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Abstract- Recently, economic and environmental problems have created a strong attitude toward utilizing renewable 

energy sources (RESs). Nevertheless, uncertainty of wind and solar power leads to a more complicated energy 

management (EM) of RESs in microgrids. This paper models and solves the EM problem of microgrid from the 

generation point of view. To do this, mathematical formulation of a grid- connected microgrid including wind turbine 

(WT), photovoltaic (PV), micro turbine (MT), fuel cell (FC) and energy storage system (ESS) is presented. Furthermore 

an improved incentive-based demand response program (DRP) is applied in microgrid EM problem to flatten the load 

pattern. Comprehensive studying of EM in both intra-day and day-ahead markets is another contribution of this paper. 

However, the main novelty of this paper is proposing a new uncertainty modeling technique which is based on copula 

function and scenario generation. This paper tries to optimize operational cost and environmental pollution as the 

objective functions and solve them using group search optimization (GSO) algorithm. Numerical results approve the 

efficiency of the proposed method in solving microgrid EM problem. 
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NOMENCLATURE  

Abbreviations 

ADMM Alternating direction method for multiplier 

ARMA Auto-regressive moving average 

CDF Cumulative distribution function 

DG Distributed generation 

DRP Demand response program 

EM Energy management 

EMS Energy management system 

ESS Energy storage system 

FC Fuel cell 

IGDT Information gap decision theory 

MAS Multi-agent system 

MCP Market clearing price 

MT Micro turbine 

GSO Group search optimization 

PDF Probabilistic distribution function 

PV Photovoltaic 

RES Renewable energy source 

UG Utility grid 

WT Wind turbine 

Symbols, indexes and parameters 

C copula function 

Cov covariance 

CFC,CMT, 

CPV, CWT 

costs related to FC, MT, PV, WT ($) 

COp-PV,  

COp-WT 

operational costs of PV and WT ($) 

CCons-PV,  

CCons-WT 

constant costs of PV and WT ($) 

CFuel fuel cost ($) 

CESS costs of electrical energy storage ($) 

COp-ESS operation cost of ES ($) 

CCons-ESS constant cost of ES ($) 

COp-MT 

COp-FC 

operation cost of MT and FC ($) 

CM-MT 

CM-FC 

maintenance cost of MT and FC ($) 

D0,i(t) initial load of ith customer (kW) 

∂D(t1) load change at t=t1 (kW) 

Di(t) load of ith customer after DR (kW) 

E(t1,t2) elasticity coefficient 
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EMT,EFC EUG emission cost of MT, FC, UG ($) 

FX, FY cumulative distribution functions of X and 

Y 

F(cost) total cost function 

F(Emission) total emission function 

i customer number 

n number of variables 

Pbuy(t) 

 

amount of power that is bought from UG at 

time t (kW) 

Psell(t) amount of power that is sold to UG at time 

t (kW) 

Pline line capacity (kW) 

PFC(t) 

PMT(t) 

PPV(t) 

PWT(t) 

PES(t) 

power of FC, MT, PV, WT and ESS at time 

t (kW) 

rev(Di(t)) revenue of ith consumer t1, t2 

U, V, X, Y random variables 

rev(Di(t)) revenue of ith consumer 

u, v realizations of U and V 

αt,i incentive payment ($) per kWh at tth hour 

for ith consumer 

βt penalty value ($) per kWh 

ρ product moment correlation of two CDFs 

ρr rank correlation 

∂ ρ price modification at t=t2 ($) 

