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Abstract- This paper proposes a novel hybrid Monte Carlo simulation-genetic approach (MCS-GA) for optimal 

operation of a distribution network considering renewable energy generation systems (REGSs) and battery 

energy storage systems (BESSs). The aim of this paper is to design an optimal charging /discharging scheduling 

of BESSs so that the total daily profit of distribution company (Disco) can be maximized. In this study, the power 

generation of REGSs such as photovoltaic resources (PVs) and the network electricity prices are studied 

through their uncertainty natures. The probability distribution function (PDF), is used to account for 

uncertainties in this paper. Also, the monte carlo simulation (MCS) is applied to generate different scenarios of 

network electricity prices and solar irradiation of PVs. Optimal scheduling of BESSs can be performed by 

genetic algorithm (GA). In this paper, firstly, the charging and discharging state of BESSs (positive or negative 

sign of battery power) is determined according to the variable amount of the electricity prices and power 

produced from PVs, which have been obtained from the Monte Carlo simulation. Then by using the GA, optimal 

amount of BESSs is determined. Therefore, a hybrid MCS-GA is used to solve this problem. Numerical examples 

are presented to illustrate the optimal charging/discharging power of battery for maximizing the total daily 

profit. 

Keyword: Optimal Scheduling, Distributed Generation, Battery Energy Storage Systems, Uncertainty, Daily 

Profit, Monte Carlo Simulation, Genetic Algorithm, Distribution Company. 

  

 INTRODUCTION 

1.1. literature review 

Nowadays the use of renewable energies has a special 

place in the power industry due to the increasing need 

for energy resources, reducing fossil fuel resources, 

fluctuations in the price of these fuels, the necessity 

of keeping the environment healthy, reducing air 

pollution, electrification restrictions and fuel supply 

to outlying regions, etc. 

Therefore, use of Renewable Energy Generation 

Systems (REGSs), such as photovoltaic (PV) and 

wind turbines (WT), due to much less environmental 

impact, more flexibility, being unending, and 

decentralization possibility has been increasing 

within distribution networks in the past few years.  

In most cases, among the advantages of using the 

REGSs in distribution networks are expressed as 

follows [1-6]: 

 

 Reliability enhancement. 

 supplying high power quality. 

 reducing the cost of energy payments and 

increasing profits. 

 limiting the risks (economic or technical 

risks). 

 reducing energy losses. 

 Improving voltage profile. 

 improving stability. 

 expansion of distribution networks, etc. 

 

For example, in [3], both dispatchable and 

renewable distributed generations (DGs) are used in 

distribution networks for reliability improvement and 

losses reduction.  Reference [4], presented real time 

economic dispatch approaches considering wind 

turbines and photovoltaic renewable resources to 

minimizing the cost of all generations. In [5], 
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photovoltaic solar systems can be used as STATCOM 

for voltage regulation and power factor correction. 

The aim of this paper is minimizing system losses and 

improving voltage profile with genetic 

algorithm(GA). Renewable DGs such as PV and WT, 

and gas turbines as non-renewable generation are 

considered in [6] to minimize the sum of economic 

and CO2 emission costs over planning horizons. 

Besides the advantages of renewable resources, 

they also have some disadvantages. For example, 

power produced by renewable resources, is dependent 

on weather conditions such as wind speed, solar 

irradiation, temperature, etc. Thus, the uncertainty 

nature of output power of REGSs can be complicated 

the operation of distribution networks. In addition to 

the power uncertainty, other parameters such as load 

or electricity price may not be accurately predicted. In 

other words, output power of renewable resources, 

demand load and electricity prices are main types of 

uncertainty in the distribution networks [7-12].  

There are several methods to evaluate these 

uncertainties in the literatures, such as probabilistic or 

possibilistic methods. In some papers, the historical 

data of the parameters under uncertainty (e.g., wind 

speed or solar irradiation in the region under study), 

are available. In these cases, the probabilistic methods 

such as probability density function (PDF) or 

autoregressive moving average (ARMA) model, are 

used for uncertainty modeling [7-10]. Otherwise, the 

possibilistic methods such as fuzzy membership 

function is used [11, 12].  In [7], the uncertainties of 

solar irradiance and wind speed are modelled by Beta 

and Weibull probability density functions, 

respectively. The objective of this paper is to 

minimize the energy losses in the distribution system 

for all possible combinations of load and output 

power of DGs. 

