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Abstract- The integration of the distributed energy resources into a single entity can do with virtual power plants. VPP 

is a cluster of dispatchable and non- dispatchable resource with flexible loads which distributed in allover the grid that 

aggregated and acts as a unique power plant. Flexible load is able to change the consumption so demand response 

program is applied to use them to improvement of the power system performance. Virtual power plant generation has 

uncertainty and it make hard to schedule the VPP. To deal this matter Information gap decision theory hint us to 

optimal schedule of the VPP . To show the effects of VPP and DRP on power system operation cost a bi-level unit 

commitment with regard the VPPs and DRP is solved in modified IEEE 24 bus reliability test system. Results in 

presence of VPP and DRP in both IGDT strategies are compared with disregard VPP and DRP and effectiveness of the 

proposed model is reflected. 
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NOMENCLATURE  

b bus indices 

i generator indices 

j point indices 

k bus which considered as a VPP indices 

l bus which includes load                               

Nb set of the all grid buses 

NL set of the bus connectivity 

NLoad set of the load points 

Np set of the conventional power plants 

Nvpp set of the virtual power plants 

ag, bg, cg constant coefficient of the thermal units  

B line susceptance 

es.t elasticity in s and t time 

I0 on/off status of unit 1 before unit commitment 

Ls0/Prt0 load/price before DRP in s/t time 

Pbjmax/min maximum/minimum of the line power 

Pmax/min maximum/minimum of the unit 

RU/RD thermal units’ ramp 

SDc/SUc shot-down/startup cost 

U0/S0 on/off time duration 

UT/DT minimum up/down time 

 𝑢̅ uncertain variable 

VOLL load-shading cost €/MW 

β uncertainty tolerance 

ΔPr electricity changes of price after PBDR 

θmax/min maxi/min of  voltage 

Λ VPPs maximum capacity 

 

I on/off status 

Y start-up time 

Z shot-down time 

Cost-Emission emission cost for thermal units 

Cost (Lsh) load-shading cost 

Fc fuel cost 

LS load-shading 

Lt load after demand response 

P units’ generation power 

Pbj line power among b & j bus 

Tcost total cost 

U uncertain variable 

vpp VPP uncertain output 

vppc curtailment power of  VPP 

α uncertainty radius 

Δup/Δdown up/down of VPP’s output 

θ voltage  angle of bus 

λB total cost of predicted VPPS l output 

 𝑣𝑝𝑝̃ actualized power of the VPP 

 𝑣𝑝𝑝̅̅ ̅̅ ̅ predicted power for VPP 

CPP conventional power plant 

CVPP commercial VPP 

DER distributed energy resource 

DRP demand response program 

ED economic dispatch 

IGDT information gap decision theory 

ISO independent system operator 

KKT karush-kuhn-tucker 

MILP mixed-integer linear programing 

OS opportunity-seeker 

RA risk-averse 

RES renewable energy source 

TVPP technical VPP 

TEP transmission expansion planning 

UC unit commitment 

VPP virtual power plant 
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1. INTRODUCTION 

In conventional power plants, crude oil, coal, and natural 

gas are used mainly as the energy sources. These fossil 

fuels have pollution and also are expensive. After 

industrial development and global energy crisis, 

requirements for energy was increased. Building a power 

plant is a long-term and costly recourse. Substantially  

increasing the electricity consumption in the past decades, 

is concerned people about traditional fossil fuel reserves 

depletion, growing up the pollution effects on human as 

well as on ecosystem, and the poor efficiency of existing 

power system [1]. This matter caused that researchers 

find another way to generate energy that inexpensive, low 

pollution and even applicable in short-term and meet the 

future demand increment. 

Power systems around the world are undergoing 

significant change, driven particularly by the increasing 

availability of low-cost variable renewable energy, the 

deployment of distributed energy resources, advances in 

digitalization and growing opportunities for 

electrification [2]. DERs include controllable and 

interruptible loads, distributed storage, distributed 

generation such as wind turbine, PVs et. and smart 

switches with different capacities and characteristics. In 

many cases DGs like WT and PV have no cost for fuel, 

for this reason operation of the DERs has low marginal 

cost. Furthermore, these resources have low pollution 

and caused to save fossil fuels reserves for future. Scale 

up the DER utilization in the grid results the system 

fluctuations and volatility and many generating units, 

cannot modify their output in case of unpredicted 

fluctuations due to ramp rate restrictions [3]. On the 

other hand, in order to reduce the greenhouse gas 

emissions generated by fossil fuel based energy sources 

and expansion costs of transmission networks, 

renewable energy sources have considered as an 

appropriate alternative energy source. However, the 

investment costs of conventional power plants are lower 

than RESs, but the operating costs of energy and 

flexibility of power systems could be improved with a 

combination of RESs and fossil fuels based large scale 

power plants [4]. To integration of DERs, virtual power 

plants has been suggested. There is some definition for a 

VPP. In Ref. [5] defines VPP as a cluster of dispersed 

generator units, controllable loads and storage systems, 

aggregated to operate as a unique power plant. It 

enables integration of renewables and flexibility in 

demand in energy markets. A VPP structure is 

elaborated in Fig. 1. Actually, VPP includes 

dispatchable and non-dispatchable energy resources that 

distributed in power system. Dispatchable resource 

refers to the energy source can be turned on or off and 

adjust electricity power generation for example, thermal 

generation unit is a dispatchable energy resource 

because it can be turned on or off and it can increase or 

decrease output power in ramp rate range. The other 

type of energy resources is non-dispatchable resources. 

Unlike the dispatchable energy type, non-dispatchable 

resource which cannot adjust output power and just can 

only generate electricity while its energy flow is input 

on it.  For example, wind power plant cannot increase or 

decrease output power because its generation depends 

on wind power and just it can be coupled or decoupled 

to grid. 

Virtual power plants can operate in different forms. 

Based on pricing, VPPs can be a price-taker or price-

maker one. In price-taker mode, VPP generation 

capacity is lower than specific capacity amount which 

independent system operator permit it to compete with 

other generation companies and activate in market since 

this VPP just can take price from other power 

generation companies. This condition is providing by 

ISO, because electricity power market is an oligopoly 

market. In an oligopoly market there is a few sellers and 

many buyers. So in other type of pricing if ISO rules 

permit to VPP, it can be a price-maker VPP. 

 
Fig. 1. Virtual power plant structure 

 
Fig. 2. Commercial and technical virtual power plant 

performance 

 
Fig. 3. Commercial and technical virtual power plant comparing 

Virtual power plants based on considering 
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distribution network are in commercial and technical 

categories. A commercial virtual power plant has an 

aggregated profile and output which represents the cost 

and operating characteristics for the DER portfolio. 

Distribution network impact is not covered in the 

aggregated CVPP profile. The operator of a CVPP can 

be any third party aggregator or a Balancing 

Responsible Party with market access; e.g. an energy 

supplier. The technical power plant consists of DER 

from the same geographic location. The TVPP includes 

the real-time influence of the local network on DER 

aggregated profile as well as representing the cost and 

operating characteristics of the portfolio. Services and 

functions from a TVPP and CVPP are compared in Fig. 

2. The operator of a TVPP requires detailed information 

on the local network; typically, this will be the 

distribution system operator [6]. 

Smart grids in power system provided conditions that 

increased interaction between generation and 

consumption side together. Since demand response 

program is a way that consumers can participate in load 

curve correction and emission mitigation. Demand 

response programs are some tariffs on energy price that 

encourage consumers to change their load in specific 

times or shift their loads to other times. Virtual power 

plant is a smart grid which equipped with interruptible 

load, distributed resources and Advance metering 

infrastructure. Virtual power plant operator with AMI 

can communicates with different part of grid. VPP 

operator can satisfy the consumers to decrease their 

loads by DRPs or increases the generation volume of the 

distributed generations; in the both cases, the result is 

the increase of the VPP output. In recently years many 

scholars introduce the VPP properties and effectiveness 

of the VPP in power system are verified. To ensure the 

profit margin, a bilateral contract was proposed. 

