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Abstract. In a Finsler spaces, we consider a special (¢, 8)-metric L satisfying
L?(a, B) = c1a? + 2coaf3 + ¢332, where ¢; are constant. In this paper, the
existence of invariant vector fields on a special homogeneous («, 8)-space with
L metric is proved. Then we study geodesic vectors and investigate the set of
all homogeneous geodesics of invariant (c, 8)-metric L on homogeneous spaces
and simply connected.
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1. INTRODUCTION

The geometry of invariant Finsler structures on homogeneous manifolds is an
interesting topic in Finsler geometry, which has been studied by some Finsler
geometers in recent years (for example, see [1, 14, 15, 19]. An important family
of Finsler metrics is the family of (a, §)-metrics. These metrics are introduced
by Matsumoto (see [16]). They are considered not only by Finsler geometers
because of their simple and interesting structure but also by physicists because
of their applications in physics. In fact, the first type of («, 8)-metrics, Randers
metrics, introduced by Randers in 1941 for its application in general relativity
(see [18]). On the other hand, physicists are also interested in these metrics.
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Invariant (a, 8)-metrics have been studied by some Finsler geometers, during
recent years.
In this paper, we deal with special (o, §)-metric satisfying

Lg(a7 B) = 102 + 2c008 + ¢352,

where ¢;, (i = 1,2, 3) are constants. We study the existence of invariant vector
fields on homogeneous Finsler spaces with a special (o, 8)-metric L. Homoge-
neous geodesics have important applications to mechanics. For example, the
equation of motion of many systems of classical mechanics reduces to the ge-
odesic equation in an appropriate Riemannian manifold M. Then we study
geodesic vectors and investigate the set of all homogeneous geodesics of invari-
ant (o, §)-metric L on homogeneous spaces and simply connected 4-dimensional
real Lie groups admitting invariant hypercomplex structure. For more recent
papers, see [9] and [11].

2. Preliminaries

In this section, we recall briefly some known facts about Finsler spaces (for
details, see [2, 20]). Let M be a n-dimensional C*° manifold and TM =
Uzem T M the tangent bundle. A Finsler metric on a manifold M is a non-
negative function F : TM — R with the following properties:

1) F is smooth on the slit tangent bundle T M, := TM\0,

2) F(z,\Y) = AF(z,Y) forany z € M, Y € T, M and X > 0,
3) The n x n Hessian matrix

O F?

Oyioyd

1

[gij] = 9

is positive definite at every point (z,y) € T Mj.

The following bilinear symmetric form g, : T, M x T, M — R is positive

definite:
1 0% 1,
gy (u,v) = 3 Bedt [F (z,y + su+ tv)} |s=t=0-

By the homogeneity of F', we have
gy (u,v) = gij(x, y)u'v?, F=1/gij(z, y)u'ul.

Let M be an n-dimensional manifold. A special (o, 8)-metric L is a Finsler
structure L on T'M that has the form

L(z,y) := Vera?(2,y) + 2c2a(z,y)B(z, y) + csB(w, y)2,
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where

oz(x,y) = \/ az]yly] ) 6(1’,2;) = Bz(x)yza Ci, 1= 1a 2) 3 constant.
The a;; are the components of a Riemannian metric and the b; are those of a
1-form. Due to the presence of the 8 term, L metrics do not satisfy

L((E, 7y) = *L(l’,y)

when b # 0. In fact, the Finsler function of a L- space is absolutely homoge-
neous if and only if it is Riemannian. Also, in order for L to be positive if and
only if

| b l|:= 5751 < by, where bl = &ijgj.

The Riemannian metric @ = @;;dz’ ® dz? induces the musical bijection between
1-forms and vector fields on M, namely b : T,M — TiM given by X —
a,(X,0) and its inverse # : T*M — T, M. (see [2]) In the local coordinates we
have

(X")i = aiy’ (0%) = a'o; VX eT,M , V9e€T:M.
Now the vector field corresponding to 1-form b will be denoted by bf. Obviously,
we have
1o =1 0% |
and

Bla,y) = () (y) = @ (b, y).

Thus a special (a, 3)-metric L with Riemannian metric a = a;;dz’ ® dz7 and
1-form b can be shown by

L(LU, y) = \/Cldw(ya y) + 202 V dw(yv y)a‘(gnv y) + CSdm(gﬁv y)27 (21)

zxeM , yelT,M , c;:constant =12,3.

where
az (0%, %) < by, Vae M.