ɳC, ɳD charge and discharge efficiency of ES 

σ Standard deviation 

π(t) electricity market price at time t 

1. INTRODUCTION 

In recent years, the economy is transitioned from a fossil fuel 

based manner to a renewable energy based one as a result of 

concerns on climate changes and cheaper wind and solar 

energy [1]. Therefore, various efforts have been made to 

integrate renewable energy sources (RESs), energy storage 

devices, distributed dispatchable generators along with 

demand response programs (DRP) into distribution networks 

[2]. These efforts have introduced the concept of microgrid; a 

smaller grid supplying the local load in an optimal and 

economical manner [3]. Microgrid is capable of supplying its 

demand by procuring power from the upper grid in grid-

connected mode, as well as from local renewable and non-

renewable energy sources in islanded mode [4]. The 

advantage of utilizing distributed generations (DGs) such as 

wind and photovoltaic in distribution networks is the 

improvement of power efficiency and stability [5]. However, 

the power generation of DGs is related to weather condition, 

and also the demanded load has a time-varying nature [6]. To 

cope with these uncertainties, the system operators are 

required to provide a specific amount of reserve to cover these 

uncertainties, and an energy management system (EMS) is 

required to fulfill the generation-consumption balance in 

microgrid [7]. A trivial solution to provide this reserve is to 

purchase more power from the upper grid, or to increase the 

number of local energy sources. However, these two solutions 

can cause an increment in the total cost or emission of the 

system [8]. Another solution to tackle generation-

consumption balance is to utilize energy storage systems 

(ESSs). These sources are used to store power during cheap 

or off-peak hours and release it in peak or expensive periods 

[9]. The other method to manage the existing uncertainties is 

reducing the demanded load when the system faces with lack 

of energy resulted from wind and solar power uncertainty. 

This solution provides demand-side reserve with the ability to 

participate in energy markets too [10].  

Microgrid EMS has been well studied by researchers [12-20]. 

The literature review of microgrid EMS is summarized in 

Table 1. In Ref. [11], a comparative review of decision-

making strategies, uncertainty modeling techniques and 

solution methods for microgrid EMS is presented. In Ref. 

[12], a grid-connected microgrid is studied to minimize the 

operation cost and pollutant emission as a multi-objective 

function without considering uncertainty. In addition, a price-

offer package for DR model as well as a battery is considered 

as reserve energy source. Authors of Ref. [7] have solved the 

microgrid EMS as a multi-objective problem using multi-

objective group search optimization (MOGSO) algorithm.  

Table 1. Review of microgrid EMS methods 

R
ef

. 

S
o

lv
in

g
 

te
ch

n
iq

u
e 

O
b

je
ct

iv
e 

fu
n
ct

io
n

s 

U
n

ce
rt

ai
n
ty

 

m
o

d
el

in
g

 

te
ch

n
iq

u
e 

D
R

 

b
at

te
ry

 

Is
la

n
d

ed
 

G
ri

d
-

co
n

n
ec

te
d
 

[7] MOGSO 
 Operating cost 

 Emission cost 
- 

Incentive-

based 
 -  

[12] MOPSO 
 Operating cost 

 Emission cost 
- 

Price-offer 

package 
model 

 -  

[13] GAMS  Profit function ARMA 

Shifting load 

to other 

periods 

  - 

[14] GAMS 
 Operating cost 

 

Scenario 

generation 

Price-based 
Incentive-

based 

   

[15] GAMS 
 Operating cost 

 
IGDT 

Shifting load 

to other 
periods 

 -  

[16] 
Dynamic 

programming 

 Operation cost 

 Emission cost 
PDF -   - 

[17] 
MATLAB 

optimization 

toolbox 
 Cost of energy 

Monte 
Carlo 

-  -  

[18] MAS  Operation cost - -   - 

[19] 
Augmented 
ɛ-constraint 

method 

 Operation cost 

 Emission cost 
PDF 

Incentive-

based 
  - 

[20] ADMM  Operation cost - 
Incentive-

based 
  - 
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Ref. [13] has formulated the microgrid EMS as a 

stochastic problem utilizing auto-regressive moving 

average (ARMA) to model existing uncertainties. In 

addition, authors of this paper have utilized a DRP that 

modifies load pattern by transferring demand from peak-

period to other time intervals. Application of both price-

based and incentive-based DR program in microgrid 

EMS is studied in Ref. [14]. Moreover, the uncertainties 

related to price, load, wind speed and solar radiation is 

modeled using probabilistic distribution function (PDF) 

of each parameter.   

An information gap decision theory (IGDT) is 

presented in Ref. [15] to obtain the bidding strategy of 

microgrid as an stochastic problem. In Ref. [16], an 

advanced dynamic programming method is presented to 

solve microgrid EMS problem where probabilistic 

models for uncertain parameters are also considered. Ref. 

[17] has developed a linear problem for EMS, and Monte 

Carlo simulation has been applied to cover uncertainties 

of biomass generation of microgrid. In Ref. [18], a novel 

multi-agent system (MAS) based model is presented to 

solve the optimization problem. The contribution of Ref. 

[19] is to solve the multi-objective problem of EMS using 

augmented ɛ-constraint method. In Ref. [20], an 

alternating direction method for multiplier (ADMM) has 

been proposed to schedule the operation of microgrid 

components.  