In [8-10] the forecasted amount of uncertain 

parameters are produced by PDF for each hour, then 

a Monte Carlo Simulation (MCS) method is used for 

generating different scenarios. The PDF method is 

also used for modeling uncertainty in [11], but the 

imperialist competitive algorithm (ICA) is applied to 

solve proposed problem and obtained results are 

compared with Monte Carlo simulation method. 

Reference [12], considered the uncertainty of future 

wind power, electricity price and load demand. A 

Gaussian PDF is used to modelling hourly load 

forecast errors. Also, the ARMA model is used to 

predict hourly market prices and wind speed forecast 

errors. Also, a fuzzy approach for modelling 

uncertainties is presented in [1, 14]. 

Integration of Energy Storage Systems (ESSs), is 

one of the best solutions to mitigate the effects of 

intermittent output power of renewable generations in 

distribution systems. Most important kinds and 

characteristics of energy storage systems, has been 

described in [15, 16]. The economic benefits of 

Battery Energy Storage Systems (BESSs) in electric 

distribution system are also presented in [17]. A 

number of recent publications used the BESS to 

reduce the intermittent output of REGSs, such as PV 

and WT, and make them dispatchable.  

Some benefits of combining BESSs with high 

renewable penetrations in distribution networks can 

be expressed as follows [18-26]: 

 Capacity support. 

 distribution loss reduction. 

 voltage regulation. 

 reduction of peak demand charges. 

 mitigation of operational risk from price 

volatility. 

 maximizing profit. 

 improved power quality, etc. 

For example, an optimal charging/discharging 

scheduling for BESS is designed in [19] such that the 

line loss of distribution systems interconnected with 

sizeable PVs can be minimized. Also, the GA method 

is used to solve optimal problem in this work. 

Reference [26], presents a probabilistic framework 

for the operation of distribution networks considering 

PVs and BESSs to calculate the daily profit of the 

distribution network. The risk assessment and 

sensitivity analysis of Value at Risk (VaR) is 

discussed in this paper. 

1.2. Contributions 

It is observed from the above literature survey that the 

existent uncertainties in distribution network should 

be modelled correctly. Also, due to the impact of 

BESSs in maximizing profit and reducing the peak 

demand charges and reducing the effects of 

intermittent output power of renewable generations, 

the commitment between PVs and BESSs should be 

determined effectively.  

 Since the aim of this paper is maximizing the daily 

profit of distribution company, then it focuses on the 

uncertainties of electricity prices and output power of 

PVs. In this work, the existent uncertainties are 

modelled by PDF method and different scenarios are 

generated by MCS. Therefore, the main contributions  
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of this paper are expressed as follows: 

 Considering the effect of uncertain nature of 

electricity prices and output power of PVs in 

the optimal scheduling of BESSs. The PDF 

is used for this aim. 

 Optimizing the charging/discharging 

scheduling of BESSs by hybrid MCS-GA in 

this paper. 

 Modeling the impact of BESSs on the profit 

of Disco and renewable uncertainty 

management.  

 Maximizing the profit of Disco by optimal 

scheduling of BESSs. 

1.3. Paper organization 

This paper is organized as follows:  In section 2, the 

mathematical formulation of problem is presented, 

that contains BESSs model, uncertainty model, and 

objective function. In section 3, the solution 

technique is described. algorithm for BESS control is 

illustrated in Section 4. Section 5, presents test system 

data and results and discusses the numerical of test 

system. Concluding remarks are presented in section 

6. 

 MATHEMATICAL FORMULATION 

2.1. Battery Energy Storage System modeling 

The BESS can be installed in distribution networks to 

reduce renewable generation problems in order to 

allow a higher penetration of renewable resources. 

Electrical energy can be stored in batteries in the 

following cases: 

a. When the variable electricity price is low. 