Let 7*T'M be the pull-back of the tangent bundle TM by n : TMy — M.
Unlike the Levi-Civita connection in Riemannian geometry, there is no unique
natural connection in the Finsler case. Among these connections on 7T M,
we choose the Chern connection whose coefficients are denoted by Fé-  (see [2],
p. 38). This connection is almost g-compatible and has no torsion. Since, in
general, the Chern connection coefficients I’ ;k in natural coordinates have a
directional dependence, we must define a fixed reference vector.

Let 0 = o(t) be a smooth regular curve in M, with velocity field T. Let

0

W(t) := Wi(t) o
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be a vector field along . The expression

dw'
dt

, . 9
+ WITH( ;‘k)a,T‘| @\a(t)

would have defined the covariant derivative DrW with reference vector T. A
curve o(t), with velocity T' = 6(t) is a Finslerian geodesic if

T

FT) =0 with reference vector T'

Dr

that the constant speed geodesics are precisely the solution of
DT =0 with reference vector T'.
Since ‘
do® 9
dt oz’
then the differential equations that describe constant speed geodesics are:

d%ot  dol do*
e o ar Twen =0

T .=

Before defining homogeneous Finsler spaces, we discuss here some basic con-
cepts required.

Definition 2.1. Let G be a smooth manifold having the structure of an ab-
stract group. G is called a Lie group, if themapsi: G - Gand p: GXG = G

defined as

i(9)=g', and pu(g,h)=gh,

respectively, are smooth.

Let G be a Lie group and M, a smooth manifold. Then a smooth map
f:Gx M — M satisfying

f(927f(gl7x)) :f(9291a'r)7 v.glng €G7 x e M.

is called a smooth action of G on M.

Definition 2.2. Let M be a smooth manifold and G, a Lie group. If G acts
smoothly on M, then G is called a Lie transformation group of M.

The following theorem gives us a differentiable structure on the coset space
of a Lie group.

Theorem 2.3. Let G be a Lie group and H, its closed subgroup. Then there
exists a unique differentiable structure on the left coset space G/H with the
induced topology that turns % into a smooth manifold such that G is a Lie

transformation group of G/H .
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Definition 2.4. Let (M, L) be a connected Finsler space and I(M, L) the
group of isometries of (M, L). If the action of I(M, L) is transitive on M, then
(M, L) is said to be a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M. Then for
a € M, the isotropy subgroup G, of G is a closed subgroup and by (2.3), G is
a Lie transformation group of G/G,. Further, G/G, is diffeomorphic to M.

Theorem 2.5. [5] Let (M, L) be a Finsler space. Then G = I(M,L), the
group of isometries of M is a Lie transformation group of M. Let a € M and
I.(M, L) be the isotropy subgroup of I(M, L) at a. Then I,(M, L) is compact.

Let (M, L) be a homogeneous Finsler space, i.e. G = I(M, L) acts transi-
tively on M. For a € M, let H = I,(M, L) be a closed isotropy subgroup of G
which is compact. Then H is a Lie group itself being a closed subgroup of G.
Write M as the quotient space G/H.

Definition 2.6. [17] Let g and b be the Lie algebras of the Lie groups G and
H respectively. Then the direct sum decomposition of g as

g=b+m,

where m is a subspace of g such that Ad(h)(m) C m, Vh € H, is called a
reductive decomposition of g, and if such decomposition exists, then (G/H, L)
is called reductive homogeneous space.

Therefore, we can write any homogeneous Finsler space as a coset space of a
connected Lie group with an invariant Finsler metric. Here, the Finsler metric
L is viewed as G invariant Finsler metric on M.

Definition 2.7. A one-parameter subgroup of a Lie group G is a homomor-
phism ¢ : R — G, such that ¥ (0) = e, where e is the identity of G.

Recall [5] the following result which gives us the existence of one-parameter
subgroup of a Lie group.

Theorem 2.8. Let G be a Lie group having Lie algebra g. Then for anyY € g,
there exists a unique one-parameter subgroup v such that 1(0) = Y, where e
is the identity element of G.

Definition 2.9. Let G be a Lie group with identity element e and g its Lie
algebra. The exponential map exp : g — G is defined by

exp(tY) =(t), VteR
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where ¢ : R — G is unique one-parameter subgroup of G with

$(0) =Y.

In the case of reductive homogeneous manifold, we can identify the tangent
space Ty (G/H) of G/H at the origin eH = H with m through the map

d
Y — ﬁexp(tX)H , Y em,
t=0
since M is identified with G/H and Lie algebra of any Lie group G is viewed

as T.G.