In this paper, the studied microgrid is grid-connected, 

and is composed of WT, PV, fuel cell (FC), micro-turbine 

(MT) and ESS. This paper presents a new hybrid 

uncertainty modeling method to cover uncertainties 

associated with wind and solar power. The presented 

method is based on copula function and scenario 

generation. Firstly, the real and forecasted values of 

uncertain parameters are utilized to generate a two-

dimensional conditional PDF using copulas. Then, a 

specified number of scenarios are generated by scenario 

generation technique. Introducing the improved 

incentive-based DRP is the second contribution of this 

paper. Computing more realistic values for penalty and 

incentive payments as a function of peak intensity, taking 

into account intra-day market which results in more 

accurate participation of consumers in DR, and 

considering the elasticity values as a function of costumer 

type and peak intensity are the properties of  our proposed 

DR program. Considering the intra-day market in 

addition to day-ahead market, in the formulation and 

solving of the EM problem, is the third contribution of 

this paper. The latter allows microgrid components to 

make more accurate participation in EM of microgrid. 

Considering the operational cost and environmental 

pollution as the objective functions, the EM problem is 

solved using GSO algorithm.  

In summary, this paper has the following prominent 

features:  

 Proposing a copula-scenario based technique 

for uncertainty modeling 

 Introducing an improved incentive-based DRP 

 Considering both day-ahead and intra-day 

market in microgrid EM problem 

The remainder of this paper is organized as follows: In 

Section 2 the proposed copula-based uncertainty 

modeling technique is presented. Section 3 describes the 

improved incentive-based DR program. The 

mathematical formulation of objective functions and 

constraints are presented in Section 4. The numerical 

results and conclusions are expressed in Section 5 and 6, 

respectively. 

2. Proposed copula-based uncertainty 

modeling technique 

It is clear that there is a stochastic dependency between 

various random variables. For example, the forecasted 

and real-time wind power generations have a significant 

level of correlation. As a result, more accurate prediction 

of wind power results in more precise planning of real-

time wind power utilization. This explanation can be 

applied for other stochastic variables such as solar 

radiation, electricity price and load. Various methods 

have been employed in order to manage the uncertainty 

of the aforementioned uncertain parameters in EM of 

microgrid. The scenario generation method in Ref. [21] 

generates various scenarios for uncertain parameter using 

the PDF of prediction error. However, in this method, the 

PDF is made by prediction error values regardless of 

pairing each error value to its real amount. The Monte 

Carlo method [22] is relied on repeated random 

samplings. The PDF function used in this method is the 

same as PDF of scenario generation technique. Another 

uncertainty modeling method which is based on PDF is 

point estimate method [23]. Along with aforementioned 

stochastic methods which are based on PDF, there exists 

other techniques such as fuzzy method [24], robust 

optimization [25], IGDT [26] and conditional value at 

risk (CVaR) [27]. However, the proposed copula-scenario 

based uncertainty modeling technique is a hybrid method 

which has utilized the copula function to improve the 

accuracy of the PDF. The generated PDF is more accurate 

since it is made by pairing real value and its associated 

prediction error. It is worth mentioning that the 
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equivalent weighted hourly value for each of uncertain 

parameters at the last step of the proposed method has 

improved the computation speed in comparison to the 

existed stochastic methods.   

2.1. Measurement of stochastic dependency 

The rank correlation (ρr), is utilized to compute the 

severity of dependency between random variables [28]. 

The rank correlation of random variables X and Y with 

calmative distribution functions (CDFs) FX and FY is: 

( , ) ( ( ), ( ))r X YX Y F X F Y   (1) 

Here, ρ(FX(X),FY(Y)) is called the product moment 

correlation of two CDFs which is computed as: 

( , )
( ( ), ( ))

( ) ( )

X Y
X Y

X Y

Cov F F
F X F Y

F F


 
  

(2) 

Where, Cov and σ denote the covariance and standard 

deviation, respectively. It can be seen that the rank 

correlation is within interval [-1, 1] and is a factor that 

transforms random variables to uniform random 

variables. If ρr=1, the dependency between random 

variables is excellent. In contrast ρr=0 shows the 

independency of random variables. 

2.2. Copula 

Copulas are mathematical functions that formulate 

multivariate distribution functions by coupling multiple 

one-dimensional distribution functions [29]. This process 

is performed by transforming uniform distribution of all 

marginal variables into a multivariate distribution [30]. 

In mathematical terms, a copula is a function (C) with n 

variables in the range of [0,1]n with the following 

specifications: 

1) The amount of C is in the unit interval [0,1]; 

2) Considering u=(u1,…,un) in [0,1]n, C(u) is zero if 

at least one coordinate is zero; 

3) C(u)=uk if all of coordinates equal to 1 except uk; 

According to Sklar’s theorem in Ref. [31] which is the 

basis of the copula application, a copula function joins 

multiple one-dimensional distribution functions together 

to generate multivariate distribution functions. Sklar also 

proved that if the marginal distributions are continuous, 

there exists only one copula representation. There exists 

two families of copulas; namely Ellipse family and 

Archimedean family. The commonly-used Gaussian and 

Student t are included in Ellipse category while Frank, 

Gumbel and Clayton are contained in Archimedean 

family [32].  

