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Abstract- Unit commitment (UC) problem tries to schedule output power of generation units to meet the system demand 

for the next several hours at minimum cost. UC adds a time dimension to the economic dispatch problem with the 

additional choice of turning generators to be on or off.  In this paper, in order to improve both the exploitation and 

exploration abilities of the firefly algorithm (FA), a new modification approach based on the mutation and crossover 

operators as well as an adaptive formulation is applied as an adaptive modified firefly algorithm (AMFA). In this 

paper, it is shown that AMFA can solve the UC problem in a better manner compared to the other meta-heuristic 
methods. The method is applied on some case studies, a typical 10-unit test system, 12, 17, 26, and 38 generating unit 

systems, and IEEE 118-bus test system, all with a 24-hour scheduling horizon. Comparison of the obtained results with 

the other methods addressed in the literature shows the effectiveness and fastness of the applied method. 

 Keyword: Adaptive modified firefly algorithm, Optimization in power system, Power generation scheduling, Unit 

commitment problem. 

 

NOMENCLATURE 

/t T  Index/set for time 

i  Index for units 

, ,i i i    Fuel cost coefficients for ith unit 

N  Total number of power generation units 

iHSC  Hot start-up cost of ith unit 

iCSC  Cools start-up cost of ith unit 

D
iT  Minimum down time of unit i 

iCST  Cold start time of unit i 

on
iMD  The number of hours that ith unit has been 

on-line since it was turned on 
off
iMD  The number of hours that ith unit is off-line 

since it has been turned off 
tD  The load (MW) 
tSR  Spinning reserve (MW) at time t 

U

iT  Minimum up time of unit i 

t

iu  Electricity market Price ($/kWh) 

t

iP  Total planning horizon 

iF  Capacity limit of kth DG technology (kW) 
 

1. INTRODUCTION 
 

The lifestyle of a modern man follows regular habits, 

and hence the present society also follows regularly 

repeated cycles or pattern in daily life. Therefore, the 

consumption of electrical energy also follows a 

predictable daily, weekly and seasonal pattern. There are 

periods of high-power consumption as well as low 

power consumption. It is possible to commit the 

generating units from the available capacity into service 

to meet the demand. For a given combination of plants, 

the determination of optimal combination of plants for 

operation at any one time is also desired for carrying out 

the aforesaid task. The plant commitment and unit 

ordering schedules extend the period of optimization 

from a few minutes to several hours. From daily 

schedules, weekly patterns can be developed. Likewise, 

monthly, seasonal and annual schedules can be prepared 

to take into consideration the repetitive nature of the 

load demand and seasonal variations. Unit commitment 

schedules are thus required for economically 

committing the units in plants to service with the time at 

which individual units should be taken out from or 

returned to service. The power-generation industry 

utilizes unit commitment (UC) and economic dispatch 

to help make generation scheduling decisions. In a UC 

problem, decisions about which units to interconnect are 

made for the day-ahead market. 

Independent system operators (ISO) are responsible 
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for coordinating, controlling and monitoring the 

operation of power systems [1]. Most ISOs today run 

the UC problem 24 hours before the real-time market. 

The objective of a running a UC problem is to identify a 

schedule of committing units to minimize the joint cost 

of UC and economic dispatch, while at the same time 

meet the forecasted demand. After determination of the 

committed units, economic dispatch (ED) sub-problem 

should be solved. ED sub-problem is solved to specify 

optimal generation of each on-line unit to reach 

minimum operational cost [2, 3]. 

In recent years, many computational techniques have 

been proposed to solve the problem. The applied 

methods for solving this problem are divided into two 

categories. The first is mathematical, and the second is 

heuristic/meta-heuristic approaches [4]. The 

mathematical optimization models find an optimum 

expansion plan by using a calculation procedure that 

solves a mathematical formulation of the problem. Due 

to the impossibility of considering all aspects of the UC 

problem, the plan obtained is the optimum only under 

some simplifications and should be technically, from a 

financial standpoint and environmentally verified, 

among other alternatives, before the planner makes a 

decision. Since UC is a large scale, non-convex and 

mixed-integer non-linear combinatorial optimization 

problem, several solutions techniques have been 

proposed in the literature. Exhaustive enumeration may 

give an exactly optimal solution but time consuming, 

while a priority list may have a fast solution that 

sometimes leads to a non-optimal outcome. Dynamic 

programming (DP) is a well-known solution technique 

for UC problem. Its solution is correct and has the 

optimal value; it takes a lot of memory and takes a lot of 

time in getting an optimal solution.  

Priority list-based [5], branch and bound, Lambda 

logic algorithm [6], Mixed integer linear programming 

(MILP) [7, 8], benders decomposition [9], stochastic 

priority list (SPL) [10], Lagrange relaxation (LR) [11], 

enhanced adaptive Lagrange relaxation (ELR) and 

adaptive Lagrange relaxation (ALR) [12], dynamic 

programming Lagrange relaxation (DP-LR) [12],  

combination of LR and linear programming [13], and 

extended priority list (EPL) [14], were applied to solve 

UC problem. These techniques are well known 

mathematical solution techniques for the UC problem 

that needs more computational efforts. The heuristic 

methods are the current alternative of mathematical 

optimization models. The term “heuristic” is used to 

describe all those techniques that, instead of using a 

classical optimization approaches, go step-by-step 

generating, evaluating and selecting expansion options, 

with or without the user’s help.  

