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Abstract- In this paper, power distribution planning (PDP) considering distributed generators (DGs) is investigated
as a dynamic multi-objective optimization problem. Moreover, Monte Carlo simulation (MCS) is applied to handle the
uncertainty in electricity price and load demand. In the proposed model, investment and operation costs, losses and
purchased power from the main grid are incorporated in the first objective function, while pollution emission due to
DGs and the grid is considered in the second objective function. One of the important advantages of the proposed
objective function is a feeder and substation expansion in addition to an optimal placement of DGs. The resulted model
is a mixed-integer non-linear one, which is solved using a non-dominated sorting improved harmony search algorithm
(NSIHSA). As multi-objective optimization problems do not have a unique solution, to obtain the final optimum
solution, fuzzy decision making analysis tagged with planner criteria is applied. To show the effectiveness of the
proposed model and its solution, it is applied to a 9-node distribution system.
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NOMENCLATURE cMv Investment cost of kth DG technology ($/kW)
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t/ O Index/Set of time period of Penalty factor

y / Q¢S Index/ Set of candidate distribution E ;:x; Emission factor of type m in kth DG
substations ' technology (kg/kWh)

A10° Ipdex/ Set of existing and candidate EC Emission factor of type m associated with
lines/feeders " electricity taken from the grid (kg/kWh)
i,]j/QNe Index/Set of nodes 7, Electricity market Price ($/kWh)
k /QP° Index/Set of DGs TPH Total planning horizon
h /QFP Index/Set of existing distribution substation P Capacity limit of kth DG technology (kW)
m /QCE  Index/Set of gaseous emission U Min Minimum voltage at node i
Parameters U Max Maximum voltage at node i
d The discount rate '
S Max o . o e
c, Base MVA of system P, Distribution substation capacity limit (MVA)
c, Investment cost of line/feeder ($) |:>ij’\"ax Thermal capaci.ty of line/feeder connecting
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Cy Investment cost of distribution substation ($) cosg Power factor
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n Number of substations must be installed in
time period t
P ?Pk Operation generation of kth DG technology at
o nodei in time period t (kW)
P Purchased power from substation h in time
' period t (kW)

P Power flow in line/feeder connecting node i
to node j in time period t (kW)
(U Voltage of nodei in time period t

COF Cost of lines/feeders ($)

CDS Cost of distribution substation ($)

ICD Cost of DGs ($)

OCD Operation cost of DGs ($)

COL Cost of losses ($)

CPP Cost of purchased power from main grid ($)
PEA Pollution emission amount (ton/h)

TSC Total social cost ($)

1. INTRODUCTION
1.1 Motivation and aim

The power distribution system, in the context of power
distribution planning (PDP), is designed with a primary
goal to design the distribution network so as to timely
meet the electrical load growth in the most economical,
reliable, and safe way. This is not straightforward,
because of the very large extension of the power
distribution network, as well as the fact that this network
is responsible for most of the electrical energy losses and
most of the interruptions due to faults. In the last years,
the distribution planning function is further complicated
by the high penetration of distributed generators (DGSs)
technologies [1, 2]. Optimal planning of DGs is an
optimization problem to determine the optimal location,
type, and size of DGs in order to decrease the peak
demand and power losses and increase the reliability [3].
Therefore, in the presence of DGs, the PDP is changed.
The aim of this paper is to model the PDP in the presence
of uncertainties and DGs as a dynamic multi-objective
optimization problem by a non-dominated sorting
improved harmony search algorithm (NSIHSA).

1.2. Literature review and contributions

Based on the treatment of the planning horizon, the PDP
problem can be traditionally classified into two
categories, namely static and dynamic planning horizon.
In the static planning horizon, only a single period is
investigated as a planning horizon. In contrast, the
dynamic expansion planning considers the planning
horizon by the detachment of the study period into
multiple stages. For the static planning horizon, the
planner searches for a suitable number of new feeders or