3. Invariant vector field

Lemma 3.1. Let (M,L) be a Finsler space with a special («, B)-metric L
satisfying

L* (o, B) = c10” + 2c203 + c38%,
where ¢; are constant. Let I(M,a) and I(M, L) denote the isometry groups of
Riemannian manifold (M,a) and Finsler manifold (M, L) respectively. Then,
I(M, L) is a closed subgroup of the I(M,a).

Proof. Let n € I(M, L) and q € M, we have
L(q,Y,) = L(n(q), danq)-

So we have

\/Clé(Yqv Yq) + 2c4/a(Yy, Yo)a(Xq, Yy) + c3a(Xq, Yy)?

= 1\/cra(dn,Yy, dngYy) + QCQWd(Xn(q), dn.Yy) + C3(~L(Xn(q), dngY,)?(3.1)

W=y a(dngYq, dngYy).

Replacing y by —y in above equation, we get

\/cld(Yq,Yq) —2cov/a(Yy, Yy)a(X,, Yy) + csa(Xy,Y,)?2  (3.2)

= \/Cla(dan;ﬁ dngYy) — 202Wa(Xy(q), dngYq) + c3a(Xy(q), dngYq)?.

where

Subtracting equation (3.2) from equation (3.1), we get
(Y, Yo)a(Xq, Yy) = 1/ a(dngYy, digYq)a(Xoq), digYy).- (3.3)
Combining the above equations implies that

{aldn, Yy, dngYo) = ¥y, Y) } - {e1a(¥y, Yo) = (X, dngYo)? | = 0. (34)
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We suppose that
c1@(Yy, Yy) — c3a( Xy (q), dngYy)® # 0
that is ¢; # 0 and ¢z # 0. So we have
a(dngYy, dn,Y,) —a(Y,, Y,) =0, (3.5)

which leads to

a(Yy, Yq) = aldngYy, dn,Yy), (3.6)
Adding equations (3.2) and (3.1) and using equation (3.6), we get

d(Xn(q)’ danq) = d(Xquq)~ (3.7)
Thus n € I(M,a) and for any ¢ € M we have

dngXq = Xy (q)-

This completes the proof. O

By Lemma (3.1), we conclude that if (M, L) is a homogeneous Finsler space

with metric
L*(a, B) = c10® 4 2c0a8 + ¢332,

then the Riemannian space (M, a) is homogeneous. Further, M can be written
as a coset space %, where G = I(M, L) is a Lie transformation group of M
and H, the compact isotropy subgroup I,(M,L) of I(M,L) at some point
a € M [6]. Let g and h be the Lie algebras of the Lie groups G and H,
respectively. If g can be written as a direct sum of subspaces h and m of g such
that Ad(h)m C m Vh € H , then from Definition (2.6), (G/H, L) is a reductive
homogeneous space.

Theorem 3.2. Let L*(a,8) = ca® + 2caaf3 + c38% be a G-invariant (a, 3)-
metric on G/H. Then « is a G-invariant Riemannian metric and the vector
X corresponding to the 1-form [ is also G-invariant.

Proof. Let L be G-invariant metric on %, we have
L(Ad(h)(y)) = L(y) VheH ,yem
By (2.1), we get
Veira(Ad(R)Y, Ad(R)Y) + 2¢2Za(X, Ad(h)Y) + cza(X, Ad(h)Y)?

=\ aa(Y,Y) + 2e2:/a(Y, V)a(X,Y) + csa( X, Y)?,

where

Z = +/a(Ad(h)Y,Ad(h)Y).
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After simplification, we get
cra(Ad(h)Y, Ad(h)Y) + 2¢.Za(X, Ad(h)Y) + csa(X, Ad(h)Y)?
= 1a(Y,Y) 4 2¢27/a(Y,Y)a(X,Y) + csa(X, V)% (3.8)
Replacing y by —y in (3.8) implies that
cra(Ad(h)Y, Ad(h)Y) — 2caZa(X, Ad(R)Y) + csa(X, Ad(h)Y)?
= 1a(Y,Y) = 2¢07/a(Y,Y)a(X,Y) + csa(X,Y)%.  (3.9)
(3.9)-(3.8) yields
Va(Y,Y)a(X,Y) = Va(Ad(h)Y, Ad(h)Y) a(X, Ad(h)Y).