Application of heuristic optimization algorithms may 

have some advantages to solve such a complicated 

optimization problem, while the main drawback of these 

methods is that they cannot guarantee the global optimal 

solution. Recently, some meta-heuristic techniques have 

been addressed like genetic algorithm (GA) [15, 16], 

whale optimization algorithm (WOA) [17], floating 

point GA (FPGA) [18], matrix real coded genetic 

algorithm (MRCGA) [19], unit characteristic 

classification genetic algorithm (UCC-GA) [20], binary 

coded genetic algorithm (BCGA) and integer coded 

genetic algorithm (ICGA) [21], ant colony search 

algorithm (ACSA) [22], tabu search (TS) [23], tabu 

search random perturbation (TS-RP) and tabu search 

improved random perturbation (TS-TRP) [24], particle 

swarm optimization (PSO) [25], hybrid particle swarm 

optimization (HPSO) [26], binary particle swarm 

optimization (BPSO) [27], improved particle swarm 

optimization (IPSO) [28], simulated annealing (SA) 

[29], gravitational search algorithm (GSA) [30], 

imperialistic competition algorithm (ICA) [31], shuffled 

frog leaping algorithm (SFLA) [32], bacterial foraging 

(BF) [33], differential evolution (DE) [34], evolutionary 

programming (EP) [35], and memetic algorithm (MA) 

[36]. Since there exist a need for more improvement to 

the existing unit commitment solution techniques, the 

hybrid models such as hybrid neural network and 

simulate annealing, fuzzy adaptive PSO (FAPSO) [37], 

HSA and numerical optimization [38], fuzzy dynamic 

programming (FDP) [39], genetic-based artificial neural 

network (GANN) [40], hybridization of Lagrange 

relaxation and genetic algorithm (LRGA) [41], PSO 

combined with LR (PSO-LR) [42], simulated annealing 

genetic algorithm (SAGA) [43] and priority list-based 

evolutionary algorithm [44], hybrid improved firefly 

algorithm with PSO (IFA-PSO) [45], FA with multiple 

workers [46], binary real coded firefly algorithm 

(BRCFA) [47, 48], Lagrangian firefly algorithm (LFA)  

[49] are experienced. Firefly algorithm has been applied 

in many fields of electrical power system. Ref. [50]  

proposes a method to minimize the real power loss of a 

power system transmission network using FA by 

optimizing the control variables such as transformer 

taps, UPFC location and UPFC series injected voltage 

magnitude and phase angle. Ref. [51] focuses on 

investigating the optimum values of Power System 

Stabilizer (PSS) parameters by the implementation FA 

based optimization technique. In Ref. [52], transformer 

routine tests have been analyzed by using the generated 
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FA. In Ref. [53], to overcome the difficulties in solving 

the non-convex and mixed integer nature of 

transmission expansion planning problem, the FA is 

applied to solve the problem. Ref .[54] attempts to 

develop an optimal hybrid energy system model using 

available solar and wind energy resources with battery 

storage for fulfilling the electrical needs of three un-

electrified remote villages located in Senapati district of 

Manipur, India, so, The FA based approach is used to 

find the optimal hybrid system configuration based on 

minimum cost of energy. In Ref. [55] a novel approach 

to determining the feasible optimal solution of the 

economic dispatch problem using FA has been 

presented. In Ref. [56], improved FA is applied to 

determine the optimum switching angles for the 11- 

level cascaded H bridge multilevel inverter with 

adjustable DC sources in order to eliminate pre 

specified lower order harmonics and to achieve the 

desired fundamental voltage. Ref. [57] presents a new 

and hybrid algorithm based on FA and recursive least 

square for power system harmonic estimation. In Ref. 

[58], a novel FA optimized hybrid fuzzy PID controller 

with derivative filter is proposed for load frequency 

control of multi area multi source system under 

deregulated environment. Ref. [59] proposes a FA to 

solve optimal power flow (OPF) in power system which 

has a unified power flow controller. In [60] a hybrid FA 

and pattern search optimized fuzzy PID controller is 

proposed for Load frequency control of multi area 

power systems. Ref. [61] presents an enhanced FA for 

solving multi-objective optimal active and reactive 

power dispatch problems with load and wind generation 

uncertainties. In Ref. [62], economic load dispatch 

problem is discussed and implemented with FA 

optimization technique to obtain the best optimal 

solution for the fuel cost of generator. In Ref. [63], a 

novel hybrid FA and pattern search technique is 

proposed for a static synchronous series compensator 

based power oscillation damping controller design.  Ref. 

[64] presents the implementation of the FA with an 

online wavelet filter on the automatic generation control 

model for a three unequal area interconnected reheat 

thermal power system. Ref. [65] presents multi-

objective economic emission dispatch solution using 

hybrid FA with considering wind power penetration.  

In this paper, the authors focus on applying the 

AMFA, to solve the UC problem, dealing with 

continuous as well as discrete variables. In fact, the 

applied modification approach helps the firefly 

algorithm by increasing the diversity of the fireflies in 

the population. Also, since in the UC problem some 

variables are binary, the discrete-variable form of 

AMFA is used to solve such problem. Comparing the 

simulation results from this study with those reported 

from other studies reveals that the AMFA is a more 

effective technique than other approaches in the 

literature from both the operation costs and 

computational time aspects. 

This paper is organized as follows: Section 2 

formulates the UC problem. Section 3 presents the 

applied optimization technique and its application to 

solve the UC problem. Section 4 conducts the numerical 

simulations and presents a comparison among different 

methods used to solve the UC problem. Finally, 

concluding remarks are discussed in Section 5.  

2. PROBLEM FORMULATION 
 

UC involves determining generating outputs of all units 

from an initial hour to meet load demands associated 

with a start-up and shut-down plan over a time horizon. 

The objective function is to find the optimal scheduling 

such that the total operating costs can be minimized 

while satisfying the load demand, spinning reserve 

requirements as well as other operational constraints. 

The objective function of the UC problem is a function 

that comprises the fuel costs of generating units, the 

start-up costs of the committed units and shut-down 

costs of the decommitted units. The objective function 

in a common form is formulated as: 

1

1 1

Min ( ) SUC (1 )
N T

t t t t

i i i i i i

i t

F P u u u 

 

                        (1) 

where: 
2( ) ( )t t t

i i i i iF P P P                                           (2) 

The start-up cost is defined as follow: 

, ,

1 ,

,

D on D

i i i i i

t

i

on D

i i i i

HSC if T MD T CST

SUC t T i N

CSC if MD T CST

   


   


 

          (3)    

The objective function in Eq. (1) is subjected to 

constraints. The generated real power must be sufficient 

enough to meet the load demand. This constraint is 

given by Eq. (4). 
 