(The cost of power purchased from network 

is low.) 

b. When the energy from non-dispatchable 

renewable sources is in excess in the system. 

(The load demand is lower than the 

generation power of PVs.) 

Also, the BESS can be discharged when the 

network electricity price is high or when the 

generated renewable power is insufficient to supply 

the system load demand. Furthermore, the operation 

of BESS and charging/discharging states of battery 

should be controlled to provide as much benefit for 

network as possible. 

There are some mathematical models that are used 

to estimate the battery status and to simulate 

charging/discharging procedure of batteries [19, 27-

28]. Therefore, the BESS can be modelled as [19]:  

 

𝑃𝑡.𝑠
𝐵𝑎𝑡𝑡  is the charging or discharging power of 

battery at the time t and scenario s, 𝑃𝑚𝑎𝑥
𝐵𝑎𝑡𝑡 and 𝑃𝑚𝑖𝑛

𝐵𝑎𝑡𝑡
 

are the maximum and minimum charging or 

discharging power of battery, respectively.  𝑆𝑂𝐶 𝑡 ,𝑠  

presents the state of charge that is a measure of the 

stored energy in a battery at the time t and scenario 

s, 𝑆𝑂𝐶𝑚𝑖𝑛 and 𝑆𝑂𝐶𝑚𝑎𝑥 are the allowable minimum 

and maximum 𝑆𝑂𝐶𝑠, respectively.  

Also, 𝜂𝑐ℎ and 𝜂𝑑𝑐ℎ are the charge and discharge 

efficiencies of the BESS unit, respectively. In Eq. (1), 

when the sign of  𝑃𝑡.𝑠
𝐵𝑎𝑡𝑡

 is positive (+), battery is 

charged, and when the sign of 𝑃𝑡.𝑠
𝐵𝑎𝑡𝑡

 is negative (-), 

battery is discharged. As can be seen from Eqs. (1b) 

and (1c), the stored energy at any hour depends on the 

stored energy of the previous hour. 

In this paper, charging/discharging state of BESS 

(the positive or negative sign) is determined 

according to system conditions such as electricity 

price and output power of renewable resources which 

are obtained from MCS. A more detailed description 

is provided in section 3 and 4.  

2.2. Uncertainty considerations 

This paper considers the uncertainties of the 

production of PV units and electricity prices. To 

account for uncertainties, an algorithm combining 

Monte Carlo Simulations (MCS) and Probability 

Density Function (PDF) is proposed. In this method, 

each uncertain variable is described by a PDF and 

various scenarios are generated using the MCS. 

2.2.1. PV generation systems modeling 

The power output of a PV module is dependent on the 

weather conditions such as solar irradiance and 

temperature. Due to the probabilistic nature of solar 

𝑃𝑚𝑖𝑛
𝐵𝑎𝑡𝑡 ≤ |𝑃𝑡,𝑠

𝐵𝑎𝑡𝑡| ≤ 𝑃𝑚𝑎𝑥
𝐵𝑎𝑡𝑡 

(1a) 
∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

𝑖𝑓   𝑃𝑡,𝑠
𝐵𝑎𝑡𝑡 ≥ 0     

(1b) 𝑆𝑂𝐶(𝑡+∆𝑡),𝑠 = 𝑆𝑂𝐶 𝑡 ,𝑠 + 𝜂
𝑐ℎ∆𝑡𝑃𝑡,𝑠

𝐵𝑎𝑡𝑡 

∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

𝑖𝑓 𝑃𝑡,𝑠
𝐵𝑎𝑡𝑡 < 0 

(1c) 𝑆𝑂𝐶(𝑡+∆𝑡),𝑠 = 𝑆𝑂𝐶 𝑡 ,𝑠 −
1

𝜂𝑑𝑐ℎ
∆𝑡𝑃𝑡,𝑠

𝐵𝑎𝑡𝑡 

∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑡,𝑠 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (1d) 

∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 
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irradiance, the generation of PV is also an uncertain 

variable.  

