = constant, i = 1, 2, 3 which can arise from these Riamannian metrics

and left invariant vector field X =
∑4

i=1 xiei on these spaces. We want to

describe all geodesics vectors of (G,L) in any of the above cases.

By using the relation (4.2) and some computations, we have

gy(y, [y, z]) = ã(y, [y, z])
(
c1 + c2

ã(X, y)

ã(y, y)
1
2

)
+ã(X, [y, z])

(
c3ã(X, y) + c2ã(y, y)

1
2

)
. (5.6)

By using Theorem 4.4, and (5.6), a vector y =
∑4

i=1 yiei of g is a geodesic

vector if and only if

ã(y, [y, z]) = 0 and ã(X, [y, z]) = 0 ∀z ∈ g,

therefore

ã
( 4∑

i=1

yiei, [
4∑

i=1

yiei, ej ]
)
= 0,

ã
( 4∑

i=1

xiei, [
4∑

i=1

yiei, ej ]
)
= 0

for each j = 1, 2, 3, 4. So we get the following system of equations in different

cases.

Case (1) 
x3y4 − x4y3 = 0,

x4y2 − x2y4 = 0,

x2y3 − x3y2 = 0.

As a special case, if X = x1e1 + x2e2, then a vector y of g is a geodesic vector

if and only if y ∈ Span{e1, e2}.

Case (2)

j = 1 ⇒

{
y1y3 + y2y4 = 0,

x1y3 + x2y4 = 0.

j = 2 ⇒

{
y1y4 − y2y3 = 0,

x1y4 − x2y3 = 0.

j = 3 ⇒

{
y21 + y22 = 0,

x1y1 + x2y2 = 0.

j = 4 ⇒
{
x2y1 − x1y2 = 0.

As a special case, if X = x3e3 + x4e4, then a vector y of g is a geodesic vector

if and only if y ∈ Span{e3, e4}.
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Case (3)

j = 1 ⇒

{
y22 + y23 + y24 = 0,

x2y2 + x3y3 + x4y4 = 0.

j = 2 ⇒

{
y1y2 = 0,

x2y1 = 0.

j = 3 ⇒

{
y3y1 = 0,

x3y1 = 0.

j = 4 ⇒

{
y1y4 = 0,

x4y1 = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if and

only if y ∈ Span{e1}.

Case (4)

j = 1 ⇒

{
2y22 + y23 + y24 = 0,

2x2y2 + x3y3 + x4y4 = 0.

j = 2 ⇒

{
y2y1 = 0,

x2y1 = 0.

j = 3 ⇒

{
y3y1 − y2y4 = 0,

x3y1 − x2y4 = 0.

j = 4 ⇒

{
y4y1 + y2y3 = 0,

x2y3 + x4y1 = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if and

only if y ∈ Span{e1}.
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