1

1 ,
N

t t t

i i

i

P u D t T i N


                                         (4)  

 

Spinning reserve (SR) is usually a pre-specified 

amount or equal to the largest unit or a given percentage 

of the forecasted load demand. Spinning reserve of 

committed units is the total amount of real power 

generation available from all synchronized units minus 
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the present load plus the losses. It must be sufficient 

enough to maintain the desired reliability of a power 

system. Spinning reserve constraint, unit output limits, 

minimum up time limit and minimum down time limit 

are given by Eqns. (5-8) receptively. 

max

1

,
N

t t t

i i

i

P u D SR i N


                                        (5) 

min max , 1 ,t t t t

i i i i i iP u P u P u t T i N                        (6) 

,on U

i iMD T i N                                                      (7) 

,off D

i iMD T i N                                                      (8) 

3. FIREFLY ALGORITHM 
 

According to the flashing light of fireflies is an amazing 

sight in the summer sky in the tropical and temperate 

regions. There are about two thousand firefly species, 

and most fireflies produce short and rhythmic flashes. 

The pattern of flashes is often unique for a particular 

species. The flashing light is produced by a process of 

bioluminescence, and the true functions of such 

signaling systems are still debating. However, two 

fundamental functions of such flashes are to attract 

mating partners (communication), and to attract 

potential prey. In addition, flashing may also serve as a 

protective warning mechanism. The rhythmic flash, the 

rate of flashing and the amount of time form part of the 

signal system that brings both sexes together. Females 

respond to a male’s unique pattern of flashing in the 

same species, while in some species such as photuris, 

female fireflies can mimic the mating flashing pattern of 

other species so as to lure and eat the male fireflies who 

may mistake the flashes as a potential suitable mate. We 

know that the light intensity at a particular distance r 

from the light source obeys the inverse square law. That 

is to say, the light intensity I decrease as the distance r 

increases in terms of
21I ( / r ) . Furthermore, the air 

absorbs light which becomes weaker and weaker as the 

distance increases. These two combined factors make 

most fireflies visible only to a limited distance, usually 

several hundred meters at night, which is usually good 

enough for fireflies to communicate. The flashing light 

can be formulated in such a way that it is associated 

with the objective function to be optimized, which 

makes it possible to formulate new optimization 

algorithms. In the rest of this paper, we will first outline 

the basic formulation of the FA and then discuss the 

implementation bas well as its analysis in detail. Now 

we can idealize some of the flashing characteristics of 

fireflies so as to develop firefly-inspired algorithms. For 

simplicity in describing our new FA, we now use the 

following three idealized rules:  

Objective function f(x),        x = (x1, ..., xd)
T

Generate initial population of fireflies xi (i = 1, 2, ..., n)

Light intensity Ii  at xi is determined by f(xi)

Define light absorption coefficient   γ  

while  (t <MaxGeneration)

for i = 1 : n all n fireflies

for j = 1 : i all n fireflies

if (Ij > Ii), Move firefly i towards j in d-dimension; end if

Attractiveness varies with distance r via exp[−γr]

Evaluate new solutions and update light intensity

end for j

end for i

Rank the fireflies and find the current best

end while

Postprocess results and visualization

 

Fig. 1. Pseudo code of the firefly algorithm  

 All fireflies are unisex so that one firefly will be 

attracted to other fireflies regardless of their sex; 

 Attractiveness is proportional to their brightness, 

thus for any two flashing fireflies, the less bright one 

will move towards the brighter one. The 

attractiveness is proportional to the brightness and 

they both decrease as their distance increases. If 

there is no brighter one than a particular firefly, it 

will move randomly;  

 The brightness of a firefly is affected or determined 

by the landscape of the objective function. For a 

maximization problem, the brightness can simply be 

proportional to the value of the objective function. 

Other forms of brightness can be defined in a similar 

way to the fitness function in GA. Based on these 

three rules, the basic steps of the FA can be 

summarized as the pseudo code shown in Fig. 1. 

In certain sense, there is some conceptual similarity 

between the FA and the bacterial foraging algorithm 

(BFA). In BFA, the attraction among bacteria is based 

partly on their fitness and partly on their distance, while 

in FA; the attractiveness is linked to their objective 

function and monotonic decay of the attractiveness with 

distance. However, the agents in FA have adjustable 

visibility and more versatile in attractiveness variations, 

which usually leads to higher mobility and thus the 

search space is explored more efficiently. 

In the FA, there are two important issues: the 

variation of light intensity and formulation of the 

attractiveness. For simplicity, we can always assume 

that the attractiveness of a firefly is determined by its 

brightness which in turn is associated with the encoded 

objective function. In the simplest case for maximum 

optimization problems, the brightness I of a firefly at a 

particular location x can be chosen as I( x ) f ( x ).

However, the attractiveness   is relative; it should be 
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seen in the eyes of the beholder or judged by the other 

fireflies. Thus, it will vary with the distance ijr  between 

firefly i  and firefly j . In addition, light intensity 

decreases with the distance from its source, and light is 

also absorbed in the media, so we should allow the 

attractiveness to vary with the degree of absorption. In 

the simplest form, the light intensity I(r) varies 

according to the inverse square law 2( ) /sI r I r , 

where, Is is the intensity at the source. For a given 

medium with a fixed light absorption coefficient  , the 

light intensity I varies with the distance r. That is

0

rI I e  , where I0 is the original light intensity. In 

order to avoid the singularity at 0r   in the expression
2/sI r , the combined effect of both the inverse square 

law and absorption can be approximated using the 

following Gaussian form as in Eq. (9). 
2

0( ) rI r I e                                                                 (9) 

The distance between any two fireflies i and j at xi 

and xj, respectively, is the Cartesian distance as in Eq. 

(10). 