Combining the above equations we have

{a(Ad(h)Y, Ad(h)Y) — a(y, Y)} : {cld(Y, Y) - esd(X, Ad(h)Y)Q} = 0.
We suppose that
aa(Y,Y) — cza(X, Ad(h)Y)? # 0
that is ¢; 20 , c3 # 0. So we get
a(Ad(h)Y,Ad(h)Y) —a(Y,Y) =0,
which leads to
a(Y,Y) = a(Ad(h)Y, Ad(h)Y), (3.10)
Adding equations (3.9) and (3.8) and using equation (3.10), we get
a(X,Y) =a(X,Ad(h)Y). (3.11)
Therefore, « is a G-invariant Riemannian metric and
AdhWX =X

which proves that X is also G-invariant. O

The following theorem gives us a complete description of invariant vector
fields.

Theorem 3.3. [7] There exists a bijection between the set of invariant vector
fields on G/H and the subspace

V= {Y cm: Ad(h)Y =Y, \meH}. (3.12)
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4. HOMOGENEOUS GEODESICS

In this section, we study the homogeneous geodesics of Finsler spaces equipped
with the following metric

Lz, y) = \/er(w, y) + 261/, )a( X, y) + esi( X, y)?

Definition 4.1. A Finsler space (M, L) is called a homogeneous Finsler space
if the group of isometries of (M, L), I(M, L) acts transitively on M

Also, we have the following.

Remark 4.2. Any homogeneous Finsler manifold M = G/H is a reductive
homogeneous space.

Definition 4.3. For a homogeneous Riemannian manifold (G/H, a), or a ho-
mogeneous Finsler (G/H,L) manifold a non-zero vector X € g is called a
geodesic vector if the curve

(t) = exp(tZ)(o)

is a geodesic on (G/H,a), or on (G/H, L), respectively.

Suppose that (G/H,a) is a homogeneous Riemannian manifold, and g =
m @ b is a reductive decomposition. In [12], it is proved that a vector X € g is
a geodesic vector if and only if

a([X,Y]m, Xm) =0, YY e m. (4.1)
In [14], Latifi proved a similar theorem for Finslerian case as follows.

Theorem 4.4. A vector X € g— {0} is a geodesic vector if and only if

9x.. ([ X, Z)m, Xm) = 0, VZ € g.
Also as a corollary of the above theorem he proved the following corollary:

Corollary 4.5. A vector X € g — {0} is a geodesic vector if and only if
9 ([X, Z]m, Xm) = 0, VZ e m.

Now, we are going to study Theorem 4.4 for the mentioned Finsler metric.
More precisely, we prove the following.
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Theorem 4.6. Let (G/H,L) be a homogeneous Finsler space with

L(z,y) = \/clé(% y) + 2c2v/aly, y)a(X, y) + cza(X, y)?
defined by the Riemannian metric a and the vector field X. Then, X is a
geodesic vector of (G/H,a) if and only if X is a geodesic vector of (G/H,L).

Proof. By using the formula

2
9y v) = 5557

and some computations, for the metric L, we have

[Lz (y + su+ tv)} ls=t=0

gy(u,v) =cira(u,v) + cza(X,v)a(X,v) —c (4.2)

a(u,v)a(X,y) + a(X,v)a(u,y) +

+ C2 ~
a(y,y)

N|=

So for all Z € m, we have

9 (Xns [X, ZJm) = (X, [X, Z]m) {1 + 262 /(X X) + (X, X) .
Thus, gx,, (Xm, [X, Z]m) = 0 if and only if the following holds
&(va [Xv Z]m) =0.

This completes the proof. (I

Theorem 4.7. Let (G/H,L) be a homogeneous Finsler space with

Liw,y) = Jeraly,y) + 262v/aly, )X, y) + sl X, y)?

defined by the Riemannian metric a and the vector field X. Let y € g — {0} be
a vector which a(X, [y, zJjm) =0 for all z € m. Then, y is a geodesic vector of
(G/H, L) if and only if y is a geodesic vector of (G/H,a).

Proof. By using the relation (4.2) and some computations, we have

Zlm) = a z c1 cza(X’y)
S (s 1 2Jm) = s 1 2Jm) (1 + o~ )

(X, [y, 2Jm) (ca(X,y) + caily.9) ).

This completes the proof. (]
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5. GEODESIC VECTORS ON FOUR DIMENSIONAL REAL GROUP

Suppose that M is a 4n-dimensional manifold. Also let J;, i = 1,2,3, be
three fiberwise endomorphism of 7'M such that

Jidy = —Jody = J3, (5.1)
J? = —Idry, i=1,2,3, (5.2)
N; =0, i=1,2,3. (5.3)

where N; is the Nijenhuis tensor (torsion) corresponding to J; defined as follows:
Ni(X,Y) = [JiX, Y] = [ X, Y] = Ji([X, JiY] + [J; X, Y]), (5.4)

for all vector fields X,Y on M. Then the family H = {J;};,=12,3 is called a
hypercomplex structure on M.