Considering X and Y as random variables whose 

cumulative distribution functions are FX and FY 

respectively, the copula C can join their distribution 

function as below: 

( , ) ( ( ), ( ))XY X YF x y C F x F y  (3) 

Assume FX(x) =u and FY(y) =v, where u and v are 

realizations of the uniform random variables U and V, 

respectively. As a result, Eq. (3) can be written as: 

1 1( , ) ( , ) ( ( ), ( ))X YV UC u v F x y F F u F v    (4) 

Where, V UC  is the conditional distribution of V|U and 

F-1 is the inverse of univariate distribution function. 

2.3. Our proposed method 

In this section the steps describing our proposed 

uncertainty modeling technique is expressed. The 

proposed method utilizes predicted and real-time data as 

dependent random variables. The overall steps are as 

below: 

1) Collect the hourly historical data for the uncertain 

parameter for 1 year  

2) Predict hourly values of the parameter for one week 

using the collected historical data 

3) Consider the predicted hourly values and the real-

time amounts for the proportional time period as the 

random variables 

4) Fit the data with copula function and generate 

conditional distribution function for real-time and 

predicted values of uncertain parameter 

5) Generate joint conditional distribution estimation 

for prediction error  

6) Generate specific number of scenarios using the 

method presented in Ref. [33] 

7) Make weighted equivalent value for each hour of 

parameter as below: 

1

. ( ) Pr . ( ) Pr ( )* ( )
Sn

S S

S

Eq param t e param t ob t Value t


   
(5) 

Here, Eq.param and Pre.param are the equivalent 

value and predicted value of uncertain parameter. 

Furthermore, ProbS and ValueS are the probability and 

value of parameter at Sth scenario. 

3. Improved incentive-based DR program 

In this section, the mathematical formulation of the 

improved incentive-based DR (IBDR) program which is 

an expansion of the proposed model in Ref. [34] is 

presented. To begin with, it is crucial to define the 
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concept of elasticity. This coefficient is defined as the 

ratio of demand modification at t 1 in response to relative 

price changes during t 2 as below:  

0, 2 1
1 2

0 1 2

( ) ( )
( , ) .

( ) ( )

DA

DA

t D t
E t t

D t t









 

(6) 

Where, E(t1,t2), D(t1) and ρ (t2) are the elasticity 

coefficient, load change at t=t1 and price modification at 

t=t2, respectively. The time-dependent nature of elasticity 

relates the price changes at t=t2 to the load variation at 

t=t1. While t1≠t2, increment of price at t=t2 will cause 

increment of load at t=t1. When t1=t2, decrement of price 

at t=t2 will result in increment of load at t=t1 and vice 

versa. This is expressed in Eq. (7) as below:  

1 2 1 2

1 2 1 2

( , ) 0

( , ) 0

E t t if t t

E t t if t t

 


 
 

(7) 

The aim of the IBDR program is to maximize the total 

benefit function which consists of incentive payment, 

penalty values and revenue. 

Incentive payments are paid to the ith consumer, when 

it changes its demand from D0,i(t) to Di(t) as a result of 

price variation. The amount of incentive payment is 

computed as: 

0,( ) ( )[ ( ) ( )]i t i iinc t peak density D t D t   (8) 

Here, αt,i represents the incentive payment ($) per kWh 

at tth hour for ith consumer. This coefficient is a function 

of peak intensity of tth hour, and results in more incentive 

payment for load reduction during peak hours. 

The penalty value of consumers for breach of contract 

is: 

0,( ) ( )[ ( ) [ ( ) ( )]]i t i i ipen t peak density RL t D t D t    (9) 

Where, RLi(t) and [D0,i(t)-Di(t)] demonstrate the real 

and promised load reduction, respectively. βt represents 

the penalty value ($) per kWh of contract violation. 

Considering rev(Di(t)) as the revenue of ith consumer, 

the total benefit function for ith consumer is: 

( ) ( ( )) ( ). ( ) ( ) ( )i i i i iben t rev D t D t t inc t pen t     (10) 

According to classical optimization rules, the benefit 

function is maximized when its deviation equals to zero. 