Uncertainty of solar irradiance can be described 

using the Beta probability density function (PDF) as 

[19]: 

 

   𝐟𝐛(𝐬)  =

{
 
 

 
 
𝚪(𝛂 + 𝛃)

𝚪(𝛂)𝚪(𝛃)
𝐬(𝛂−𝟏)(𝟏 − 𝐬)(𝛃−𝟏)    

                        𝟎 ≤ 𝐬 ≤ 𝟏,𝛂, 𝛃 ≥ 𝟎 
         

𝟎                             𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

       (2a) 

β =(1-μ) (
μ(1-μ)

σ𝟐
− 𝟏) (2b) 

α = 
𝐮β

𝟏−μ
 (2c) 

 

where 𝛤(∗) is the gamma function, 𝛼 and 𝛽 are the 

parameters of Beta distribution function, 𝑠 is the 

random variable of solar irradiance  ( kW/m2) , 𝑓𝑏(𝑠) 

is the Beta distribution function of s, and μ and σ are 

the mean and standard deviation of s, respectively. 

Then, the maximum power output of PVs at solar 

irradiance s, can be calculated as: 

 

𝑇𝑐𝑦 = 𝑇𝐴 + 𝑠 (
𝑁𝑂𝑇 − 20

0.8
) (3a) 

𝐼𝑦 = 𝑠[𝐼𝑠𝑐 +𝐾𝑖(𝑇𝑐𝑦 − 25)] (3b) 

𝑉𝑦 = [𝑉𝑜𝑐 −𝐾𝑣 ∗ (𝑇𝑐𝑦)] (3c) 

𝐹𝐹 =
𝑉𝑀𝑃𝑃𝑇 ∗ 𝐼𝑀𝑃𝑃𝑇

𝑉𝑜𝑐𝐼𝑠𝑐
 (3d) 

𝑃𝑜(𝑠) = 𝑁 ∗ 𝐹𝐹 ∗ 𝑉𝑦 ∗ 𝐼𝑦 (3e) 

 

Where  𝑇𝑐𝑦, 𝑇𝐴 and 𝑁𝑂𝑇 are the cell temperature, 

the ambient temperature and nominal operating 

temperature in °𝐶. 𝑉𝑀𝑃𝑃𝑇 and IMPPT are voltage and 

current at maximum power point and 𝑉𝑜𝑐 and 𝐼𝑠𝑐 are 

open circuit voltage and short-circuit current in V, A. 

𝐾𝑣 is the voltage temperature coefficient in V/°C and 

𝐾𝑖 is the current temperature coefficient in A/°C. 𝑁 is 

the number of cells, 𝑃𝑜 is the maximum generation of 

the PV and 𝐹𝐹 is the fill factor. 

The expected output power at solar irradiance 𝑠 is 

calculated as: 

EP(s) = Po(s) * fb(s) (4a) 

 

Hence, the total expected output power during a 

specified time period t, Pt (t = 1 h for this study) can 

be calculated as: 

TEP(s) = ∫ 𝑃𝑜(𝑠)  ∗  𝑓𝑏(𝑠) 𝑑𝑠.
1

0
 (4b) 

2.2.2. Electricity prices modeling 

The uncertainty in the electricity price is taken into 

account using Normal probability distribution 

function with mean value μ and standard deviation σ, 

which enable constructing a set of scenarios with 

MCS methods.  

The normal distribution is defined as follow [11]: 

 

Where 𝝁 and 𝝈 are the mean and standard 

deviation of load  𝒍 , respectively. 

2.3. Objective Function 

The aim of this paper is to maximize the total profit 

(profit = revenue - cost) over a day by optimal 

charging /discharging scheduling of the BESSs. 

The charging/discharging scheduling of BESS 

should be changed hourly at least with respect to the 

electricity price variations and intermittent output 

power of PVs. 

In this paper, it is assumed that the PVs generation 

resources and the battery storage system belong to a 

private company. 