Transmission line in Ref. [7] was considered a local 

generation company. VPP was equipped with industrial 

loads and these loads were interruptible since a short-

term scheduling of industrial VPP with suggesting the 

best demand response program was solved by mixed 

integer non-linear programming. In recent publication, 

VPP distributed renewable power generation have been 

incorporated into the internet of the energy. Deep 

reinforcement learning based artificial intelligence 

algorithm for realistic scenario generation to address 

VPP intermittence and non-convex economic dispatch 

represented in [8]. A comprehensive review on the 

Classic and new architecture of the VPP is discussed in 

Ref. [9]. Demand side management, different control 

and energy management strategies and ancillary 

services in different VPP architecture implementation 

were compared. Day-ahead framework, VPP scheduling 

is proposed in references [10] – [11]. A probabilistic 

scheduling for optimal operating thermal and electrical 

energy resources for DA is proposed in [10] . In Ref. 

[12] day-ahead VPP scheduling for joint energy and 

reserve market is highlighted. In [13] to close gaps 

between retailer and wholesale market in VPP 

framework, DERs bid/offer in DA and real time market 

a framework provided so that if predicted power was 

less than the real-time demand, we had to buy the extra 

power expensive than the real-time energy price and if 

predicted power was more than the real-time demand, 

we had to sell surplus power lower than the real-time 

energy price. This is a way to encourage to predict the 

demand with lowest error. Stochastic programming of 

VPP with plugged-in electric vehicle in DA with regard 

reserve market, decreasing the life time of PEV’s 

battery was supposed in Ref. [11]. 

Among the optimization in two-stage form papers, we 

can be mentioned to references [14] – [15]. In [14] a 

smart grid which includes PEV, PV and WT to 

generation unit and attempted to minimize unbalanced 

transmission network by DRPs and optimal thermal 

power plants unit commitment also peak-shaving and 

valley-filling was done. A two stage mixed integer 

linear programming day-ahead unit commitment 

problem was solved with chance-constrained in Ref. 

[16]. Heuristic method was employed to convert 

uncertain chance-constrained to deterministic form. DA 

multi-objective scheduling of VPP with uncertainty of 

load and generation was provided in Ref. [17]. Different 

technology of generation like PV, WT, battery energy 

storage system and combined heat and power was 

intended. In reference [15] two-stage approach was 

taken account to management transmission line 

congestion by compressed air energy storage and wind 

power scheduling. To harness intermittence of the wind 

power, chance-constrained method was employed. In 

the first stage, social welfare was maximized. In order to 

local marginal price approach was applied to congestion 

alleviation by wind power. In the second stage 

stochastic security-constrained unit commitment model 

with DRP and CAES deployment, the operation cost 

was minimized. 

A non-linear model for multi-coupling of gas and 

electrical and combined cooling, heat and power 

network was intended in reference [18]. All three 

network coordinal operated and effects of each network 

on the other one was investigated. Two-stage stochastic 

risk-constrained scheduling of the VPP with correlated 
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demand response highlighted in Ref. [19]. First stage 

optimization was day-ahead unit commitment, 

scheduling and bidding management and second stage 

was real-time VPP energy management. In References 

[20]- [21] unit commitment problem is discussed. Ref. 

[20] focused on to integrate the CHP and only electric 

power generator unit in order to minimize greenhouse 

gas emission and also selling of the power in reserve 

market. A hybrid algorithm for unit commitment 

problem is discussed in Ref. [22]. Hybrid particle 

swarm optimization is a new form of the particle swarm 

optimization algorithm that reaching the successful is 

provided with low initial population. The mentioned 

paper, solved unit commitment problem with HPSO and 

compared results with other similar papers. Security-

constrained unit commitment under demand response 

resource as virtual power plant was studied in Ref. [23]. 

Demand response programs was presented in two type; 

one type of this was assumed for only peak-shaving in 

peak times and the other one was presented to shift of 

the consume time for valley-filling and peak-shaving. 

Multi-stage robust unit commitment with affine policy 

for dispatch decision by Benders decomposition in 

large-scale polish 2736 bus-system under high 

dimensional uncertainty of the wind and solar farms 

carried out in Ref. [24]. Stochastic self-scheduling of 

hydro-thermal units with RES under various uncertainty 

elements is carried out  in Ref. [21] and a profit- based 

structure for Genco’s is represented. The advantage of 

Ref. [21] is improving the accuracy and achieving to 

realistic results and disadvantage of its is to select the 

filtering ratio. Multi-objective optimization of the 

virtual power plant was done in Ref. [25] and [26]. In 

aforementioned papers, object function was included the 

maximum profit of the virtual power plant and 

minimum of the CO2 emission and minimum operation 

risk. Bi-level programming of virtual power plants was 

applied in references [27] - [28] and bi-level 

optimization was followed for a three stage 

programming in Ref. [29]. In Ref. [27] bi-level 

optimization for VPPs was carried out which in upper 

level, VPPs  maximized their profit and in lower level, 

distribution company minimized the operation costs. In 

highlighted works, equilibrium problem with 

equilibrium constraints by Karush-Kuhn-Tucker 

conditions were became to non-linear single level 

problem. Three stage bi-level programming for VPP 

supply offer and demand bidding could be found in Ref. 

[29]. In the first stage variables were comprised the DA 

multi-stage VPP supply offer and load deceleration 

curves. At the second stage market-clearing process was 

done. Actually second stage was assumed that the 

lower-level. The third stage was regarded as upper-level 

of the bi-level problem and in this stage real-time 

energy profiles (production/consumption) were 

determined. Reference [30] Investigated daily unit 

commitment for hydro-thermal units under load 

uncertainty with information gap decision theory. 

Scheduling of renewable energy based a smart home 

under PV system output with IGDT for simulation of 

uncertainty was studied in reference [31]. Self-

scheduling framework for demand response aggregators 

that applied market price and load uncertainty with 

IGDT which was solved with bi-level programming was 

mentioned in Ref. [32]. Reference [33] investigates the 

management of a smart home with IGDT in two risk-

averse and opportunity-seeker strategy. Reference [34] 

Applied both strategy of IGDT for a UC problem with 

wind turbine output uncertainty. Results were shown 

that in RA strategy, by decreasing the share of WTs to 

compensate the portion of the wind power, CPPs’ share 

was enhanced. As well as in OS strategy, by increasing 

the WTs share, contribution of the CPPs was decreased. 

In Ref. [35] based on Stackelberg equilibria to 

maximum profit of the micro-grid aggregators in retail 

market a game theory was modeled. To cope 

participation risk in retail market emergency demand 

response program in retail side was investigated. Due to 

drastic renewable energy resources and energy price 

ambiguity, RA strategy of the IGDT was set. In 

Reference [36] mixed integer linear bi-level 

programming was suggested for VPP bidding in DA and 

balancing oligopoly markets under bilateral contracts 

and financial transmission rights concept. At the upper 

level VPP aggregator profit was maximized and in the 

lower level social welfare of the system was maximized. 

The market severely stochastic nature, imposed to 

utilize IGDT methodology. Comprehensive reviews on 

demand response programs were conducted in 

references [37] - [38]. Reference [37] studied 

exclusively about strength, weakness opportunity and 

threats of the demand side management in Kuwait. 