After mathematical simplifications [35], the optimal 

consumption of customer during 24 h is as below: 

 
1 2

1 1

24 24

1 0, 1 1 2

1

1 0 1

0 1

( ) ( ).exp( ( , ).

( ) ( ) ( ) ( )
)

( )

i i i

t t

t t

D t D t E t t

t peak density peak density t

t

   







  


 

(11) 

4. Microgrid energy management problem 

formulation 

The mathematical formulation of microgrid energy 

management problem considering objective functions 

and constraints are discussed in this section. 

4.1. Objective functions 

In this paper, the aim of the EMS problem formulation is 

to find the optimal hourly planning for the microgrid 

components including generators (WT, PV, MT, FC) and 

ESS while satisfying various technical constraints. The 

cost and revenue of microgrid as a result of power 

exchange by utility grid is included in mathematical 

modelling. In addition, in the paper the EMS of microgrid 

in both day-ahead and intra-day markets are considered. 

Two objective functions including total operational cost 

of microgrid and environmental pollution are to be 

minimized simultaneously. 

4.1.1. Total operational cost of microgrid 

The first objective function is total operational cost of 

microgrid expressed by: 

24

1

( ) ( ( ) ( ) ( ) ( )

( ) ( ) ( ))

Wind PV MT FC

t

Buy Sell ESS

F Cost C t C t C t C t

C t C t C t



   

  


 

(12) 

Where, 

1

( ) . ( )
T

Wind Op WT WT Cons WT

t

C t C P t C 



   
(13) 

1

( ) . ( )
T

PV Op PV PV Cons PV

t

C t C P t C 



   
(14) 

24

1

. ( )
( ) . ( )Fuel MT

MT Op MT MT M MT
MTt

C P t
C t C P t C


 



 
   

 
  

(15) 

24

1

. ( )
( ) . ( )Fuel FC

FC Op FC FC M FC
FCt

C P t
C t C P t C


 



 
   

 
  

(16) 

The costs related to WT, PV, MT, FC are explained in 

Eqs. (13)-(16). According to Eqs. (13) and (14), 

operational costs of WT and PV are composed of variable 

and fixed terms. The first term of Eq. (15) represents the 

power generation cost of MT while the second and third 

terms are the operational and maintenance costs, 

respectively. Similarly, the first term of Eq. (16) indicates 

the fuel cost of FC while the second and third terms are 

the operational and maintenance costs, respectively. 

1

( ) ( ). ( )
T

Buy Buy

t

C t t P t


  
(17) 
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1

( ) ( ). ( )
T

Sell Sell

t

C t t P t


  
(18) 

1

( ) . ( )
T

ES Op ES Es Cons ESS

t

C t C P t C 



   
(19) 

The costs related to power exchange by the upstream 

grid are described in Eqs. (17) and (18). Eq. (17) 

represents the costs of buying power while Eq. (18) is the 

cost of selling power. In addition, operational and 

maintenance costs of ESS are given in Eq. (19). 

4.1.2. Pollution cost of microgrid 

The total emission cost of microgrid and utility grid 

(UG) is calculated as below: 

24

1

( ) ( ( ) ( ) ( ))MT FC UG

t

F Emission E t E t E t


    
(20) 

Where, 

24

1

( ) ( ).MT MT MT

t

E t P t EF


  
(21) 

24

1

( ) ( ).FC FC FC

t

E t P t EF


  
(22) 

24

1

( ) ( ).UG Buy UG

t

E t P t EF


  
(23) 

Here, Eqs. (21)-(23) are the emitted pollution by MT, 

FC and UG. 

4.2. Constraints 

Microgrid EMS contains multiple constraints such as 

power balance, and constraints associated with ES, 

power generation by DGs etc. Meeting these constraints 

can result in reaching a feasible solution for EMS 

problem. In this paper, the following constraints are 

considered for the operation of microgrids: 

24

1

( ) ( ( ) ( ) ( )

( ) ( ) ( ) ( ))

WT PV MT

t

FC ESS Buy Sell

load t P t P t P t

P t P t P t P t



   

  


 

(24) 

max( )FC FCP t P  (25) 

max( )MT MTP t P  (26) 

max
arg

max
arg

( )
( ( ) 0)

. ( ) ( ( ) 0)

ESS
E disch e ESS

D

C ESS E ch e ESS

P t
P for disch P t

P t P for ch P t










 


  

 

(27) 

( ) ( )Buy Sell LineP t or P t P  (28) 

The summation of the produced power by all members of 

microgrid (DGs+ESS) in each time interval must be 

equal to the total load of that period as given by the power 

balance Eq. (24). The limitations related to power 

generation of FC and MT are given in Eq. (25) and (26), 

respectively. The constraints on the charging-discharging 

powers of ESS is specified by Eq. (27). In this equation, 

state of charging and discharging are separated using 

positive and negative values, respectively. The thermal 

capacity of line which connects microgrid to main-grid is 

limited by Eq. (28). 