2

, ,

1

( )
d

ij i j i k j k

k

r x x x x


                                    (10) 

where, ,i kx is the kth component of the spatial 

coordinate xi of ith firefly. In 2-D case, the distance is in 

Eq. (11). 

2 2( ) ( )ij i j i jr x x y y                                          (11) 

The movement of a firefly i is attracted to another 

more attractive (brighter) firefly j is determined by 

following equation: 

2

0

1
( ) ( )

2

ijr

i i j ix x e x x rand


 


                         (12) 

Where, the second term is due to the attraction while 

the third term is randomization with   being the 

randomization parameter. The rand is a random number 

generator uniformly distributed between 0 and 1. For 

most cases in this implementation, 0 1  . Furthermore, 

the randomization term can easily be extended to a 

normal distribution N(0,1) or other distributions. In 

addition, if the scales vary significantly in different 

dimensions such as −105 to 105 in one dimension while, 

say, −0.001 to 0.01 along the other, it is a good idea to 

replace   by kS
 where the scaling parameters Sk(k = 

1, ..., d) in the d dimensions should be determined by 

the actual scales of the problem of interest. The 

parameter 


 now characterizes the variation of the 

attractiveness, and its value is crucially important in 

determining the speed of the convergence and how the 

FA behaves. In theory, (0, ]   , but in practice, 
(1)O  is determined by the characteristic length γ of 

the system to be optimized. Thus, in most applications, 

it typically varies from 0.01 to 100. According to [66] as 

many optimization problems involve a number of 

constraints that the decision solutions need to satisfy, 

the aim of constrained optimization is to search for 

feasible solutions with better objective values. 

Generally, a constrained optimization problem is to find 

x so as to: 
 

1min ( ), ( ,..., ) n

nf x x x x R

where x F S

 

 
                                 (13) 

The objective function f is defined on the search 

space 
nS R and the set F S defines the feasible 

region. The search space S is defined as an n-

dimensional rectangle in Rn. The variable domains are 

limited by their lower and upper bounds:  
 

,1i i il x u i n                                                       (14) 

Whereas, the feasible region F S is defined by a 

set of m additional constraints (m ≥ 0): 
 

( ) 0, 1,...,

( ) 0, 1,...,

j

j

g x for j q

h x for j q m

 

  
                                    (15) 

For an inequality constraint that satisfies gj(x)=0, we 

will say that is active at x. All equality constraints hj 

(regardless of the value of x used) are considered active 

at all points of F. Both the objective function and the 

constraints can be linear or nonlinear. We incorporated 

the three simple selection criteria based on feasibility 

into the firefly algorithm to guide the search to the 

feasible region. 

 When comparing two feasible solutions, the one with 

the better objective function is chosen. 

 When comparing a feasible and an infeasible 

solution, the feasible one is chosen. 

 When comparing two infeasible solutions, the one 

with the lower sum of constraint violation is chosen. 

The sum of constraint violation for a solution x is 

given by: 

1 1

( ) max(0, ( )) ( )
q m

j j

j j q

CV x g x h x
  

                       (16) 

Hence, the decision what firefly is more attractive is 

made according these feasibility rules. The FA does not 

start with the feasible initial population, since 

initialization with feasible solutions is hard and in some 
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cases impossible to achieve randomly. During running 

process of FA, the feasibility rules direct the solutions to 

feasible region. 

In every iteration, a variation of the feasibility-based 

rule was applied to compare the solution associated with 

every individual firefly i with every other firefly j. The 

rule is given below.  

 If both fireflies are at feasible positions and firefly j 

is at better position than firefly i then firefly i moves 

towards firefly j.  

 If firefly i is at an infeasible position and firefly j is 

at a feasible position then i moves to firefly j.  

 If positions of firefly i and firefly j are infeasible and 

number of constrains satisfied by firefly j are more 

than that of firefly i then firefly i moves to firefly j.  

 Once the position of the firefly is updated using 

above rules 1 to 3, if the updated position of the 

firefly i presents improved solution over the solution 

associated with its previous iteration position, then 

firefly i accepts its current solution, else retains its 

previous iteration solution. 

In order to improve the FA search ability as well as 

reducing the local optima trapping possibilities, an 

adaptive modified firefly algorithm (AMFA) is 

presented [67]. There exist two main ideas in this 

modification. First, improving the population diversity 

by the aid of two mutations and three cross over 

operations; Second, encouraging the total firefly 

population to move toward the best promising local or 

global individual. Furthermore, in each iteration the 

total firefly population should be improved as explained 

in the following paragraph. 

Assume Iter

BestX and Iter

worstX as the best and the worst 

individual of the firefly population in each iteration, 

respectively. For the ith firefly in the population, three 

fireflies Xq1, Xq2 and Xq3 are selected from the fireflies’ 

population randomly such that 1 2 3q q q i   . Two 

new individuals will be generated as [67]: 
 

1 1 2 3

2 1

( )

( )

Mute q q q

Iter Iter

Mute Mute Best worst

X X X X

X X X X

   

   
                          (17) 

Where, Δ is a random number laying in the range of 

[0,1] . The following fireflies are generated by utilizing 

the 1MuteX and 2MuteX . Now by the use of the 1MuteX and 

2MuteX  the following five fireflies are produced: 

,1 ,1 ,2 ,

1, 1 2

Im 1,

, 1 2

, ,...,Best Best Best Best d

Mute j

prove j

Best j

X   

  


  

   


 



                              (18)   

1, 3 2

Im 2,

3 2

Mute j

prove j

j

  


  


 



                                  (19) 

1, 4 3

Im 3,

4 3

Mute j

prove j

j

  


  


 



                                   (20) 

1, 5 4

Im 4,

2, 5 4

Mute j

prove j

Mute j

  


  


 



                                   (21) 

Im 5 ( )prove worst Best WorstX X X X                       (22) 
 

where, 1 2 3 4 5, , , , , and       are random values 

laying in the range of [0,1] . The objective function is 

calculated for all of the above generated fireflies. The 

ith firefly will be replaced by the firefly with the 

smallest objective function. If the objective function 

value of the ith firefly is smaller than the best obtained 

firefly, then there will not be any replacement. The 

randomization parameter (α) is utilized in Eq. (12) in 

order to control the algorithm for a random search while 

the neighbouring fireflies are not seen by the given 

firefly. In fact, α manages the random movement of 

each firefly chosen randomly in the range of [0,1] . The 

large values of α result in the optimum solution search 

through the faraway search space, while a small α 

facilitate the local search. Thus, an appropriate value for 

the randomization parameter (α) leads to a satisfying 

balance between the global and the local search. To 

achieve this task, an adaptive control procedure is 

introduced in this paper to improve the total ability of 

the algorithm for both local and global search. 