Above study determined that if some demand response 

program was successful in a region it is not necessarily 

be useful in else country. Richness of the Kuwait 

economy and ample reserve of the fossil fuels caused 

that price-based demand response programs in Kuwait 

failed. In this regard informing the people about demand 

response programs benefits and incentive-based demand 

response schemes are very useful in this country. 

Reference [39] denoted the recent development of the 

DR system, load scheduling and several communication 

network technologies. Authors in  Reference[39] believe 

that the available DR programs are unfair to existence of 
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the some selfish consumers with high level consumption 

in residential district. These selfish consumers caused 

that energy price be expensive and all consumers be 

penalized. in this regard, recommendations include 

adaptive consumption-level pricing scheme to 

alleviation this affect. Reference [40] elaborated market-

clearing process of Singapore wholesale market demand 

response programs. Mathematical relations in market-

clearing model and demand response programs were 

demonstrated. Reference [41] explained how demand 

response programs were raised. In addition to 

classification of the demand response programs and 

demand response costs were discussed. Details of the 

meta-heuristic and mathematical optimization 

approaches on demand response problems were 

reviewed. A novel version of the demand response 

termed as integrated demand response was introduced in 

an energy-hub context that all energy users could be 

contribute in energy management by IDR. Value of the 

IDR analyzing and systematic literature were reviewed 

on the art station of the IDR. Developments, 

applications and implementation of the IDR in different 

countries all over the world in multi-energy system were 

described in Ref. [42]. Reference [38] reactive power 

planning is combined with transmission expansion 

planning considering demand response program. The 

price-based demand response program has good effect 

on cost and caused the cost of transmission expansion 

planning and reactive power planning be minimized. In 

mentioned literatures enough work done in unit 

commitment and VPPs output uncertainty with variable 

ways to simulation of uncertainty like fuzzy-logic, 

probabilistic functions, scenario-based and robust 

decision-making theories. As shown in table 1 most of 

the mentioned papers focused on probabilistic and 

scenario-based methods to quantify intermittence of the 

RES. Unit commitment problem in presence of the 

demand response programs are not taken accounted 

enough. Also bi-level unit commitment problem with 

VPP contribution is not examined more. In this regard 

seems the gap of aforementioned papers is unit 

commitment considering VPP and demand response 

program with another perspective. Beside to lack of the 

information about VPP output and existence of sever 

uncertainty in each time interval, IGDT is a useful 

object to analyze the VPP generation. Therefore, the 

main contributions of this paper are: 

1. Unit commitment of CPPs with DRP, under output 

uncertainty VPP and network constraints is carried 

out. 

2. IGDT for VPPs output uncertainty is discussed. 

 

Table 1. Literature comparing 

Reference UC 

UC 

considering 

VPP 

conception 

Network 

constraints 

Uncertainty 

model 
DR 

Bi-

level 

[14] YES NO YES NO YES NO 

[15] YES NO YES STOCHASTIC YES NO 

[16] YES NO YES STOCHASTIC NO NO 

[19] YES NO YES STOCHASTIC YES NO 

[20] YES NO NO NO NO NO 

[22] YES NO NO NO NO NO 

[23] YES YES YES NO YES NO 

[24] YES NO YES ROBUST NO NO 

[30] YES NO NO IGDT NO NO 

[34] YES NO YES IGDT YES YES 

Proposed 

study 
YES YES YES IGDT YES YES 

3. Each IGDT RA and OS strategies solved with bi-

level programming. 

4. Results in DRP and VPPs presence is compared 

with lack of DRP and VPPs. 

The rest of this paper is organized as follows: In 

section 3 system modeling and concept of the IGDT is 

presented. Mathematical formulation of the UC problem 

with demand response, network constraints and IGDT 

Uncertainty representation and the solution method are 

described. Input data and results discussing are carried 

out in section 4. Section 5 concludes the paper with 

some remarks for further study in this domain. 

2.  SYSTEM MODELING 

2.1. Problem Description 
The aim of this paper is present a generation allocation 

for CPPs to meet network constraints. Network 

constraints are modeled by DC-power flow equations.  In 

modified IEEE 24 bus reliability test system, some buses 

are described as VPP. Existence of VPP in a grid have 

many benefits but creates challenges in power system. 

Optimal exploiting of the VPP in power system obviously 

helps operators to decrease operation costs and mitigates 

environment pollutions by utilizing cheap and clean 

energy sources and DRPs in VPP background but 

stochastic nature of the VPP output is one of the biggest 

challenges. To tackle severe lack of information about 

VPP output, IGDT model is suggested. In fact, this paper 

intends to do simultaneously cost-based unit commitment 

and economic dispatch to address the VPP and DRP 

effects on upstream network. IGDT has two RA and OS 

strategy and also has an uncertainty set that is called 

uncertainty radius. This set in both strategies based on the 

concept of the problem, has to be maximized or be 

minimized. Due this matter, object function and presence 

of the uncertainty set, optimization problem becomes to a 

bi-level problem. This bi-level problem cannot solve by 

solved by standard techniques and decomposition 
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methods are required. For the mentioned problem, 

Benders-decomposition and performing Karush-Kuhn-

Tucker conditions to convex and first order optimization 

are two common and useful techniques. BD has 

expensive processes for that reason we advise to use the 

KKT conditions to switch the bi-level problem to a 

single-level. In this situation the bi-level MILP 

optimization become to a single-level MINLP. This 

mathematical process are followed on Ref. [43] and Ref. 

[44]. To do this first, object function based on the 

predicted VPP outputs must be minimized. This value is 

an input for second stage and depend on the IGDT 

strategy, decision-variable gets the optimum value for 

uncertainty variable. More information about the IGDT 

and its strategies are represented in next sections. 

2.2. Uncertainty Modeling 

To deal with intermittence nature of phenomenon like 

RES energy generation in 24-hour horizon probabilistic, 

fuzzy-logic, robust and IGDT methods are suggested 

(Fig.4).  

Probabilistic methods aim to actualize uncertain 

variables and decision-making by historical data and 

precise information like probability density function 

about uncertain variables. Scenario-based stochastic 

programing is based on scenario generation. To 

eliminate the extra process volume of the optimization, 

scenario reduction methods are taken account but 

nonetheless left scenarios are excess. Fuzzy-logic 

decision-making approach needs to have a membership 

function. This approach has to solve the problem for 

multiple values of α-cuts. Similar the stochastic 

approach, this one requires a significant information and 

process’s is expensive. Robust optimization does not 

require a function to elaborate stochastic behavior but 

reliance to deterministic data which is called uncertainty 

sets. These sets impose a robust and optimal bound for 

decision-variable. Robust optimization due to 

deterministic sets, have slightly process. Based on Ref. 

[45] IGDT is a useful approach in sever uncertainty. 

IGDT does not require deterministic data or significant 

sets like robust optimization. It is note that all the 

intermittence phenomenon does not have PDF and one 

of the IGDT traits that distinguished against the other 

procedures is that IGDT could present substantially 

accurate information about ambiguity decision-variable 

without deterministic input data. IGDT to proceed this, 

only needs a prediction from uncertain decision-

variable(s). IGDT expresses the sever lack of 

information in two pernicious and propitious prospects. 

Robustness function reflects the greatest value of the 

uncertainty until failure does not happen and minimal 

requirements be satisfied. While opportuneness function 

represents the least level of obscurity which entails the 

possibility of sweeping success. In fact, robustness is 

the degree of the resistance and immunity against the 

uncertainty whereas opportuneness is the immunity 

against windfall reward and indicates that attainment to 

great reward and success is possible in presence of little 

obscurity ambient. The first facet is called RA strategy 

and second slight to uncertainty is entitled OS strategy. 