substations, which should be added to the system and in
this case, the planner is unwilling to schedule when the
new feeders or substations should be constructed and the
total expansion investment is considered at the beginning
of the planning horizon. From the viewpoint of power
system structures, PDP approaches can be categorized
into regulated and deregulated environments. The main
objective function of the PDP problem in the regulated
structure is to meet the load demand, while maintaining
service quality and reliability of the system. Uncertainty
is low in this structure. Deregulation has changed the
objective of the PDP and increased uncertainties of the
system. Due to these changes, new approaches are
required for the PDP problem and also, the uncertainty is
an important issue in this environment. Here, due to
uncertainties, the prepared plan does not correspond to
the real planning. Therefore, an appropriate tool for
handling uncertainties in the PDP problem is inevitable.
In this paper, the uncertainty of demand and electricity
price is modeled in the proposed model using Monte
Carlo simulation (MCS). As the PDP problem is mixed
integer nonlinear in nature , many methodologies
including mathematical and meta-heuristic approches
have been incorporated to solve the problem. Dynamic
programming (DP), linear programming (LP), and
benders  decomposition, which are based on
mathematical approaches, as well as simulated annealing
(SA), Tabu search (TS), particle swarm optimization
(PSO), genetic algorithm (GA), artificial immune system
(AIS), bacterial foraging (BF), ant colony system (ACS),
ant lion optimization algorithm (ALOA), artificial bee
colony (ABC), grey wolf optimizer (GWOQO), binary
chaotic shark smell optimization (BCSSO), learning
automat (LA), big bang-big crunch (BB-BC) and
shuffled frog leaping algorithm (SFLA), which are based
on meta-heuristic approaches, have been applied to solve
the PDP problem. For clarity, the proposed model in this
paper is compared with those proposed in other studies
from different aspects, as shown in Table 1. In this paper,
a new multi-objective framework is presented for the
PDP problem considering uncertainty in demand in the
presence of DGs. The MCS is used to model the
uncertainty of load and electricity price into the
algorithm. One of the important advantages of the
proposed model is the optimal placement of DGs
including wind turbine (WT), gas turbine (GT), micro
turbine (MT), photovoltaic (PV), fuel cell (FC) and diesel
engine (DE) in the presence of expansion lines/feeders
and distribution substations. In the objective function
with regard to pollution, type of the pollution is also
intended.
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To solve the PDP problem, the NSIHSA-II is used. As
multi objective optimization problems do not have a
unique answer, fuzzy decision-making analysis is
applied to obtain the final optimal solution. To show the
effectiveness of the proposed methodology, it is
compared with other multi-objective optimization
problem solvers like the strength Pareto evolutionary
algorithm  (SPEA), multi-objective  evolutionary
algorithm-decomposition (MOEA-D), non-dominated
sorting genetic algorithm-11  (NSGA-II) and multi-
objective particle swarm optimization (MOPSO), which
are well-known techniques in solving multi-objective
optimization problems. Therefore, the main contributions
of this paper are as follows:

e Modelling the PDP problem as a dynamic multi-
objective optimization (including new construction of
substations and feeders, purchased power from the
main grid, losses, pollution, investment and operation
costs) including the uncertainties of demand and
electricity price in the presence of six types of
conventional DGs.

e To solve the proposed model, multi-objective
improved harmony search algorithm is applied.

¢ Determining optimal location and size of the six types
of DGs which will be installed in the distribution
network in the planning horizon.

e Analyzing each Pareto solution and applying the
fuzzy decision-making as a popular technique to
obtain the final optimum solution tagged with the
planner criteria.

1.3. Paper organization

This paper is organized as follows: Section 2 formulates
the proposed PDP problem. In Section 3, the solution
methodology is discussed. Section 4 conducts the
numerical results and presents comparison among
various solving methods for the problem. Finally,
concluding remarks are discussed in Section 5.

2. MATHEMATICAL MODELLING
2.1. Objective functions
The proposed model as a total social cost (TSC) and
pollution emmision amount (PEA) for the PDP problem
in the presence of DGs is formulated as the following
optimization problem:

Min TSC = COF+CDS+ICD + (365%24xOCD)

1
+(365x24xCOL) +(365x24xCPP) @)
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Where Eg. (3) describes the capital cost of
lines/feeders in the network, Eq. (4) is used to model the
capital cost of distribution substations, Egs. (5) and (6)
describe investment and operation cost of the applied
DGs, respectively, Eq. (7) describes the cost of losses in
the network and Eq. (8) is used for considering the cost
of purchased power from the main grid.