In fact three complex structures Jp, J; and J3 on a 4n-dimensional manifold
M form a hypercomplex structure if they satisfy in the relation (5.1) (since an
almost complex structure is a complex structure if and only if it has no torsion,
see [13] page 124.). A Riemannian metric @ on a hypercomplex manifold (M, H)
is called hyper-Hermitian if

a(J; X, ,Y)=a(X,Y)
for all vector fields X,Y on M and ¢ = 1,2,3. A hypercomplex structure
H = {J;}i=1,2,3 on a Lie group G is said to be left invariant if for any a € G,
Ji=Tl,oJ;oTl,, (5.5)
where T, is the differential function of the left translation [,.
In this section, we consider left invariant hyper-Hermitian Riemannian met-

rics on left invariant hypercomplex 4-dimensional simply connected Lie groups.
These spaces have been classified by M. L. Barberis as follows (see [3]).

She has shown that g is either Abelian or isomorphic to one of the follow-
ing Lie algebras:

(1) [e2,e3) = €4 , [es,ea] =e2 , [es,ea] =e3 , e1: central,

(2) [61,63] =€1 , [62, 63] = €2 , [61, 64] = €2 , [62, 64] = —€1,
(3) [e1,ea] = €2 , ler,es] =es , [e1,eq] = ey,

(4) le1,ea] =ea , [e1,e3] = %62 , len,eq] = %64 , les,eq] = %62.

where {ej, ea,e3,e4} is an orthonormal basis.

The case (1) is diffeomorphic to R x S3 and the other cases are diffeomor-
phic to R* (see [3] and [4]).

Now we discuss about left invariant Finsler metrics L satisfying

Lz, y) = \/era(w, y) + 2627/, 0)a(X, v) + csa(X, )2,
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where ¢; = constant, i = 1,2, 3 which can arise from these Riamannian metrics
and left invariant vector field X = Z?zl xz;e; on these spaces. We want to
describe all geodesics vectors of (G, L) in any of the above cases.
By using the relation (4.2) and some computations, we have
. a(X,y)
9y ly, 2) =y [y, 2)) (e + 2= —25 )
ay,y)?
- - - 1
+a(X, [y ) (es(X,y) + iy p)? ). (5.6)
By using Theorem 4.4, and (5.6), a vector y = Z?Zl yie; of g is a geodesic
vector if and only if

a(y,[y,2]) =0 and  a(X,[y,2]) =0 Vzeg,

therefore

4 4

d(zyieiy [Z Yi€i, €j]) =0,
111 111

&(inei, [Z Yi€i, ej]) =0
i=1 i=1

for each j = 1,2,3,4. So we get the following system of equations in different
cases.

Case (1)

T3ys — Tay3 = 0,

Z4Y2 — T2ys =0,

xoys — x3y2 = 0.
As a special case, if X = z1e; + zoes, then a vector y of g is a geodesic vector
if and only if y € Span{e;,ea}.

Case (2)
+ =0,
j=1= Y1Y3 T+ Y2Ya
T1Y3 + ToYq = 0.
_ =0,
j=2= Y1Ya — Y2Ys
T1Yys — T2y3 = 0.
2 2
+43 =0,
j=3= Y1 v Y2
T1Y1 + x2y2 = 0.
j=4= {$2y1 —x1y2 = 0.

As a special case, if X = xze3 + x4e4, then a vector y of g is a geodesic vector
if and only if y € Span{es, e4}.
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Case (3)
2 2 2
+ - + :O7
j=1= Y2 Y3 T Yy
Taye + x3y3 + ways = 0.
p— O’
ji=2= yryz
x2y1 = 0.
p— O’
j=3= YY1
r3yr = 0.
=0
j=d= Y1Ya ,
z4y1 = 0.

As a special case, if X = xyeq1, then a vector y of g is a geodesic vector if and
only if y € Span{e; }.

Case (4)
2y5 +y3 +yi =0,
j=1= Y2 T Y3 T Yy
2x2Yy2 + T3y3 + ways = 0.
p— 07
j=2= Y291
Tro2Yyir = 0.
_ =0,
j=3= Y3yYir — Y294
x3y1 — T2y4 = 0.
+ 3 =0,
j=d= YaY1 + Y2Ys3

T2y3 + x4y1 = 0.

As a special case, if X = z1eq, then a vector y of g is a geodesic vector if and
only if y € Span{e; }.
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