 
Fig. 4. Uncertainty models 

If V be a decision-making vector, the RA and OS 

strategy can define as: 

â(V)=max{α: minimal requirements are always satisfied} (1) 

ȏ(V)=min{α sweeping success is possible}                           (2) 

Let R (V, U) is a scalar reward function that includes 

V and U as decision vector and uncertainty vector 

respectively. The minimal requirement in R (V, U) is no 

less than a critical value rc. in order to, R (V, U) to attain 

success in presence of the uncertainty is chosen greater 

than a specific value like rw. as well as we express more 

explicitly robustness and opportuneness function: 

â(𝑉. 𝑟𝑐) = 𝑚𝑎𝑥{ 𝛼 ∶ ( 𝑚𝑖𝑛
𝑢∈𝑈(𝛼.𝑢)

𝑅(𝑉 . 𝑈)) ≥ 𝑟𝑐}      (3) 

ȏ(𝑉. 𝑟𝑤) = 𝑚𝑖𝑛{ 𝛼 ∶ ( 𝑚𝑎𝑥
𝑢∈𝑈(𝛼.𝑢)

𝑅(𝑉 . 𝑈)) ≥ 𝑟𝑤}    (4) 

â (V, rc) is the greatest value of the uncertainty which 

is guaranteed that be no less than rc and ȏ (V, rw) is the 

minimum level of the uncertainty that should be 

accepted to sweeping success (but no guarantee) as 

great as rw. In some case the natural reward requirement 

is that R (V, U) must not exceed a particular level like rc 

/ rw rather than to be less than rc / rw as in equations (3) 

and (4). In this situation robustness is the greatest value 

of the uncertainty that maximum reward is no greater 

than rc. As in manner the opportuneness function is the 

minimum value of α that success can be occur as small 

as rw. Through the addressed sentences, equations (3) 
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and (4) can be modify as below: 

 â(𝑉. 𝑟𝑐) = 𝑚𝑎𝑥{ 𝛼 ∶ ( 𝑚𝑎𝑥
𝑢∈𝑈(𝛼.𝑢)

𝑅(𝑉 . 𝑈)) ≤ 𝑟𝑐}  (5) 

ȏ(𝑉. 𝑟𝑤) = 𝑚𝑖𝑛{ 𝛼 ∶ ( 𝑚𝑖𝑛
𝑢∈𝑈(𝛼.𝑢)

𝑅(𝑉 . 𝑈)) ≤ 𝑟𝑤}  (6) 

According the mentioned explains about robustness 

and opportuneness, if we looking for concepts like 

minimum expected economic profit, we have to use 

equations (3) and (4) otherwise, if we looking for 

concepts like maximum expected economic cost, we 

have to use equations (5) and (6). IGDT optimization 

process components are described as below: 

System Modeling: System model is the mathematical 

expressions of the system and according the concepts 

are chosen Eq. (3), (4) or Eq. (5), (6). If IGDT looks for 

the value that uncertainty to be greater than rc or rw 

equations (3) and (4) must be applied otherwise if IGDT 

looks for value that to be less than rc or rw equations (5) 

and (6) must be applied. 

Uncertainty Modeling: Uncertainty model of the 

IGDT are several. In Ref. [45] three common models 

are such as: 

Energy-bound model: this model is suitable for 

dynamic temporal and transient phenomenon which 

deviate from nominal value. u(t) indicates uncertainty 

variable and 𝑢̅(𝑡) is the prior or certain information. 

𝑈(𝛼. 𝑢̅) = {𝑢(𝑡): ∫ [𝑢(𝑡) − 𝑢̅(𝑡)]2𝑑𝑡 ≤ 𝛼2∞

0
}   𝛼 ≥ 0       (7) 

Envelope-bound model: Similarly, the energy-bound, 

this model hedge the uncertainty deviation from 

nominal value to an expandable envelope. For a scalar 

function we have: 

 𝑈(𝛼. 𝑢̅) =  {𝑢(𝑡):  |𝑢(𝑡) − 𝑢̅(𝑡)| ≤ 𝛼𝜀(𝑡)} .  𝛼 ≥ 0           (8)  

Where ε(t) is the function that is known and it is 

referred to the shape of the envelope. Uncertainty radius 

(α) dedicates the size of envelope. In some cases, 

uncertainty deviation can be limit to special area by 

choosing ε(t)=1 for mentioned area and ε(t)=0 to other. 

In other cases, ε(t) is used to represent the relative 

magnitude of variation. In this situation ε(t) has 

symmetrical relation with known information (ε(t) ∝

 𝑢̅(𝑡)) and envelope model in Eq.(8) becomes the set of 

functions u(t) whose fractional deviation from the 

nominal function 𝑢̅(𝑡) is no greater than α: 

𝑈(𝛼. 𝑢̅) =  {𝑢(𝑡):  |
𝑢(𝑡)−𝑢(𝑡)

𝑢(𝑡)
| ≤ 𝛼}  .   𝛼 ≥ 0                        (9) 

Slope-bound model: Rate of the deviation can be 

constrained by uncertainty radius. In previous models, 

rate of variation has been not restricted in any of IGDT 

models. The envelope-bound concept can be applied to 

the slope rather than to the magnitude of the uncertain 

function. A simple slope-bound IGDT model for 

uncertain variations is: 

𝑈(𝛼. 𝑢̅) =  {𝑢(𝑡):  |
𝑑[𝑢(𝑡)−𝑢(𝑡)]

𝑑𝑡
| ≤ 𝛼𝜁(𝑡)}  .  𝛼 ≥ 0            (10) 

Where 𝑢̅(𝑡) is the nominal value of the uncertainty 

and 𝜁(𝑡) defines the envelope of uncertain variation of 

the slope. The other models like Minkowsky-norm, 

Fourier-bound and hybrid et. Models can found in Ref 

[45]. 

Proper Strategy: IGDT have two RA and OS strategy. 

RA strategy is in robustness manner and in this strategy, 

greatest value of the uncertainty in term which no 

failure happens. While OS strategy the minimum value 

of the uncertainty which entails the possibility of the 

reach to success. 

2.3. Unit Commitment 

Through this paper cost-based unit commitment problem 

is investigated with VPPs output uncertainty and price-

based time of use demand response program. To calculate 

VPPs output, IGDT cause our problem to be a bi-level. 

The goal of the CBUC is to allocate the generation of 

each CPPs to match the demand for a specific study 

horizon so that cost is minimized. 

2.3.1. Cost Function 

In this section total cost function is presented as start-up 

and shot-down cost of the CPPs, fuel cost, greenhouse 

gas emission cost, load-shading cost. Non-linear fuel and 

emission cost function transform to piecewise-linear 

function in the first stage based on approach that is 

introduced in reference [46]. 

𝑇𝑐𝑜𝑠𝑡 = ∑ ∑ (𝐹𝑐(𝑃(𝑖. 𝑡))
𝑁𝑝

𝑖=1  + 𝑆𝑈𝑐(𝑃(𝑖. 𝑡)) +𝑇
𝑡=1

𝑆𝐷𝑐(𝑃(𝑖. 𝑡)) + 𝑐𝑜𝑠𝑡(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)) + 𝑐𝑜𝑠𝑡(𝑙𝑠ℎ)                   (11)  

2.3.2. Generation Cost 

As mentioned in Ref. [47] maximum and minimum 

generation of the units in each time interval and their 

dependency of them to before and after time t and ram-

rate are following below. If a unit should be off for the 

next hour, the power generated must be less than the shut-

down limit this constraint is represented by Eq. (13). The 

shut-down ramp rate and ramp-down Limit are included 

in Eq. (14). Likewise, the above, the start-up ramp rate 

and ramp down limit are represented in Eq. (15). In this 

manner if a unit shot down or start-up at time t, start-

up/shot-down ramp rate are added to ramp up/down rate 

respectively. Shot-down and start-up ramp rate are 

thermodynamic and nuclear limits and are forced power 

that must be generated for completing the chemical 
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cycles. 