2.2. Constraints

The constraints of the proposed multi-objective
optimization problem are mainly those of optimal power
flow in normal operating conditions as follows:

oP CAP
Pik xCg <P

9
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Radial structure of distribution network =1  (14)

The constraint of Eg. (9) shows the limitation of
operational capacity of DGs; the constraint of Eq. (10)
represents a limitation of voltage which, in this paper, the
minimum and maximum voltage of nodes is assumed to
be 0.95 p.u and 1.05 p.u, respectively; the constraint of
Eq. (11) represents the limitation in distribution
substation capacity; the constraint of Eq. (12) denotes the
limitation in thermal capacity of the distribution feeder;
the constraint of Eq. (13) represents the power balance
constraint in which the term I' is the total loss power in
the feeder connecting node i to the node j; and the
constraint of Eq. (14) is applied to keep the radial
structure of the distribution network. In this paper, node
encoding based on Prufer number in genetic algorithm is
applied to obtain a radial structure for the system.
Therefore, in order to evaluate the system radially, the
following constraints must be satisfied, simultaneously
[31]:

det(A)=0 (15)
g=N; -1 (16)

Where A is a node-branch matrix with size NgxNg, in
which elements are either 1 or 0. The operator det(.)
denotes determinant of the matrix. The constraint that is
modelled as Eqg. (16) is a condition of the establishment
of a tree in graphs theory, where Ng is the number of
nodes and q is the number of branches.

3. SOLUTION METHODOLOGY

3.1. Modelling uncertainties

Since electrical load and electricity price are estimated,
they are faced with uncertainty. Considering the
uncertainty in the planning problem makes it more robust
and flexible. Through observing the past behavior, the
planner can estimate the probability distribution function
(PDF) of these uncertainties; thus, they are categorized in
random uncertainties. One of the appropriate tools for
analyzing and considering random uncertainties is the
MCS. Generally, the load and price are estimated by
normal PDF [32].

Therefore, in this paper, the load and price are
considered by this PDF. Suppose, one of the loads has
normal PDF with the mean of 50 and standard deviation
of 10%. As this normal PDF is a continuous function,
therefore, it does not demonstrate the probability of each
point of load, and only shows the probability density. In
order to determine the probability of various load levels,
the continuous function must be estimated with a normal
discontinuous function. In this approximation, smaller
steps lead to smaller error of approximation. The above
normal PDF and its approximation with 16 steps is shown
in Fig. 1. In this figure, the horizontal axis shows the
value of the load level and the vertical axis shows the
probability of each load level. Therefore, Fig. 1 is shown
in Eq. (17) where the vector P shows the probability of
each load level. In other words, the variables p1,pa, ...,pn
show the load levels I4,l5,...,In, problem, the next step is
to develop scenarios based on these uncertainties. In this
step, a random number for each uncertain variable is
produced based on its PDF. After the generation of a
random number, the probability of this load level is
calculated using Eq. (17). Therefore, in this scenario,
both load level and its probability are calculated for all
the network loads. The same process is also used for other
network uncertainties until, in each scenario, each
uncertain variable with a value and its occurrence
probability is specified. The flowchart of this process is
shown in Fig 2. In the first step, all the uncertain variables
are defined according to Eq. (17) and for any variable, a
random number is produced. Then, the value of the
variable and its probability in each scenario is specified
Thus, the power flow analysis is performed to obtain

0.035

0.03 -

0.025 -

2 002
=
S
& 0.015 |
0.01
0.005 -
0
0 10 20 30 40 50 60 70 80 90
Value of the load demand
Fig. 1. Load approximation with discontinuous normal PDF
p,, Load=l,.
p,, Load=l,.
P=q": . (17)
p,, Load=l,.
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Definition of uncertain variables using Eq. (17)

Y

Random number production for uncertain
variable based on their PDFs

v

Determine of each variable and its
probability for the scenario

-

| Power flow analysis

Saving the desired variables such as, power
flow of the feeder or voltage bus

No

Convergence ?