Therefore, in this paper an adaptive control procedure is 

introduced to improve the ability of the algorithm for 

both the local and the global search. Moreover, this 

algorithm has been run several times and a different 

heuristic function for each iteration is obtained as 

follows [67]: 

max

1

1

max

1

2

k
Iter Iter

k
   

  
 

                                            (23) 

where, Iter is the iteration number and kmax is the 

maximum number of iterations. This function is 

employed during the optimization process to provide a 

sufficient balance between the local and global search 

by changing the value of α. According to Fig. 2, for 

handling integer variables, each firefly generates an 

initial solution randomly. For each firefly, find the 

brightest or the most attractive firefly. If there is a 

brighter firefly, then the less bright firefly will move 

towards the brighter one and if there is no brighter one 

than a particular firefly, it will move randomly. 
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Fig. 2. Handling integer variables 

When a firefly moves, existing solution produced by 

the firefly is changed. Each firefly move as much as m 

times. So, there will be (m ×n) + 1 fireflies at the end of 

iteration since only the best firefly will be included in 

selection process for the next iteration. Then, n best 

fireflies will be chosen based on an objective function 

for the next iteration. This condition will continue until 

the maximum iteration is reached. 

4. NUMERICAL RESULTS 

This section conducts two case studies consisting of the 

ten-unit test system, 12, 17, 26, 38 test cases and the 

IEEE 118-bus test system to illustrate the performance 

of the applied method. It should be noted that ramp rate 

constraint is considered only in the second test system 

and the first test system does not have this constraint. 
 

4.1. 10-unit based problem 

The formulation has been applied to solve a commonly 

used UC problem based on the ten-unit test system. This 

problem consists of a group of unit commitment 

problems. The basic problem includes ten units with a 

scheduling time horizon of 24 h. The 20-unit, 40-unit, 

and 100-unit UC problems are generated by scaling the 

generating units and load demand by 2, 4,…, and 10 

times, respectively. The spinning reserve is held as 10% 

of the scaled load in each case. For quick reference, the 

hourly load distribution over 24-h time horizon and the 

generating unit’s data are given in Tables 1 and 2, 

respectively. In order to show the impact of important 

control parameter in finding the optimum solution of the 

problem, α parameter changes within its permissible 

range. 

For implementation of FA, first sensitivity analysis 

on the α parameter was done while the β and γ 

parameters set to value 1 because of the FA that applied 

in many researches, the β and γ parameters set to value 

of 1. The number of iterations for simulation is 

considered 10,000. To obtain optimal values for each 

parameter, the algorithm has been implemented 50 

times and the best values of the objective function with 

its, mean and standard deviation has been presented in 

Table 3. 

Table 1. Load demand of the 10-unit based problem 

6 5 4 3 2 1 Hour 

1100 1000 950 850 750 700 Load(MW) 

12 11 10 9 8 7 Hour 

1500 1450 1400 1300 1200 1150 Load (MW) 

18 17 16 15 14 13 Hour 

1100 1000 1050 1200 1300 1400 Load (MW) 

24 23 22 21 20 19 Hour 

800 900 1100 1300 1400 1200 Load (MW) 

 

Table 2. Unit characteristics and cost coefficients of 10.unit system 
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U
n
it 

8 5 9000 4500 8 8 0.00048 16.19 1000 455 150 1 

8 5 10000 5000 8 8 0.00031 17.26 970 455 150 2 

-5 4 1100 550 5 5 0.002 16.6 700 130 20 3 

-5 4 1120 560 5 5 0.00211 16.5 680 130 20 4 

-6 4 1800 900 6 6 0.00398 19.7 450 162 25 5 

-3 2 340 170 3 3 0.00712 22.26 370 80 20 6 

-3 2 520 260 3 3 0.00079 27.74 480 85 25 7 

-1 0 60 30 1 1 0.00413 25.92 660 55 10 8 

-1 0 60 30 1 1 0.00222 27.27 665 55 10 9 

-1 0 60 30 1 1 0.00173 27.79 670 55 10 10 

 

Table 3. Sensitivity analysis for α parameter 

α Best Average Standard deviation 

10 unit system 

0.1 563865 563874 6.03 

0.5 564125 564137 5.14 

1 563932 563948 5.34 

10 563893 563902 4.18 

20 563865 563867 1.87 

50 563922 563934 4.47 

100 564335 564347 5.13 

20 unit system 

0.1 1122974 1122981 4.56 

0.5 1122832 1122846 4.23 

1 1122744 1122751 3.78 

10 1122693 1122697 3.25 

20 1122622 1122625 2.11 

50 1122838 1122845 5.32 

100 1122991 1122997 5.07 

40 unit system 

0.1 2242393 2242399 3.26 

0.5 2242365 2242368 3.25 

1 2242324 2242329 3.25 

10 2242293 2242296 3.25 

20 2242235 2242239 3.26 

50 2242178 2242182 3.24 

100 2242209 2242216 3.36 

60 unit system 

0.1 3363745 3363756 3.29 

0.5 3363633 3363641 3.18 

1 3363597 3363606 3.13 

10 3363541 3363547 3.11 

20 3363512 3363518 3.03 

50 3363491 3363494 3.02 

100 3363530 3363544 3.23 

80 unit system 

0.1 4485928 4485939 4.14 

0.5 4485870 4485891 4.14 

1 4485848 4485857 4.10 

10 4485792 4485801 4.11 

20 4485703 4485729 4.11 

50 4485633 4485639 4.03 

100 4485702 4485723 4.38 

100 unit system 

0.1 5605510 5605654 5.67 

0.5 5605497 5605612 5.62 

1 5605410 5605519 5.63 

10 5605321 5605417 5.35 

20 5605243 5605321 5.36 

50 5605189 5605211 5.34 

100 5605248 5605334 5.49 
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Table 4. Total cost ($) and execution time (sec) comparisons of different methods 
MA [1] MRCGA [2] SPL [3] ICGA [4] LR [5] No. of 

units Time  Total cost Time Total cost Time Total cost Time Total cost Time (sec) Total cost  