5. Numerical Results 

In this section, numerical studies are presented. First, the 

studied microgrid have been introduced. Then, the 

simulation results of copula-based uncertainty modeling 

technique are presented. At this step, two-dimensional 

probability distribution function (PDF) of uncertain 

parameters including wind and solar power have been 

extracted. Subsequently, the updated load patterns as a 

result of utilizing incentive-based DRP in intra-day and 

day-ahead market are depicted. The last part of 

simulation results is assigned to the hourly power 

management values of the microgrid components and the 

main grid. This section has presented hourly EMS values 

using GSO in day-ahead and intra-day markets. A 

detailed introduction about GSO algorithm has been 

presented in our previous work [7]. It is worth 

mentioning that the simulations are performed using 

MATLAB R2013a, running on a PC with a 1.5 GHz 

AMD Quad core A4 CPU and 4GB RAM. 

5.1. Studied microgrid 

The studied microgrid has been adopted from Ref. [36] 

and shown in Fig. 1. It consists of a WT, two PVs, FC, 

MT and an ESS system. It is clear that the microgrid is 

connected to the utility grid. The values of emission 

factors of MT, FC and UG are given in Table 2. The 

values of power limitations, efficiency values along with 

operation and maintenance costs for microgrid 

components are given in Table 3. 

20kV/400V

Utility Grid

WT (50kW)

PV (20kW)
MT (30kW)

FC (30kW)

ES (30kW)

Load

Utility Grid

20kV/400V

LoadLoad

Load

PV (20kW)

 
Fig. 1. The studied microgrid [36] 
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Table 2. Emission factors (kg/MWh) [37] 

Emission type MT FC UG 

CO2 724 460 922 

SO2 0.0036 0.003 3.583 

NOX 0.2 0.0075 2.295 

Table 3. Power limitation, efficiency factors and costs of microgrid 

components [37] 

DG 

type 

Power limit 

(kW) 
efficiency 

Costs 

Min Max Maintenance 

($) 

Operation 

($/kW) 

MT 6 30 0.3 0.001 0.004 

FC 3 30 0.3 0.001 0.003 

WT 0 50 0.59 0.002 0.005 

PV 0 40 - 0.001 0.003 

ESS -30 30 0.95 0.001 0.004 

5.2. Uncertainty modeling based on copula function 

This section focuses on the simulation results of the 

proposed uncertainty modeling technique. As mentioned 

before, the presented method requires the real-time and 

predicted values of uncertain parameter for one year time 

duration. The data related to actual and forecasted values 

of wind and solar power are extracted from [38]. 

Utilizing these data, the probabilistic relationship 

between each pair of real-time and predicted hourly 

values of wind power and solar power are shown by 

scatter plot in Fig. 2. The marginal distribution function 

for each of the actual and estimated values are also 

plotted by its proportional axis. According to Ref. [39], 

the Gaussian copula is more appropriate in modeling 

multivariate PDFs. Considering this fact, this paper uses 

Gaussian copula in the study case. Figure 3 demonstrates 

the joint conditional distribution function for actual and 

forecasted values of uncertain parameters. The proposed 

results approve logical conditional distributions which 

are close to real PDFs. 

 
(a) 

 
(b) 

Fig. 2. Scatter plot of the joint distribution of the actual and 

forecast values of (a) wind power, (b) solar power 

 
(a) 

 
(b) 

Fig. 3. 3-D view of the joint conditional distribution estimation of the 

actual and forecast values of (a) wind power, (b) solar power 

 

Based on the conditional distribution functions of Fig. 3, 

the joint conditional distribution function for prediction 

error of each parameter is extracted and shown in Fig 4. 

To do this, the prediction error for each pair of real-time 

and predicted values are computed, and the probability 

amount are taken from conditional distribution values of 

Fig. 3.  

After generating the joint distribution function of 

prediction errors, it is time to generate appropriate 

scenarios to cover uncertainties. Firstly, random values 

are generated and then by comparing the generated 

random amounts by prediction error values of Fig. 4, the 

occurrence probability for each scenario is extracted. All 

of the generated scenarios for four uncertain parameters 

of this study are shown in Fig. 5. 