Y

Calculating of PDF for each parameter

Fig. 2. Flowchart of the proposed MCS

parameters such as the voltage of nodes, flow of feeders
and power losses. As a result, the MCS convergence is
considered. The MCS convergence can be the variance of
the output variables. This means that, if the variance of
the output variable is less than the specified limit, the
algorithm is finished; otherwise, the algorithm is repeated
and a new scenario is produced. Finally, with increasing
scenarios, there are a number of scenarios that contain the
value of the variable and its probability. Therefore, the
planner can plot the value of the output variable in terms
of its probability. With this approach, the effect of the
uncertainty in the input data appears in the output and the

PDF of the output variable can be specified.

3.2. Non-dominated sorting improved harmony
search algorithm (NSIHSA)

One of the appropriate tools for managing and solving
various incommensurable objective functions with
compatible/incompatible relations and also, for solving
non-linear, non-convex and mixed-integer multi-
objective optimization problems is NSIHSA, which is
based on the harmony search algorithm (HAS). The HSA
was derived by adopting the idea that the existing meta-

heuristic algorithms are found in the paradigm of natural
phenomena [33]. The HSA has so far elucidated in
practice a great potential and efficiency in comparison
with other meta-heuristic methods in a wide spectrum of
real applications. Although this meta-heuristic algorithm
possesses a similar structure to other existing population-
based meta-heuristic algorithms, it uses some distinctive
features that make it widely applied in the literature [34].
The general steps of the procedure of this algorithm are
as follows [33]:
1. Initializing the optimization problem and algorithm
parameters such as harmony memory size (HMS)
and harmony memory consideration rate (HMCR).
. Initialize the harmony memory (HM).
. Improvising a new harmony from the HM.
. Updating the HM.
. Repeating the steps 3 and 4 until the termination
criterion is satisfied.

a b~ N

To improve the performance of the HSA and eliminate
the drawbacks lying with fixed values of the pitch
adjustment rate (PAR) and bandwidth (bw), the improved
HSA method, which uses the variables PAR and bw, is
used. The parameters PAR and bw change dynamically
with the generation number expressed as follows [35]:

PAR,. —PAR, ..

PAR(gn):PARmin+Txgn (18)

w9 (19)
bw (gn) =bw ,,,, xe

Where PARmin, PARmax, NI, bwgn, bWmin, bWmax, and gn
are the minimum pitch adjusting rate, maximum pitch
adjusting rate, number of solution vector generations,
bandwidth for each generation, minimum bandwidth,
maximum  bandwidth and  generation  number,
respectively. In this paper, the search process of the novel
global harmony search algorithm is applied on
harmonies, which are ranked based on non-dominated
sorting and distance crowding strategies [36] that are
subsequently explained. The basic of the technique is to
categorize a harmony of solutions into the number of
Pareto levels. The level 1 is a set of Pareto solutions in
the entire harmony memory and level 2 is a set of Pareto
solutions in the harmony memory except the level 1,
which continues until the entire harmony memory is
categorized into k levels. Highest fitness will be assigned
for solutions on the first level and then, for those on the
second level and so on. Moreover, crowding distance is
used as a control agent and actually, as a secondary
criterion for classification and dedicated fitness of levels
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[37]. After ranking, new harmonies are generated. It
should be noted that for handling the constraints, Deb’s
method [37] is employed, in which any feasible solution
is preferred to any infeasible solution; accordingly,
between two feasible solutions, one having the better
objective value is preferred and, between two infeasible
solutions, one having the smaller constraint violation is
preferred.

3.3. Final decision-making

In fuzzy decision-making, a strictly monotonically
decreasing and continious membership function is
specified to each objective function. The value of the
membership function shows to what extend a solution is
satisfying the objective fi. The decision maker is fully

satisfied with the objective value of fi(X) if £ =1
and not satisfied at all if B x) =0. In this paper, the

linear membership function is applied for entire objective
functions as Eq. (20):

0’ fi(X)>fimax
f‘max -f;i (X min max
Hijoo = fmTf(m) fm<f (X)) <f, (20)
:|_7 fi(x)<fimin
f max f min
Where "I and'i are the maximum and minimum

of the objective function among the Pareto solutions,
respectively. After determining any membership
functions, the planner will be questioned to select the
favorable level of prosperity of each objective. Favorable
levels of prosperity are named satisfaction levels or

reference levels of prosperity and are represented by Hri
. Using the distance metric technique, the ultimate answer
can be specified by Eq. (21):

2
minZLuri — My (X )|P (21)

Xe®iT]
where ISP =% 204 @ s the non-dominated

solutions (X).