290 565827 3.6 564244 7.24 564950 7.4 566404 257 566107 10 

538 1128192 12.6 1125035 16.32 1123938 22.4 1127244 514 1128362 20 

1032 2249589 43.2 2246622 46.32 2248645 58.3 2254123 1066 2250223 40 

2740 3370820 102.9 3367366 113.85 3371178 117.3 3378108 1595 3374994 60 

3159 4494214 169.7 4489964 215.77 4492909 176 4498943 2122 4496729 80 

6365 5616314 260.5 5610031 374.03 5615530 242.5 5630838 2978 5620305 100 

LRGA [6] ELR [7] PSO [8] GA [9] ALR [7] No. of 

units Time Total cost Time Total cost Time Total cost Time (sec) Total cost  Time Total cost 

518 564800 4 563977 - 574153 221 565825 3.2 565508 10 

1147 1122622 16 1123297 - 1125983 733 1126243 12 1126720 20 

2165 2242178 52 2244237 - 2250012 2697 2251911 34 2249790 40 

2414 3371079 113 3363491 - 3374174 5840 3376625 67 3371188 60 

3383 4501844 209 4485633 - 4501538 10036 4504933 111 4494487 80 

4045 5613127 345 5605678 - 5625376 15733 5627437 167 5615893 100 

DP-LR [7] FPGA [10] PSO-LR [5] BPSO [11] IPSO [8] No. of 

units Time Total cost Time  Total cost  Time Total cost Time Total cost Time Total cost 

108 564049 - 564094 42 565869 - 565804 - - 10 

299 1128098 - 1124998 91 1128072 - - - 125279 20 

1200 2256195 - 2248235 213 2251116 - - - 2248163 40 

3199 3384293 - 3368375 360 3376407  - - 3370979 60 

8447 4512391 - 4491169 543 4496717 - - - 4495032 80 

12437 5640488 - 5614357 730 5623607 - - - 5619248 100 

HPSO [12] UCC-GA [13] BCGA [4] PLEA [14] EPL [12] No. of 

units Time Total cost Time Total cost Time Total cost Time  Total cost Time Total cost 

- 563942 85 563977 3.7 567367 - 563977 0.72 563977 10 

- - 225 1125516 15.9 130291 - 1124295 2.97 1127256 20 

- - 614 2249715 63.1 2256590 - 2243913 11.9 2252612 40 

- - 1085 3375065 137 3382913 - 3363892 23 3376255 60 

- - 1975 4505614 257 4511438 - 4487354 44.4 4505536 80 

- - 3547 5626514 397 5637930 - 5607904 64.5 5633800 100 

AMFA  FA  DP [9] ACSA [15] EP [16] No. of 

units Time  Total cost  Time  Total cost  Time Total cost Time  Total cost  Time Total cost  

2.62 563865 3 563977 - 565825 - 564049 100 565352 10 

24 1122622 26 1124715 - - - - 340 1127256 20 

78 2242178 81 2248740 - - - - 1176 2252612 40 

157 3363491 162 3371064 - - - - 2267 3376255 60 

233 4485633 238 4495414 - - - - 3584 4505536 80 

316 5605189 323 5615407 - - - - 6120 5633800 100 
 

Table 5. Units output power for the 10-unit case 

Unit 
Hour 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 455 

2 245 295 370 455 390 360 410 455 455 455 455 455 455 455 455 310 260 360 455 455 455 455 420 345 

3 0 0 0 0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 0 0 

4 0 0 0 0 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 0 0 

5 0 0 25 40 25 25 25 30 85 162 162 162 162 85 30 25 25 25 30 162 85 145 25 0 

6 0 0 0 0 0 0 0 0 20 33 73 80 33 20 0 0 0 0 0 33 20 20 0 0 

7 0 0 0 0 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 25 25 25 0 0 

8 0 0 0 0 0 0 0 0 0 10 10 43 10 0 0 0 0 0 0 10 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 
 

Table 6. Total cost ($) and execution time (sec) comparisons of 

different methods for 12, 17, 26 and 38 test cases 

No. of 

units 

Control Parameter Total cost Time 

β0 γ AMFA Ref [17] AMFA Ref [17] 

12 0.4 1 639897.36 639938.60 147.23 153 

17 0.9 0.5 1013998.76 1014390 150.38 157 

26 0.9 0.9 582933.38 582938 442.12 473 

38 0.4 1.5 197081933.65 197082680 570.36 603 
 

Table 7. Load demand of the IEEE 118-bus test system 

Hour Load (MW) SR (MW) Hour Load (MW) SR (MW) 

1 4200 210 13 4800 240 

2 3960 198 14 4560 228 

3 3480 174 15 5280 264 

4 2400 120 16 5400 270 

5 3000 150 17 5100 255 

6 3600 180 18 5340 267 

7 4200 210 19 5640 282 

8 4680 234 20 5880 294 

9 4920 246 21 6000 300 

10 5280 264 22 5400 270 

11 5340 267 23 5220 261 

12 5040 252 24 4920 246 

 