∀ 𝑡. 𝑠 ∈ 𝑇 . ∀ 𝑖 ∈ 𝑁𝑝(𝑏. 𝑖). ∀ 𝑏. 𝑗 ∈ 𝑁𝐿(𝑏. 𝑗): 

𝑃𝑚𝑖𝑛(𝑖)𝐼(𝑖. 𝑡) ≤ 𝑃(𝑖. 𝑡) ≤ 𝑃𝑚𝑎𝑥(𝑖)𝐼(𝑖. 𝑡)                       (12) 

𝑃(𝑖. 𝑡) ≤ P𝑚𝑎𝑥(i)(𝐼(𝑖. 𝑡) − 𝑍(𝑖. 𝑡 + 1)) + 𝑆𝐷(𝑖)𝑍(𝑖. 𝑡 + 1)     (13) 

𝑃(𝑖. 𝑡 − 1) − 𝑃(𝑖. 𝑡) ≤ 𝑆𝐷(𝑖)𝑍(𝑖. 𝑡) + 𝑅𝐷(𝑖)                (14) 

𝑃(𝑖. 𝑡 + 1) − 𝑃(𝑖. 𝑡) ≤ 𝑆𝑈(𝑖)𝑌(𝑖. 𝑡) + 𝑅𝑈(𝑖)                  (15) 

2.3.3. Minimum Up and Minimum down Time 

Constraints 

CPPs for thermodynamic and nuclear constraints cannot 

change their generations instantly for that reason 

minimum up/down time define as minimum time interval 

that a unit must be on/off to complete the chemical cycle. 

in this way, minimum up/down time constraints and 

on/off status of the units are as follow as: 

∑ (1 − I(i. t))
B(i)
t=1 = 0                                          (16) 

∑ 𝐼(𝑖. 𝜏)

𝑇1

𝜏=𝑡

≥ 𝑈𝑇(𝑖). 𝑌(𝑖. 𝑡)              

∀ 𝑖 . 𝑇1 = 𝑡 + 𝑈𝑇(𝑖).   

 ∀ 𝑡 =  𝐵(𝑖) + 1. … . 𝜗 − 𝑈𝑇(𝑖) + 1                                    (17) 

∑ (𝐼(𝑖. 𝜏) − 𝑌(𝑖. 𝑡)) ≥  𝜗
𝜏=𝑡    

∀ 𝑖 . ∀ 𝑡 = 𝜗 − 𝑈𝑇(𝑖) + 2. … . 𝜗                               (18) 

Equation (16) is a forced commitment limit for units 

that are not passed minimum up time. Equations (17) 

and (18) define that each unit which is on, it has to at 

least be keep on to start-up time frequencies. Similar to 

the Eq. (16) -(18) forced de-commitment for units that 

are not passed minimum down time, shot-down hours 

and frequency of the shot-down, limits satisfied by Eq. 

(19) – (21). Initial status of the units before scheduling 

time horizon is represented by Eq. (22) and (23). These 

equations determine that how many hours that a unit 

was on/off before scheduling respectively. 

∑ 𝐼(𝑖. 𝑡)
𝐶(𝑖)
𝑡=1 = 0                                  (19) 

∑ 1 − 𝐼(𝑖. 𝜏)

𝑇2

𝜏=𝑡

≥ 𝐷𝑇(𝑖). 𝑍(𝑖. 𝑡)              

  ∀ 𝑖 . 𝑇2 = 𝑡 + 𝐷𝑇(𝑖) − 1 .  

  ∀ 𝑡 = 𝐶(𝑖) + 1. … . 𝜗 − 𝐷𝑇(𝑖) + 1                                (20) 

∑ (1 − 𝐼(𝑖. 𝜏) − 𝑍(𝑖. 𝑡)) ≥ 0           𝜗
𝜏=𝑡   

∀ 𝑖 . ∀ 𝑡 = 𝜗 − 𝐷𝑇𝑖 + 2. … . 𝜗                                               (21) 

𝐵(𝑖) = 𝑚𝑖𝑛{𝜗. (𝑈𝑇(𝑖) − 𝑈𝑇0(𝑖))𝐼0(𝑖)}                             (22) 

𝐶(𝑖) = 𝑚𝑖𝑛{𝜗. (𝐷𝑇(𝑖) − 𝑆0(𝑖))(1 − 𝐼0(𝑖))}                      (23) 

 

2.3.4. Logical State of Commitment 

To prevent interference of the units on/off status and 

interaction of binary variables, below equations are 

provided for each unit: 

Y(i. t) − Z(i. t) = I(i. t) − I(i. t − 1)                              (24) 

Y(i. t) + Z(i. t) ≤ 1               (25) 

2.3.5. Cost Constraints 

Fuel, load-shading and greenhouse gas emission costs 

and constraint can be obtained byEqns. (26) – (29): 

Fc(i. t) = ag
2P(i. t) + bgP(i. t) + cg                             (26) 

Cost(LSh) = ∑ ∑ VOLL × LS(b. t)T
tb∈Nb

                        (27) 

LSmin < LS(b. t) < LSmax                                 (28)  

Emission cost = ae
2P(i. t) + beP(i. t) + ce                  (29) 

2.3.6. Demand Response Limits 

Price-based demand response programs are type of 

schemes that by changing the energy price, costumer 

behavior changes. Time of use is one type of PBDR 

programs. Performance of the TOU is such as performing 

tariffs on some hours caused costumers transfer their 

loads to valley-load time. Usually for TOU demand 

response program, three-time interval is assumed. In each 

time interval, energy price has significant value. off 

course energy price must have highest price in peak-

times. It is worth nothing that all loads like illuminating 

loads is not able to transfer the off-peak time. 

Furthermore, extra tariffs on energy price has not same 

effects on costumer behavior. Some consumers are selfish 

or rich and it is not important to them how much is the 

energy price be expensive. Contrary the rich people, there 

is some consumers that energy price has significant 

impact on their lifestyle. To this end elasticity concept 

provided by demand price as Eq. (30). If price be 

changed in diverse period, consumers can transfer loads 

to off-peak time or otherwise only on or off; in the case 

that some loads have not capable to transfer to other 

period and loads have sensitivity in a single-period call 

self-elasticity and always have negative value. the other 

action which capable to move other time intervals is 

called multi-period sensitivity and evaluate by cross-

elasticity. Cross-elasticity always have positive value. 

TOU demand response program for loads participation in 

unit commitment problem constraints are followed by 

[48]. Equation (30) determines the elasticity of each load 

in 24h time horizon. Eq. (31) calculates the load level 

changing after TOU demand response program. 

maximum allowable participation in DRP and load 

change rate are in Eq. (32) and (33) respectively. Also Eq. 

(33) describes that, the sum of all load changing in 24-h 
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time horizon must be lower than maximum amount of 

load changing: 

e(s. t) =

∆L(s)
L0(s)⁄

∆Pr (t)
Pr0(t)⁄

                 {
e(s. t) ≤ 0         if s = t
e(s. t) ≥ 0         if s ≠ t

   (30) 

L(t) = L0(t) × [1 + e(t. t) ×
[Pr (t)−Pr0(t)]

Pr0(t)
+ ∑ e(s. t) ×24

s=1
s≠t

[Pr (s)−Pr0(s)]

Pr0(s)
]                                                               (31) 

|∆L(s)| ≤ ∆Lmax                                (32) 

∆𝐿 ≤ ∆𝐿(𝑠) − ∆𝐿(𝑠 − 1) ≤ ∆𝐿              (33) 

∑ ∆𝐿(𝑠) ≤24
1 ∆Lmax               (34) 

2.3.7. Network Constraints 

In this study a linear DC power flow is embedded and 

network constraints are mentioned in Eqns. (35) -(37). 