3.4. Proposed expansion planning
The flowchart of the proposed model is shown in Fig. 3.

In the first step, an initial random HM is generated. Fig.
4 shows the coding of the solutions. As illustrated, each
solution is shown via a t x ¢ matrix regarding the t
planning stages and six types of DGs in the Ng nodes. The
matrix elements show some of DGs added for connecting

to the node. As shown in Fig. 3, in t=TPH in the nodes 1

Generating harmony memory

v

Selecting one of the harmony [+ 7y

v

»| Producing a scenario by using MCS

'

Power flow analysis for the scenario

A

Technical and operational
constraints are satisfied?

Save the investment cost and the harmony
for this scenario

Is MCS converging?

Yes

Calculate the expected value of the all
scenarios for the harmony

Ate all members of the harmony
have been evaluated

Selecting the best solution as the new harmony

Yes Is the optimization

methodology converging?

Reproduction HMCR, PAR, bw
Generating a set of harmony

— Set of non-dominated solutions

' Fuzzy decision-making analysis

Fig. 3. Flowchart of the proposed expansion planning

and 2, one fuel cell must be installed. After structuring
the HM, the way the constraints are handled should be

specified. The method used for dealing with the non-
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( Candidate substation 1 j oo

Candidate feeder 1 e oo

CrcJev T wi] wmr DERNNEGTED)
e o o
=1 @J2] [---T ] ])

4+ Ng ———»

. .
. .

t=TPH(_ FC [ pv [ Wr [ MT [ DE [ GT )

Fig. 4. The proposed coding in the applied HAS

technical constraints are the rejecting technique, in which
the infeasible harmonies are discarded all over the
generations. For technical constraints, the penalty
method is used, in which a penalty is added to the
objective function of the problem for violation of any
constraint. The value of the penalty varies depending on
the importance of the violated constraint. Designing the
basic operators and control parameters of the HSA is the
next step. For the HMS, HMCR, PARmi» and bwnin rates,
typical values are selected in the intervals (10,50),
(0,0.99), (0.001,0.5) and (0.0001,0.5), respectively. For
stopping the algorithm, several criteria such as the
number of generations can be used. As illustrated in Fig.
3, at first, an initial harmony memory is randomly
produced for the algorithm. Then, a vector in the
harmony memory is selected. In the next step, the MCS
is applied to handle the system uncertainty. For each
scenario of the MCS, uncertain parameters such as
electricity price and electrical load demand are randomly
produced based on their defined PDF. Subsequently, the
objective functions are calculated and then the
constraints are considered. If there is a violation in the
constraints, the current scenario is not included in the
procedure; otherwise, the cost is saved and the MCS is
reiterated. The proposed flowchart clearly illustrates that
the methodology solves the problem including the
constraints and the constraints are considered for each
scenario. Then, the expected value of cost and amount of
pollution are calculated as the final answer for the current
vector. This procedure is applied to calculate the costs for
all vectors in the harmony memory. Then, the vector with
the minimum cost is chosen. In the next step, the
convergence of the NSIHSA methodology is considered
and if the stop criterion is met, the algorithm will be
ended and the best vector is considered as the output of
planning; otherwise, the harmony memory is updated
based on the NSIHSA rules and the algorithm is repeated
from the beginning. Finally, the planner will be asked to
determine his satisfaction levels and by applying the

fuzzy satisfying method, the final solution will be
obtained.