 

 
(a) 

 
(b) 

Fig. 4. Joint conditional distribution estimation of the prediction 

error for (a) wind power, (b) solar power 
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(a) 

 
(b) 

Fig. 5. Generated scenarios for (a) wind power, (b) solar power 

 

 
(a) 

 
(b) 

Fig. 6. Hourly equivalent amounts after uncertainty modeling 

technique for (a) wind power, (b) solar power 

To simplify the computation and speed up the 

optimization process, a weighted equivalent scenario is 

generated using Eq. 5. The resulted equivalent scenario 

for each uncertain parameter is shown in Fig. 6. The 

generated scenario will cover effects of all prediction 

error values and their proportional occurrence 

probability. 

Combining copula as a mathematical function with 

scenario generation method proposed a new hybrid 

uncertainty modeling technique which was not presented 

up to now. Application of the copula function in 

modeling uncertainties is another prominent feature of 

this method. The copula generates 3-D PDF based on the 

scatter plot of the predicted and real-time values. It can 

be seen that in the scatter plot each point is a pair of real-

time value and its proportional prediction value. 

However, in PDF generation of the existed methods, the 

utilized data are not pair and it is not important that which 

prediction is proportional to which real-time value. 

Because, the PDF of copula-scenario based method is 

generated by pairs of prediction-actual amounts, its PDF 

has more accuracy than existed methods. Totally, this 

method has tried to improve the accuracy of the PDF 

functions using copulas. Making a weighted equivalent 

value for each hour of uncertain parameters can be 

considered as another prominent feature of this technique 

since this point can improve the computing speed in 

comparison to the existed stochastic methods. Along with 

abovementioned advantages, the proposed uncertainty 

modeling technique is not a certain method and is based 

on the probabilities. This is the first disadvantage of the 

proposed technique. Furthermore, requirement of a large 

amount of historical hourly data can be considered as 

another drawback of this method. 

5.3. Load patterns as a result of incentive-based DRP 

The numerical studies related to efficiency of our 

proposed incentive-based DRP is presented in this 

section. The amounts of self and cross elasticity values 

are extracted using fitting process of hourly historical 

data which is explained more in detail in [35]. Table 4 

provides the elasticity coefficient values in day-ahead 

and intra-day market. The positive values of this table 

mean an inverse relation between price and demand, i.e. 

price increment results in demand reduction and vice 

versa. The opposite statement is true for the negative 

values. 

The equivalent weighted load scenario for the microgrid 

is shown in Fig. 7. This figure also demonstrates the load 

curve after applying the proposed incentive-based DRP 

in day-ahead and intra-day markets. It is evident that our 

proposed DRP program is successful in diminishing the 

peak load and restoring it during off-peak and cheap 

periods. In addition, considering intra-day market results 

in more accurate load pattern modifications since it is 

closer to real-time operation. 

 

Table 4. Self and cross elasticity values in day-ahead and intra-day 

market [35] 

  valley Off-peak peak 

Day-ahead 

market 

valley -0.0107 0.015 0.012 

Off peak 0.0147 -0.011 0.01 

peak 0.008 0.01 -0.01 

Intra-day 

market 

valley -0.017 0.016 0.014 

Off peak 0.0157 -0.012 0.012 

peak 0.012 0.011 -0.009 
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Fig.7. Impact of the proposed DRP on the load profile 

5.4. Hourly microgrid EMS results 

The numerical results of the microgrid EMS are obtained 

as an optimization problem including two main 

subcategory in which the effects of day-ahead and intra-

day markets on EMS of microgrid are studied.  The 

convergence process of GSO algorithm in simultaneous 

minimization of cost and emission corresponding to day-

ahead and intra-day market are shown in Figs. 8 and 9, 

respectively. 

 
Fig. 8. Convergence process of GSO in day-ahead market 

 
Fig. 9. Convergence process of GSO in intra-day market 

The hourly simulation results for microgrid components 

in day-ahead and intra-day markets are given in Tables 5 

and 6, respectively. In day-ahead market, the total cost is 

538.62 $ with the emission equaling to 364.66 kg. 

However, the associated value of total cost and emission 

related to the same study case of Ref. [7] is 728.19 and 

598.58, respectively. 