Eq. (35) is the line power; Eq. (36) is the line power 

limits and Eq. (37) taken account the power balance in 

grid and ensures that generation and demand are balanced 

during all time intervals. 

Pbj(b. j. t) = B(b. j) ∗ (θ(b. t) − θ(j. t))                          (35) 

Pbj
min ≤ Pbj(b. j. t) ≤  Pbj

max                                               (36) 

LS(b. t) + ∑ P(i. t)i∈NP
+ vpp̅̅ ̅̅ ̅(k. t) − Lt(l. t) =

∑ Pbj(b. j. t)b.j∈NL
   

k ∈ Nvpp(b). l ∈ NLoad(b)                               (37) 

3. PROPOSED ALGORITHM 

3.1. First Stage of Optimization 

In the first stage, is assumed that VPPs output are exactly 

equal to predicted amount. So the total cost of the 

operation is minimized: 

λB = min
X

Tcost   , Subject to Eqns. (11–37)                    (38) 

3.2. IGDT Implementation 

In IGDT the only information that have to be known, is a 

predict of the uncertainty decision-making variable. 

IGDT also has advantages over robust model. In robust 

model, uncertainty sets are deterministic, but in IGDT 

these sets have even uncertainty. In RA strategy 

uncertainty is an undesired phenomenon and decision-

variable tries to increase robustness of the object function 

so in this case as a result, the value of α is maximized. In 

OS strategy uncertainty is a desired phenomenon and 

decision-variable tries to search an optimum value in 

minimum uncertainty radius. in this case uncertainty 

radius is minimized. Envelope model of uncertainty is 

proposed for this study. For 𝑘 ∈ 𝑁𝑣𝑝𝑝(𝑏) we have: 

𝕦(α. vpp̅̅ ̅̅ ̅(k. t)) = vpp(k. t): |vpp(k. t) − vpp̅̅ ̅̅ ̅(k. t)| ≤ α ∗

vpp̅̅ ̅̅ ̅(k. t)                                                  (39) 

vpp(k. t) = vpp̃(k. t) + vppc(k. t)                           (40) 

3.2.1. VPP Output Limits 

0 ≤ 𝑣𝑝𝑝𝑐(𝑘. 𝑡) ≤ 𝑣𝑝𝑝(𝑘. 𝑡) ≤ 𝛬(𝑘)                            (41) 

0 ≤ 𝑣𝑝𝑝̃(𝑘. 𝑡) ≤ 𝑣𝑝𝑝(𝑘. 𝑡) ≤ 𝛬(𝑘)                            (42) 

𝑣𝑝𝑝̅̅ ̅̅ ̅  is a predict of the VPPs output and 𝑣𝑝𝑝̃  is 

actualized VPPs output. Also vpp is uncertain output of 

each one. Eq. (39) represents the envelope IGDT model. 

To avoid power fluctuation, it has to VPP be curtailed, 

this fact is modeled by Eq. (40). In Eq. (41) and (42) 

VPP maximum and minimum values are determined in 

each curtailment, uncertain and actualized amount. 

 𝑣𝑝𝑝 (𝑘. 𝑡) = 𝑣𝑝𝑝̅̅ ̅̅ ̅(𝑘. 𝑡) + 𝛥𝑢𝑝(𝑘. 𝑡) − 𝛥𝑑𝑜𝑤𝑛(𝑘. 𝑡)        (43) 

Δup(k. t). Δdown(k. t) ≥ 0                                (44) 

Δup(k. t) ∗ Δdown(k. t) = 0                                (45) 

Δup(k. t) ≤ α ∗ vpp̅̅ ̅̅ ̅(k. t)                                               (46) 

Δdown(k. t) ≤ α ∗ vpp̅̅ ̅̅ ̅(k. t)                                (47) 

𝛥𝑢𝑝(𝑘. 𝑡) ≤ 𝛬(𝑘) − 𝑣𝑝𝑝̅̅ ̅̅ ̅(𝑘. 𝑡)                (48) 

Equation (43) recognizes the uncertain VPP output. 

Equation (44) - (48) settle the minimum and maximum 

value of the output deviation in order to increase and 

decrease cannot occur in same time; this fact is assigned 

by Eq. (45). For RA strategy upper-level object function 

is maximizing of the α in relevant β and Eq. (49) 

describes the upper level object function. The lower-

level object function is Eq. (50). Also lower-level 

constraints are Eqns. (11) - (36) and (39) – (48) and 

(51). Eq. (51) introduces the power balance in all lines.  

𝑅𝑅𝐴 = 𝑚𝑎𝑥
𝕩

𝛼̂(𝕩. 𝑣𝑝𝑝̅̅ ̅̅ ̅(k. t))                                (49) 

𝛼̂(𝕩. 𝑣𝑝𝑝̅̅ ̅̅ ̅(𝑘. 𝑡) = max
vpp(k.t)∈𝕦(α.vpp̅̅ ̅̅ ̅̅ (k.t)

Tcost ≤ (1 + 𝛽𝑐)𝜆𝐵    

                                                              (50) 

𝐿𝑠ℎ(𝑏. 𝑡) + ∑ 𝑃(𝑏. 𝑡)𝑖∈𝑁𝑃
+ (1 − 𝛼̂) ∗ 𝑣𝑝𝑝̅̅ ̅̅ ̅(𝑘. 𝑡) − 𝐿𝑡(𝑙. 𝑡) =

∑ 𝑃𝑏𝑗(b. j. 𝑡)𝑏.𝑗∈𝑁𝐿
 ,    k ∈ Nvpp(b). l ∈ NLoad(b)              (51) 

Subject to Eqns. (11)- (36) and (39) – (48) and (51) as 

lower-level constraints. For opportunity-seeker strategy 

uncertainty radius (α) should be minimized in relevant β 

and Eq. (52) describes the upper level object function. 

The lower-level object function is Eq. (53) and lower-

level constraints are included Eqns. (11) - (36) and (39) 

– (48) and (54). 

𝑅𝑂𝑆 = 𝑚𝑖𝑛
𝕩

𝛼̌(𝕩. 𝑣𝑝𝑝̅̅ ̅̅ ̅(𝑘. 𝑡))                                (52) 

𝛼̌(𝕩. 𝑣𝑝𝑝̅̅ ̅̅ ̅(𝑘. 𝑡) = min
vpp(k.t)∈𝕦(α.vpp̅̅ ̅̅ ̅̅ (k.t)

Tcost ≤ (1 − βo)λb(53) 

Lsh(b. t) + ∑ P(i. t)i∈NP
+ (1 + α̌) ∗ vpp̅̅ ̅̅ ̅(k. t) − Lt(l. t) =

∑ Pbj(b. j. t)b.j∈NL
  k ∈ Nvpp(b). l ∈ NLoad(b)               (54) 
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The variable and parameter vectors are represented as 

𝕩 and: 

𝕩 = {
𝑃𝑖(𝑡). vpp(b. t). vpp̃(b. t). vppc(b. t)

Pbj(b. t). θ(b. t). Δup(b. t). Δdown(b. t). λB. α
}       (55) 

𝕦 = {βc/o. Λ. vpp̅̅ ̅̅ ̅. Pi
max/min

. RU. RD. Bb.j. Pb.j
max/min

} (56) 

Flowchart of RA and OS strategies are depicted in Fig. 5 

and Fig. 6 respectively. 

4.  SIMULATION RESULTS 

4.1. Data 

A simultaneous generation allocation and economic 

dispatch in presence of VPPs and DR program is 

simulated in this study. To show simulation results, 

modified IEEE 24 bus reliability test system in Fig. 7 is 

supposed. This transmission network consists of 12 units. 