4. NUMERICAL RESULTS
Figure 5 shows the 9-node primary distribution test
system. This system has 9 nodes, in which one is a 132/33
KV substation in the node 9 with capacity of 40 MVA and
other nodes are the load points that should be served. This
case study has 6 existing lines as shown in Fig. 5. Further,
this case study has a candidate distrubution substation
with 40 MVA capacity, 13 candidate lines and two
candidate load nodes, which must be served for
expansion planning as shown. In the proposed planning,
six types of DGs consisting of WT, GT, PV, MT, FC and
DE are investigated. In Table 2, the data of size, installed
capacity limit, investment and operation cost of these
resources can be found, and pollutant emission rates of
these technologies are shown in Table 3. Moreover,
according to Table 2, due to limited installed capacity, it
is assumed that these resources are able to produce their
maximum power. Other network data including
economic and technical characteristics for this system
can be found [38]. The initial load demand in peak time
for this system is shown in Table 4. Moreover, in this
case, the power factor (cosp) and discount rate are
considered to be equal to 0.8 and 3%, respectively. It
should be noted that all the load nodes are candidate for
installing DGs and also, the rated voltage is included 33
kV. The data of the candidate lines for expansion are
shown in Table 5. It is assumed that the system should be
expanded for a 5-year planning horizon with the load
growth of 5%. The electricity price is considered 85
$/MWh with the standard deviation of 10%; here, the
standard deviation of the load demand in each node in the
peak time is 10%. Fig. 6 shows a sample of the number
of the performed experiments. Furthermore, Fig. 7 shows
the converged load demand in the node (3) in 2000
iterations of the MCS. It should be noted that, unlike the

Existing load node . Candidate substation D

Candidate load node () Existing substation [

Existing line Candidate liNe  eme o—— @ —

Fig. 5. Initial topology of the 9-node primary distribution system
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Table 2. Data of the six DG technologies
Size Capacity Investment cost ~ Operation cost

DG (kW)  Limit (kW) ($/kW) ($/kWh)

DE 1000 2000 500 0.045

FC 1500 3000 3500 0.050

GT 1000 4000 1000 0.040

MT 200 2000 1500 0.050

PV 100 2000 5000 0.005

WT 1000 4000 4500 0.010
Table 3. Emission of pollutant rates of the six DG technologies
DG NOx SO, CO; Cco PMio
DE 0.00213 0.00125 0.625  0.0028 0.00036
FC 0.000015  0.000024 0.447 0 0
GT 0.00029 0.000032 0.625  0.0004 0.00004
MT 0.0002 0.000037 0.725  0.0005 0.00004
PV 0 0 0 0 0
WT 0 0 0 0 0

Grid  0.0022952 0.0035834  0.92125

Table 4. Initial load demand in peak time for the 9-node distribution

system
Node 2 3 4 5
Load (MVA) 6.6508 6.7901 6.6508 3.4821
Node 6 7 8 9
Load (MVA) 3.9870 5.7455 5.3190 4.4745

deterministic approaches, executation of the MCS does
not require any additional calculations. With considering
2000 iterations of the MCS and the initial harmony size
of 200 and 100 iterations for the NSIHSA, the Pareto
solutions are determined, as shown in Fig. 8. The
placement of DGs with the planned capacity of the 9-
node distribution system, costs of the planning and
voltage of the nodes for this case study are shown in
Tables 6-8, respectively. Suppose that the reference value
is 65% for the objective function of pollution, and 65%
for the total planning cost; therefore, with this satisfaction
level and by considering p=2 according to Eq. (21), the
ultimate answer could be obtained using the fuzzy
decision making, and as shown in Table 7, the Pareto
solution 13 is the best solution for this satisfaction level
of objective functions. Table 9 shows the best Pareto
solution for the 9-node distribution system for various
satisfaction levels considering uncertainties. In the Pareto
solution 13, the voltage profile of nodes is improved by
considering DGs, so that in the presence of DGs, the
standard deviation of voltages is reduced by 19.74%.
Moreover, in this solution, according to Table 7, the
deployment of DGs decreases both the ultimate planning
cost by 6.25% and losses by 36.61%. In addition, there
is no need to build a new substation, and only it is needed
to build a new line between the nodes 6 and 7 as well as
between the nodes 4 and 5. It is obvious that considering
the uncertainties of the system leads to increased
investment  cost;  however, considering  these
uncertainties in the planning makes the plan a more