Table 5. The hourly optimal solution in day-ahead market 

(Cost=538.62, Emission=364.66) 

Hour MT (kW) FC (kW) PV (kW) WT (kW) ESS (kW) UG (kW) 

1 6 4.28 0 2.05 17.86 30 

2 6 29.98 0 2.18 -9.51 30 

3 6 9.46 0 6.32 5.18 30 

4 6 29.97 0 1.93 -9.13 30 

5 13.44 3 0 5.76 -1.53 29.39 

6 16.46 3 0 4.8 23.85 25.13 

7 6 7.47 0 6.75 29.76 30 

8 6.09 29.9 0 3.77 11.98 30 

9 19.45 29.86 6.76 1.11 -5.89 30 

10 7.41 29.79 12.63 0.07 5.83 30 

11 13.8 18.4 3.62 25.56 -9.9 30 

12 13.76 3 16.63 34.8 -5.95 23.15 

13 6 4.27 21.24 1.39 16.32 30 

14 16.19 29.26 28.31 5.93 -26.85 30 

15 9.41 12.31 1.8 5.16 23.21 30 

16 8.7 28.54 7.52 0.35 11.26 30 

17 6 27.98 4.32 5.01 18.22 30 

18 9.2 18.76 0 2.46 30 30 

19 18.6 26.24 0 4.12 17.51 30 

20 6 24.6 0 3.3 22.44 30 

21 11.45 15.49 0 2.2 21.68 30 

22 17.56 3 0 6.13 30 23.14 

23 6 15.89 0 4.87 10.55 30 

24 6 3 0 5.01 30 15.65 

Table 6. The hourly optimal solution in intra-day market 

(Cost=507.2, Emission=330.93) 

Hour MT (kW) FC (kW) PV (kW) WT (kW) 
ESS 

(kW) 
UG (kW) 

1 15.36 3.2 0 1.59 13.86 30 

2 16.97 3 0 1.91 26.21 14.15 

3 12.57 3 0 7.55 26.87 10.38 

4 7.22 27.76 0 6.29 -9.12 30 

5 8.92 22.61 0 6.33 -14.96 30 

6 6 26.2 0 1.1 13.75 30 

7 26.22 25.32 0 1.89 0.43 30 

8 6 13.83 0 5.93 24.53 30 

9 28.83 5.16 2.59 3.16 9.97 30 

10 14.3 8.41 10.49 0.39 19.93 30 

11 20.34 3 12.52 29.81 30 -16.38 

12 6 8.76 19.61 24.57 -6.01 30 

13 6.09 3.55 21.75 14.5 0.94 30 

14 16.59 3 25.62 0.1949 30 4.81 

15 6 3.4 7.42 2.35 30 30 

16 12.75 3 3.84 5.91 30 27.85 

17 13.06 9.95 4.32 0.8 30 30 

18 18.24 3 0 5.85 30 29.9 

19 14.39 12.7 0 5.45 30 30 

20 6 8.7 0 7.73 30 30 

21 6 9.76 0 2.9 30 30 

22 20.39 3 0 6.16 30 18.05 

23 16.76 3 0 1 30 14.64 

24 11.97 3 0 1.51 30 11.45 

This great reduction in the values of cost and emission is 

as a result of utilizing the improved incentive based DRP 
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and applying the proposed copula-scenario based 

uncertainty modeling method. While the DRP utilized in 

Ref. [7] was the preliminary version of this paper’s DRP. 

In addition, the studies related to uncertain parameters 

were not performed in Ref. [7]. On the other hand, 

optimizing the cost and emission in intra-day market 

results in more accurate values since it is closer to real 

time. The total of cost and emission in this subcategory is 

507.2 $ and 330.93 kg. 

6. CONCLUSIONS 

This paper tries to simultaneously optimize the 

operational cost and environmental pollution of a 

microgrid in EM problem using GSO algorithm. To reach 

this goal, the uncertainties related to wind and solar 

power are taken into account by a new method which is 

based on combination of copula function and scenario 

generation method. This paper has also applied an 

improved DRP in solving EM problem.  Considering the 

incentive payments as a function of peak intensity, 

assuming the elasticity coefficients as a function of 

costumer type and consumption time, considering intra-

day market in load pattern modifications are the three 

main properties of the proposed DRP. The proposed DRP 

results in two load patterns which correspond to day-

ahead and intra-day markets. The numerical hourly 

results associated with microgrid EM have been 

extracted in both day-ahead and intra-day markets. The 

new hybrid uncertainty modeling technique generates 

two-dimensional PDF for uncertain parameters using 

copula function. Then a specific number of scenarios 

have been extracted by scenario generation method. In 

the last step, a weighted equivalent scenario is generated. 

Simulation results approve the efficiency of the proposed 

uncertainty modeling technique, improved DRP and 

microgrid EM method. Furthermore, the objective 

functions are more realistic in intra-day market since the 

load profile is closer to the real time. “” 
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