Fig. 3. Optimization procedure by AMFA for the 10-unit-based 

UC problem 
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Table 8. Unit characteristics and cost coefficients of IEEE 118-bus 

test system 

IS  iSUC  
off

iT  
on

iT  i  
i  

i  
max

iP  
min

iP  Unit 

1 40 1 1 31.67 26.2438 0.069663 30 5 1 

1 40 1 1 31.67 26.2438 0.069663 30 5 2 

1 40 1 1 31.67 26.2438 0.069663 30 5 3 

8 440 8 8 6.78 12.8875 0.010875 300 150 4 

8 110 8 8 6.78 12.8875 0.010875 300 100 5 

1 40 1 1 31.67 26.2438 0.069663 30 10 6 

5 50 5 5 10.15 17.8200 0.012800 100 25 7 

1 40 1 1 31.67 26.2438 0.069663 30 5 8 

1 40 1 1 31.67 26.2438 0.069663 30 5 9 

8 100 8 8 6.78 12.8875 0.010875 300 100 10 

8 100 8 8 32.96 10.7600 0.003000 350 100 11 

1 40 1 1 31.67 26.2438 0.069663 30 8 12 

1 40 1 1 31.67 26.2438 0.069663 30 8 13 

5 50 5 5 10.15 17.8200 0.012800 100 25 14 

1 40 1 1 31.67 26.2438 0.069663 30 8 15 

5 50 5 5 10.15 17.8200 0.012800 100 25 16 

1 40 1 1 31.67 26.2438 0.069663 30 8 17 

1 40 1 1 31.67 26.2438 0.069663 30 8 18 

5 59 5 5 10.15 17.8200 0.012800 100 25 19 

8 100 8 8 28 12.3299 0.002401 250 50 20 

8 100 8 8 28 12.3299 0.002401 250 50 21 

5 50 5 5 10.15 17.8200 0.012800 100 25 22 

5 50 5 5 10.15 17.8200 0.012800 100 25 23 

10 100 8 8 39 13.2900 0.004400 200 50 24 

10 100 8 8 39 13.2900 0.004400 200 50 25 

5 50 5 5 10.15 17.8200 0.012800 100 25 26 

10 250 10 10 64.16 8.3391 0.010590 420 100 27 

10 250 10 10 64.16 8.3391 0.010590 420 100 28 

10 100 8 8 6.78 12.8875 0.010875 300 80 29 

4 45 4 4 74.33 15.4708 0.045923 80 30 30 

1 40 1 1 31.67 26.2438 0.069663 30 10 31 

1 40 1 1 31.67 26.2438 0.069663 30 5 32 

1 30 1 1 17.95 37.6968 0.028302 20 5 33 

5 50 5 5 10.15 17.8200 0.012800 100 25 34 

5 50 5 5 10.15 17.8200 0.012800 100 25 35 

10 440 8 8 6.78 12.8875 0.010875 300 150 36 

5 50 5 5 10.15 17.8200 0.012800 100 25 37 

1 40 1 1 31.67 26.2438 0.069663 30 10 38 

10 440 8 8 32.96 10.7600 0.003000 300 100 39 

10 400 8 8 6.78 12.8875 0.010875 200 50 40 

1 30 1 1 17.95 37.6968 0.028302 20 8 41 

1 45 1 1 58.81 22.9423 0.009774 50 20 42 

8 100 8 8 6.78 12.8875 0.010875 300 100 43 

8 100 8 8 6.78 12.8875 0.010875 300 100 44 

8 110 8 8 6.78 12.8875 0.010875 300 100 45 

1 30 1 1 17.95 37.6968 0.028302 20 8 46 

5 50 5 5 10.15 17.8200 0.012800 100 25 47 

5 50 5 5 10.15 17.8200 0.012800 100 25 48 

1 30 1 1 17.95 37.6968 0.028302 20 8 49 

2 45 2 2 58.81 22.9423 0.009774 50 25 50 

5 50 5 5 10.15 17.8200 0.012800 100 25 51 

5 50 5 5 10.15 17.8200 0.012800 100 25 52 

5 50 5 5 10.15 17.8200 0.012800 100 25 53 

2 45 2 2 58.81 22.9423 0.009774 50 25 54 

The standard FA can be considered as a generation to 

PSO, DE and SA. From Eq. (12), one can see that when 

β0 is zero, the updating formula becomes essentially a 

version of parallel SA, and the annealing schedule 

controlled by α. On the other hand, if we set γ=0 in Eq. 

(12) and set β0=1 (or more generally, 0   Uniform 

(0,1), FA becomes a simplified version of DE without 

mutation, and the crossover rate is controlled by β0. 

Furthermore, if we set γ=0 and replace xj by the current 

global best solution g*, then Eq. (12) becomes a variant 

of PSO, or accelerated PSO, to be more specific. 

Therefore, the standard FA includes DE, PSO and SA as 

its special cases. As a result, FA can have all the 

advantage of these three algorithms. Consequently, it is 

no surprised that FA can perform very efficiently. This 

program has been operated on a computer with Intel 

Core i7, 2.53 CPU and 8 GB RAM. The results of 

applying 27 different methods to the ten-unit system and 

its multiples were taken directly from , tabulated and 

compared with the results obtained from our method in 

Table 4 from the viewpoints of total operating cost and 

execution time. This table summarizes the total cost of 

different UC solving techniques that consists of 

production and start-up costs. As shown in this table, for 

the case with ten units, the used method gives the best 

result, and for the other cases, the method came up with 

the total costs that are less than that of many other 

methods while very close to the least costs. Also 

execution times of different UC solving methods are 

presented in this Table. Although the CPU times shown 

in Table (4) may not be directly comparable due to 

different computers or programming languages used, 

but some insight can be gained. It is obvious that except 

for the ten-unit case, our run times are significantly 

lower than the run times of all other methods. The 21.3 s 

that we obtained for 100-unit case is less than one third 

of the next least CPU time. Therefore, the applied 

method is efficient and suitable for large-scale practical 

cases. Table 5 gives the 24-h units outputs for the ten-

unit case. Fig. 3 shows convergence characteristic for 

the 10-unit-based UC problem by AMFA. As it can be 

seen, the AMFA has rapid convergence characteristic. 