robust and flexible one, which can meet the network
requirement. A comparison between the proposed model
and its solving methodology and Refs. [27], [38-41] is
shown in Table 10 for the first year; it can be seen that
the proposed algorithm has better performance than the
other methods from different aspects, leading to a lower-
cost plan. In order to evaluate the applied methodology,
the SPEA, MOEA-D, NSGA-II and MOPSO, which are
well-known techniques in solving multi-objective
optimization problems, are implemented. Table 11 shows
the parameters of the SPEA, MOEA-D, NSGA-II and
MOPSO techniques. The results are shown in Fig. 9. In
order to evaluate the performance and quality of Pareto
solutions in multi-objective optimization problem,
several performance indices are presented in the
literature. In this paper, diversification metric (DM) and
mean ideal distance (MID) indices are applied. The DM
index specifies the diversity of Pareto solutions. In this
metric, the algorithm with a higher DM value has a better
capability, which is defined as Eq. (22) [42]:

DM =\/i(max {fi'}—min{fi'}j (22)

i=1 j=1..

e _ S (23)
MID =+°— . C; = (0 -1)

Where fij is the ith objective of the jth Pareto

solution in the Pareto front, N, is the number of Pareto
solutions and M is the number of objective functions. The
MID index specifies the distance between optimal Pareto
solutions as shown in Eq. (23) and the best optimal
solution for each objective function, in which a solution
with smaller MID represents a better quality. Here, finis
the optimal value of the ith objective functions, which
can be obtained by single objective optimization. Table
12 shows the DM and MID indices for the NSIHSA,
NSGA-II, SPEA, MOPSO and MOEA-D methods. As is
known, the NSIHSA is better in performance than the
NSGA-II, SPEA, MPEA-D and MOPSO algorithms. It is
noteworthy that there is no necessity to obtain results
under the same conditions to have a comparison. In fact,
the DM and MID indices denote a view about how the
Pareto solutions are spread and how they are near to their
ideal solutions. These comparisons demonstrate the
capability of the NSIHSA method in obtaining more
diverse and qualified Pareto solutions.

5. CONCLUSION
In this paper, a probabilistic multi-objective framework
for the power distribution planning problem in
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distribution electricity systems is proposed. The main
output of the proposed framework is to determine the
location, type, and capacity of the six conventional
distributed generators, feeders and distribution
substations while considering monetary cost (including
DGs investment and operating cost and purchased power
from the network) and emission considerations as well as
load and electricity price uncertainties. The proposed
probabilistic multi-objective optimization method is
applied to the 9-bus distribution system to assess the
ability and performance of the proposed model and its
solution with respect to previous ones. One of the most
important advantages of the proposed framework is that
by proposing several Pareto solutions, it allows the
planner to consider its own preference for making the
correct decision among those solutions based on the
market 's working strategies.

i

551 1

Monte Carlo load demand converged at node (3) (MVA)

. . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of experiments

Fig. 7. Converged load demand in the node (3)

Table 5. Lines data of the 9-node distribution system

From To 33 ' ; '
R (p. X (p. C:(M
node node (p.u) (p.u) 1 (M$) \
1 2 0.02082 0.02868 031 or *
1 4 0.02748 0.03654 0.42 2l *
1 6 0.02500 0.03322 0.31 = *
1 8 0.03331 0.04430 0.31 £ 20} *
2 3 0.04997 0.06644 0.82 5 *
8 9 0.04664 0.06201 0.31 % I5r -
3 7 0.02332 0.03310 0.31 = 4
6 7 0.02748 0.03654 0.42 o7
2 6 0.02748 0.03654 0.42 Al *
6 8 0.02082 0.02768 0.31 *
4 8 0.04997 0.06644 0.82 0 ! : ! : : ! : !
120 140 160 180 200 220 240 260 280 300
4 5 0.04997 0.06644 0.82 Total expansion plan cost (M$)
5 9 0.02665 0.03543 031 ) _ ) S
10 2 0.02500 0.03322 031 Fig. 8. Non-dominated solutions for the 9-node distribution system
10 6 0.04664 0.06201 0.63 considering uncertainties
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Fig. 6. Total random demand load in the node (3)

Fig. 9. Comparison of Pareto solutions in the NSIHSA, MOPSO,

NSGA-II, SPEA and MOEA-D algorithms
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Table 6. DGs planning results of the 9-node distribution system considering uncertainties