The units 8 and 9 are assumed as nuclear units and unit 

10 is supposed a hydro unit. To this end units 8,9 and 10 

are must-run units. These mentioned units have no start-

up and shot-down cost. It is worth nothing that, similar 

the thermal units, nuclear and hydro units have start-up 

and shot-down ramp rate. These features calculation is 

complex but like the many cases, these parameters can be 

approximated. For that reason, to simplify the problem 

start-up and shot-down ramp rate in test system is 

assigned as constant power. Before begin of the 

scheduling, maybe some units were online or offline 

therefore status of each unit are inserted in table 2. Table3 

shows the technical data of generation units, costs and 

initial state of generating units. Other data of the network 

and thermal units like load data and transmission line data 

are elaborated in references [49] and [50].  

 
Fig. 5. Flowchart of RA strategy 

 
Fig. 6. Flowchart of OS strategy 

Table 2. Technical data of generation units 

Unit 
Pmax 

(MW) 

Pmin 

(MW) 

Start-

up 

ramp 

rate 

(MW) 

Shot-

down 

ramp 

rate 

(MW) 

Ramp 

up 

(MW) 

Ramp 

down 

(MW) 

Minimum 

up time 

(h) 

Minimum 

down 

time (h) 

1 152 30.4 152 152 120 120 8 4 

2 152 30.4 152 152 120 120 8 4 

3 350 75 300 300 350 350 8 8 

4 591 206.85 540 540 240 240 12 10 

5 60 12 60 60 60 60 4 2 

6 155 54.25 155 155 155 155 8 8 

7 155 54.25 155 155 155 155 8 8 

8 400 100 400 400 280 280 1 1 

9 400 100 400 400 280 280 1 1 

10 300 300 300 300 300 300 0 0 

11 310 108.5 310 310 180 180 8 8 

12 350 140 240 240 240 240 8 8 

Table 3. Cost and initial state of generation units 

Unit 
Start-up 

cost (€) 

Shot-

down 

cost (€) 

Pinitial 

(MW) 

Initial 

status 

Initial 

online time 

(h) 

Initial 

offline 

time (h) 

1 1430.4 1430.4 76 1 22 0 

2 1430.4 1430.4 76 1 22 0 

3 1725 1725 0 0 0 2 

4 3056.7 3056.7 0 0 0 1 

5 437 437 0 0 0 1 

6 312 312 0 0 0 2 

7 312 312 124 1 10 0 

8 0 0 240 1 50 0 

9 0 0 240 1 16 0 

10 0 0 240 1 24 0 

11 624 624 248 1 10 0 

12 2298 2298 280 1 50 0 

Table 4. Total demand in 24-h time horizon 

Hour 

System 

Demand 

(MW) 

Hour 

System 

Demand 

(MW) 

Hour 

System 

Demand 

(MW) 

1 1775.835 9 2517.975 17 2623.995 

2 1669.815 10 2544.48 18 2650.5 

3 1590.3 11 2544.48 19 2650.5 

4 1563.795 12 2517.975 20 2544.48 

5 1563.795 13 2517.975 21 2411.955 

6 1590.3 14 2517.975 22 2199.915 

7 1961.37 15 2464.965 23 1934.865 

8 2279.43 16 2464.965 24 1669.815 
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Table5 Node location and distribution of the total system demand 

Node 
% of system 

load 
Node 

% of system 

load 
Node 

% of system 

load 

1 3.8 7 4.4 15 11.1 

2 3.4 8 6 16 3.5 

3 6.3 9 6.1 18 11.7 

4 2.6 10 6.8 19 6.4 

5 2.5 13 9.3 20 4.5 

6 4.8 14 6.8   

Please note that load forecasting problem is outside of 

the scope of this paper. Buses number 19,8,14 and 9 

supposed as virtual power plants; VPPs capacities are 

36,198,200 and 252 MW respectively. It is assumed that 

all buses in transmission system participated in demand 

response program. Simulations are processed in two 

cases; in the case I, UC problem is solved only with 

network constraints, without VPPs and DRP presence 

by GAMS [51] software using CPLEX solver in MILP 

model; non-linear constraints like fuel and emission 

costs are linearized. In the case II, UC problem is solved 

with bi-level model under VPPs, DRP and network 

constraints presence by GAMS using LINDO solver. 

Simulations are processed with Intel® core(TM) i7-

8550U CPU @ 1.80 GHz PC RAM 16 GB laptop 

system. It is worth nothing that for the first stage 

optimization a MILP model is proceeded by CPLEX 

solver. The computation time in the without presents of 

DRP and VPP case is 12s and in the both strategies of 

the case II, computation time is about 530s. The 

difference computation time is driven to the β variation 

in both cases. Bus number 13 is slack bus and peak load 

of the network is 2650.5 MW in 24-hour time horizon. 

For all nodes, hourly load calculated according the 

table4 and table5. in table4 hourly load for all 

transmission system is demonstrated and in table5 node 

location and distribution of the total System demand is 

inserted. 

 
Fig. 7. IEEE reliability test system modified 24 bus 

4.2. Numerical Results 

4.2.1. Results without VPPs and DRP 

In this case total cost includes fuel cost, start-up and shot-

down cost, emission cost and load-shading cost. Fuel cost 

and start-up, shot-down cost are together supposed as 

generation cost.  For each load point 1000 €/MW penalty 

is intended to loss of load so 11300 € for load-shading is 

spent. Generation cost and emission cost are 1360462.058 

€, 275783.519 € respectively. Total cost is equal to 

1647545.5770 €. Load-shading in 24h for each bus is as 

follows as the table 6. 

4.2.2. Results with VPPs and DRP 

Unit commitment problem in presence of the VPPs and 

DRP is solved with IGDT. So for both strategies we need 

to have a prediction of the VPPs output. DRP is analyzed 

for both strategies and we have to note that it has same 

results in both strategies because energy consumption is 

determined in both strategies. 

In figure 8 energy price based on Ref. [52] in real-

time and after TOU demand response implementation 

are compared. According the figure 8, before of the DR 

program performing, there is a peak time that energy 

price has the highest value between 8 to 19-time 

interval. Price in TOU demand response program is in 

three portion. In the valley times, energy price is in low 

level; valley time is [1,7]-time interval and in this 

portion, price is 30 € / MWh. In peak time energy price 

is expensive than the other hours; peak time is 8-19 

hours and price equals to 55 € / MWh. In the end, 

between 21 to 24 hours, energy price is lower than the 

peak time and higher than the valley time. In light time, 

electricity price equals to 40 € / MWh. Load curve with 

and without DRP are depicted in figure 9. According the 

figure 9 peak of the demand is in two portion. One of 

the peak is hour 9 to16 and the other one is hour 16 to 

20. It seen that in figure 9 the curve which is considered 

DRP, is under the curve that is in base case in hour 9 to 

20. Because in mentioned interval, energy price for 

consumers that are participated in TOU demand 

response program, is higher than real-time and 

consumers try to manage their loads and decline their 

consumption. In the other hand Fig. 9 shows that DR 

supposed curve is in top of the base case in hour 1 to 8 

and 21-24. In these interval TOU energy price is lower 

than real-time price regarding this fact, consumers 

shifted portion of their loads to these time intervals. 

This compare turns out that consumers transferred their 

interruptible loads from peak time to off-peak hours. In 

fact, TOU demand response program caused that 

customer behavior is changed. In action, peak-shaving 

and valley-filling is done with consumers’ participation 
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in TOU demand response program and load curve 

become smoother than base case. Our prediction for 

VPPs output is illustrated in figure 10. Total cost for 

first stage is equal to 992022.711 €. 