4.2. 12, 17, 26, and 38-unit systems 

The AMFA is tested on 12, 17, 26, and 38 unit systems. 

The necessary data of these cases are in [47]. In all 

cases, the ON/OFF status of the generating units is 

obtained using the applied algorithm. Good convergence 

behavior can be achieved if the control parameters, 

namely β0 and γ and can be optimally tuned. The 

optimal tuning of these firefly parameters like section 

4.1 is tuned and the results are shown in Table 6. As can 

be seen, the used approach yields a better quality 

solution with less computational time. 

4.3. IEEE 118-bus system 
 

The IEEE 118-bus system consisting of 54 units is 

considered to study using the AMFA method. The data 

for this system are given in Tables 7 and 8. All the 

constraints involved in this problem are regarded, and a 

more practical constraint is considered that is: each 

committed unit must be scheduled to operate at its lower 

generation limit in the first and last hours of being 

committed. Table 9 presents the units’ output powers for 

24-h time horizon with a total operating cost of 

$1643818 $ and execution time of 6.57 s. 
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Table 9. Units output power (MW) for the IEEE 118-bus test system 

Hour 
Units 

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

255 270 270 300 300 285 270 270 270 270 195 225 264 270 270 255 270 203 150 150 150 150 180 203 4 

240 280 280 300 300 280 280 277 280 280 200 240 260 280 280 240 260 200 160 100 100 140 180 200 5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

25 40 40 70 62.5 55 40 25 40 40 25 25 25 40 40 25 0 0 0 0 0 0 0 0 7 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 

240 280 280 300 300 280 280 260 280 280 200 240 260 280 280 240 260 200 157 100 100 140 180 200 10 

350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 11 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 

25 40 40 70 62.5 55 40 25 40 40 25 25 25 40 40 25 0 0 0 0 0 0 0 0 14 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 

25 32 40 70 62.5 55 40 25 40 40 25 25 25 40 40 25 0 0 0 0 0 0 0 0 16 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 

25 25 40 70 62.5 55 40 25 40 40 25 25 25 40 40 25 0 0 0 0 0 0 0 0 19 

250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 134 250 250 250 20 

250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 250 130 250 250 250 21 

25 25 40 70 62.5 55 40 25 40 40 25 25 25 40 40 25 0 0 0 0 0 0 0 0 22 

25 25 40 70 62.5 55 40 25 40 40 25 25 25 40 40 25 0 0 0 0 0 0 0 0 23 

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 155 100 200 200 24 

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 151 100 200 200 25 

25 25 40 70 62.5 55 40 25 40 32 25 25 25 40 32 25 0 0 0 0 0 0 0 0 26 

420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 356 292 178 356 488 420 27 

420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 420 356 292 178 356 488 420 28 

256 278 278 300 300 278 278 278 278 278 205 234 256 278 278 256 256 212 146 80 80 124 189 212 29 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 

25 25 40 70 62.5 55 40 25 40 25 25 25 25 40 25 25 0 0 0 0 0 0 0 0 34 

25 25 40 70 60 55 40 25 40 25 25 25 25 40 25 25 0 0 0 0 0 0 0 0 35 

244 270 270 300 300 285 270 270 270 270 195 225 255 270 270 244 264 195 150 150 150 150 180 195 36 

25 25 40 67.5 55 55 40 25 40 25 25 25 25 40 25 25 0 0 0 0 0 0 0 0 37 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38 

300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 39 

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 155 80 50 125 185 200 40 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 42 

240 280 280 300 300 280 280 260 280 280 200 231 260 280 280 240 260 200 140 100 100 140 180 200 43 

240 280 280 300 300 280 280 260 280 280 200 220 260 280 280 240 260 200 140 100 100 129 180 200 44 

240 280 280 300 300 280 280 260 280 280 200 220 260 280 280 240 260 200 140 100 100 120 180 200 45 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 

25 25 40 62.5 55 55 32 25 40 25 25 25 25 32 25 25 0 0 0 0 0 0 0 0 47 

25 25 40 62.5 55 54.5 25 25 40 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 48 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 

25 25 40 62.5 55 47.5 25 25 40 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 51 

25 25 40 62.5 55 47.5 25 25 40 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 52 

25 25 32 62.5 55 47.5 25 25 32 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 53 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 

 

5. CONCLUSION 

This paper presents a new method the so-called AMFA, 

for the unit commitment problem as well as scheduling 

problem. The applied approach is successfully used to 

well known test systems, 10-unit-based system and its 

multiples, 12, 17, 26 and 38 test systems, and also IEEE 

118-bus. The significant results are compared with the 

other methods from both total operating costs and 

computational time aspects. Simulation results confirm 

that the AMFA may achieve better results. In the 10-

unit-based system the AMFA gives the best results for 

both total costs and execution time among different 

methods. For example, in 10-unit system, the total cost 

is improved 0.27%, 0.46%, 0.18%, 0.09% 0.2, 0.21%, 

0.4%, 0.01%, 0.14%, 0.33%, 0.63%, 0.51%, 0.58%, 

0.38%, 0.51% than LR, ICGA, SPL, MRCGA, MA, 

ALR, GA, ELR, LRGA, PSO-LR, DP-LR, EPL, 

BCGA, UCC-GA, EP method, respectively, and, the 

execution time is improved 89.39%, 15.52%, 95.04%, 

98%, 8.41%, 92.19%, 56.71%, 97.46%, 20.4%, 91.1%, 

94.84% than LR, SPL, MA, GA, ELR, LRGA, PSO-LR, 

DP-LR,  BCGA, UCC-GA, EP method, respectively. 

Results for the IEEE 118-bus test system show that 

AMFA is a cost-effectiveness technique that may also 

improve the reliability of power systems. Also results 

show the usefulness of the used method which is 

capable of solving both small-scale and large-scale 

power systems UC as well as scheduling problems. 
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