Pareto Type, size (kW) and location of planned DGs Pollution

solution WT PV FC MT GT DE (ton/h)

1 PC* - - - 221221111 44444444 222222272 32.017
Node - - - @2,3,456,789 @23456789 @2345,6,7,809

2 PC - 5 - 210221111 44444444 22,222,222 31.726
Node - - - @2,3,456,789 @23456789 @2345,6,7,809

3 PC - - - 210121110 44444444 22,222,222 31.436
Node - - - @2,3456,789 @23456789 @2345,6,7,809

4 PC - 5 - 1,10,021110 44444444 22,222,222 31.146
Node - - - @2,3456,789 @23456789 @2345,6,7,809

5 PC - - - 1,00011110 44444444 222222272 30.855
Node - - - @2,3,456,789 @23456789 @2345,6,7,89

6 PC - - - 1,0,00101,00 44444444 22222222 30.565
Node - - = @23456,789 @23456789 @2345,67,809

7 PC - - - 0,0,0,0,00,100 44444444 22,22,22,2,2 30.275
Node - - - @23456,789 @23456789 @2345,6789

8 PC - 5 - - 43443444 22,222,222 28.878
Node - - = = @2,3,4,56,789 @2,3,4,56,7,8,9

9 PC - - - - 41433444 22,22,22,2,2 27.000
Node - - - - @2,3,4,56,789 @2,34,56,7,8,9

10 PC - 5 - - 41,231,344 22,222,222 23.872
Node - - - = @2,3,4,56,789 @2,3,4,56,7,8,9

11 PC - - - - 41131322 22,22,22,2,2 20.743
Node - - - - @2,3,4,56,789 @2,3,4,56,78,9

12 PC - S - - 2,10,3,0,2.2,2 22,222,222 17.614
Node - - - - @2,3,4,56,789 @2,34,56,7,8,9

13 PC - - - - 2,00,0,0,1,1,2 22,222,222 13.859
Node - - - - @2,3,4,56,789 @2,34,56,7,8,9

14 PC - 5 - - 0,0,0,0,0,0,1,2 22,222,222 11.982
Node - - - = @2,34,56,789 @2,34,56,7,89

15 PC 2,2 - - - - 1,02,21,1,2,2 6.947
Node @5,7 - - - - @2,3,4,5,6,7,8,9

16 PC 233 - - - - 1,0,00,1,1,0,1 2.526
Node @5,7,8 = = = - @2,3,4,5,6,7,8,9

17 PC 2322212 - - - - - 0
Node @1,2,345,78 - - - - -

“PC: Planed capacity

121
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Table 10. Comparison of the proposed approach in the first year with other studies

Investment cost
(M$/year)

114

Type of DGs Pollution

Losses (p.u)

Item

Considered
Considered

specified
specified

0.00269

planning without uncertainty
Planning with uncertainty

Ref. [39]
Ref. [40]
Ref. [27]
Ref. [38]
Ref. [41]

0.00268

12.1

Not considered

Non-specified

0.00635

12.3856
13.5090
12.0423

48.54

Not considered

Non-specified

0.00529

Not considered

Non-specified

0.00335

Not considered

Non-specified

0.00562

Not considered

0.00348 Non-specified

100.46

Table 11. Parameters of the MOPSO, NSGA-II, SPEA and MOEA-D algorithms

Inertia weight

0.5

Weighting factors (cy, ¢;)

2,2

Population size

200

Iteration
100

MOPSO

Mutation rate

0.4

Crossover rate

0.8

Population size

200

Iteration
100

NSGA-II

Crossover, mutation

1.0,0.0

Number of clusters

Iteration  Population size
200

100

SPEA

Crossover

0.5

Number of Neighbours, number of Archive

Population size
200 8, 50

Iteration
100

MOEA-D
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Table 12. MID and DM indices of Pareto solutions obtained by the

NSIHSA, MOPSO and NSGA 11

Algorithm DM index MID index

NSIHSA 163.312 59.3272

MOPSO 161.987 60.6121

NSGA-II 161.691 61.8124

SPEA 160.0125 63.156

MOEA-D 159.1291 64.321
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