Table 6. Load-shading for load points in 24 h 

Bus 
Load-

shading(MW) 
Bus 

Load-

shading(MW) 
Bus 

Load-

shading(MW) 
Bus 

Load-

shading(MW) 

1 0.604 6 0.763 13 0 19 1.018 

2 0.541 7 0.700 14 0 20 0 

3 1.002 8 0.954 15 1.765   

4 0.413 9 0.970 16 0.557   

5 0.152 10 0 18 1.861   

 
Fig. 8. Hourly energy price 

 
Fig. 9. Load curve in presence of DRP and without DRP 

Fig. 10. Hourly VPP output prediction 

RA Strategy in this strategy decision-variable select 

the optimum value in the way that robustness of the 

object function is ensured versus a specified β and 

uncertainty is an undesired phenomenon. For 5% 

tolerance of uncertainty (β=0.05) total cost is equal 

1041623.847 € (1.05*992022.711=1041623.846). 

Generation cost and emission cost are 904370.545 €, 

137253.302 € respectively. Load-shading in this case is 

zero. α is without dimension variable. In 5% tolerance 

uncertainty radius is 0.0807. this means that if 

uncertainty tolerance be 5%, the maximum immunity of 

the object function against the uncertainty is equal to 

0.0807. Low value for uncertainty radius, means that 

object function is vulnerable against uncertainty for that 

reason, great α is resulted the more robustness and 

immunity. Of course too great robustness causes that 

total cost value be enhanced in this way must be a 

tradeoff between robustness and minimum total cost. 

The VPPs output in RA strategy are displayed in Fig.11. 

In RA strategy, when tolerance is increasing, robustness 

of the total cost is increasing simultaneously and value 

of the total cost grows up respectively. This fact is 

depicted in Fig.12 because in RA strategy, by increasing 

the tolerance, to immunity of the object function it is 

entails that robustness of the object function must be 

enhanced. Now a question arises that which one of these 

values for total cost is better. For this question we have 

to say, all of these values are optimal but which one of 

them has great α its robustness is more than the others. 

for the RA strategy it is better that the uncertainty radius 

has great value. great value in RA strategy means that 

immunity of the object function is improved. 

Uncertainty radius has symmetric relation with 

immunity and robustness of the object function. 

OS Strategy: In OS strategy uncertainty is a desired 

phenomenon and decision variable search another 

optimum point that condition’s is better than predicted 

value. In this study OS strategy tries to find an optimum 

point that value’s is lower than the predicted one. In 

tolerance of the 5% total cost is 942421.575 €. The 

833809.143 € of the total cost is related to generation 

cost and 108612.432 € is share of the emission cost. 

Similar the RA strategy, load-shading is zero. 

Uncertainty radius in OS strategy in β=0.05 is equal to 

0.157. This means that if uncertainty tolerance be 5% 

the 0.157 is the minimum uncertainty radius that should 

be accepted that to sweep the success.  

 
Fig. 11. Hourly VPP output in RA strategy 

 
Fig. 12. Total cost in various uncertainty radius in RA strategy 
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Fig. 13. Hourly VPP output in OS strategy 

 
Fig. 14. Total cost in OS strategy in various uncertainty radius 

 
Fig. 15. Compare cost in different case studie 

Success is the all constraints be satisfied and object 

function be lower than 0.95 of the predicted value. This 

strategy in versus of the RA, does not perform with 

immunity of object function. OS strategy wants to reach 

success in minimum uncertainty radius but is not 

guaranteed the value. In OS strategy low value for 

uncertainty radius means that decision-variable sweep 

the success in minimum uncertainty tolerance. 

According the above, in OS strategy, uncertainty radius 

has anti-symmetric relationship with the opportuneness. 

Low uncertainty radius results the more opportuneness. 

The VPP generation in 24-h are illustrated in Fig.13. 

Like the RA strategy when the uncertainty tolerance 

is increased, uncertainty radius is increased and total 

cost is declined. This fact is declared in Fig.14. If 

uncertainty tolerance is increased the space for 

sweeping the success is enhanced and decision-variable 

can search lower value for total cost. In the OS strategy 

decision variable aims to sweep the success in minimum 

uncertainty tolerance this means that good 

opportuneness is gain in low α.  Maximum amount of 

the uncertainty tolerance that problem is feasible is 35% 

and total cost in this tolerance equals to 644814.762 €. 

A comparison between generation, emission and load-

shading cost in two case is illustrated in Fig.15 this 

figure displays this fact that total cost in presence of 

VPP and DRP is lower than the base case also other 

features of the proposed model have good condition 

against the case I. By observation of the Fig.15 it is 

brightly seen that the proposed model has lower load-

shading and emission cost and effectiveness of the VPP 

and DRP is proofed. 

 
Fig. 16. Share of CPP and VPP in RA strategy 

 

Fig. 17. Share of CPP and VPP in OS strategy 

4.3. Comparison 

In this section a comparison between this paper and other 

similar paper is proposed. It should note that, in last 

published papers, there is no a paper which exactly done 

unit commitment in presence of the VPP under generation 

uncertainty and DRP but in Ref [53] a similar work is 

done. In mentioned reference, UC problem is solved in 

IEEE 118 bus test system and wind power plants have 

uncertainty. A flexible DRP is proposed. In Ref [53] in 

each strategy, share of the wind power plants are 

changed. In RA strategy, by growing up the β share of the 

wind power plants are decreased and to compensation of 

generation balance, share of thermal units are increased. 

Contrary in OS strategy, by increasing the tolerance of 

uncertainty (β), share of wind farm participation are 

increased and share of the CPPs are decreased. DRP in 

reference [53] has good influence on cost function in both 

strategies and caused to be reduced the total cost. In this 

paper UC problem under VPPs output uncertainty 

considering price-based demand response program in 

IEEE 24 bus reliability test system is solved. DR program 

has good effect on total cost reducing in both strategies. 
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In each paper, UC and DRP setting, effect on cost 

function in both strategies. There is difference in obtained 

results by changing the uncertainty tolerance in both 

paper. Unlike the comprised paper, in this work it can’t 

see tangible impact by changing uncertainty tolerance in 

both strategies on share of VPPs output. This fact can see 

in figure16 and figure17. in RA strategy by increasing the 

cost function, generation of the CPP is increased and in 

OS strategy by decreasing the cost function, generation of 

the CPP is reduced but in both strategies, share of the 

VPP almost is constant. 

5.  CONCLUSION 

This paper presented UC problem in presence of the 

network constraints, VPPs and DRP under IGDT 

uncertainty modeling. VPP concept and difference of the 

technical and commercial virtual power plant and 

difference between dispatchable and non-dispatchable 

energy resource were discussed.  In context of the VPPs, 

DRP could be implemented in electrical networks. A 

TOU, price-based demand response program for all buses 

of the modified IEEE 24 bus reliability test system and 

presence of 4 VPPs in four buses was studied. Outputs of 

the VPPs were not deterministic, to tackle the uncertainty, 

IGDT was represented. IGDT helped us to actualize the 

amount of VPP’s generation. In RA strategy by growing 

up the tolerance, total cost increased and robustness of the 

object function became better but more robustness 

resulted the great total cost in this way, a tradeoff should 

be adopted between robustness and minimum total cost. 

Contrary in OS strategy uncertainty was a desired 

phenomenon and by growing up the tolerance, total cost 

decreased. Briefly in RA strategy, big α was better and α 

had symmetrical relation with robustness contrary in OS 

strategy α had anti-symmetrical relationship with 

opportuneness and low α was better in OS strategy. 

For the future works, we suggest to consider the hot 

and cold start-up cost for CPPs. If placement of the 

VPPs and cost of the hydro and nuclear separately be 

calculate it can be very helpful and can be reach the 

more real results. 
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