The objective function is to maximize daily profit 

can be formulated as: 

Objective Function = Max  (𝒑𝒓𝒇𝒔) (6) 

Where   

𝒑𝒓𝒇𝒔 = ∑ [(𝐃𝐭 ∗ 𝐩𝐫𝐜𝐫𝐞𝐭) − (𝐏𝐧𝐞𝐭𝐭.𝐬 ∗ 𝐩𝐫𝐜𝐧𝐞𝐭𝐭.𝐬)𝐭∈𝐓  − (𝑷𝑷𝑽𝒕.𝒔 ∗

𝒑𝒓𝒄𝒑𝒗) − (𝑷𝒕.𝒔
𝒅𝒄𝒉 ∗ 𝒑𝒓𝒄𝒅𝒄𝒉)] 

   In Eq. (6), 𝑝𝑟𝑓𝑠 is the total daily profit in each 

scenario, which is obtained from the difference 

between the revenues from the sale of electricity to 

consumers, and the cost of purchasing energy to 

supply the demand. 

In this equation, the first term is the revenue of 

selling electricity to the customers, 𝐷𝑡 is total 

demand. prcret is selling price to consumer in €/MWh 

and it is considered constant in this paper. The second 

term is defined as the cost of power purchased from 

network which is obtained by multiplying the 

network electricity price (𝑝𝑟𝑐𝑛𝑒𝑡𝑡.𝑠) in purchasing 

power from network (𝑃𝑛𝑒𝑡𝑡.𝑠), at scenario s and time t. 

The third term is the generation cost of PVs. In this 

term, 𝑃𝑃𝑉𝑡.𝑠 is the production of PVs at scenario s and 

time t, and 𝑝𝑟𝑐𝑝𝑣 is the generation price of PVs which 

is considered as a constant price in this paper. The last 

sentence expresses the cost of discharging power of 

battery to supply the demand. 𝑃𝑡.𝑠
𝑑𝑐ℎ

 is the discharging 

power of battery at scenario s and time t, and price of 

𝑓𝑛(𝑙) =
1

√2𝜋 𝜎
𝑒−(𝑙−𝜇)

2/2𝜎2 (5) 



Journal of Operation and Automation in Power Engineering, Vol. 6, No. 1, Jun. 2018                                                             5 
  

battery discharge has been shown by  𝑝𝑟𝑐𝑑𝑐ℎ .In other 

words, the third and last terms are the money that are 

paid to PVs and battery owners. 

The constraints of the problem are given as 

follows: 

𝐏𝐧𝐞𝐭𝐭,𝐬 + 𝐏𝐏𝐕𝐭,𝐬 = 𝐃𝐭 + 𝐏𝐭,𝐬
𝐁𝐚𝐭𝐭 

(7a) 

∀𝐭 ∈ 𝐓,∀𝐬 ∈ 𝐒 

𝐏𝐏𝐕𝐭,𝐬 ≤ 𝐏𝐏𝐕𝐦𝐚𝐱 
(7b) 

∀𝐭 ∈ 𝐓,∀𝐬 ∈ 𝐒 

𝐏𝐦𝐢𝐧
𝐁𝐚𝐭𝐭 ≤ |𝐏𝐭,𝐬

𝐁𝐚𝐭𝐭| ≤ 𝐏𝐦𝐚𝐱
𝐁𝐚𝐭𝐭 

(7c) 
∀𝐭 ∈ 𝐓,∀𝐬 ∈ 𝐒 

𝐒𝐎𝐂𝐦𝐢𝐧 ≤ 𝐒𝐎𝐂𝐭,𝐬 ≤ 𝐒𝐎𝐂𝐦𝐚𝐱 
(7d) 

∀𝐭 ∈ 𝐓,∀𝐬 ∈ 𝐒 

In Eq. (7), 𝑃𝑡,𝑠
𝐵𝑎𝑡𝑡 represents the charging or 

discharging power of battery. The  𝑃𝑡,𝑠
𝐵𝑎𝑡𝑡 represents 

the charging power of battery when it is positive, and 

𝑃𝑡,𝑠
𝐵𝑎𝑡𝑡 represents the discharging power of battery 

when it is negative at time t and scenario s. 

Equation (7a) is the load balance constraint. 

Equations (7b) and (7c) are the output power 

constraint and charging or discharging power 

constraint for PVs and BESS, respectively. Equation 

(7d) is also the SOC constraint of BESS. 

 Solution Technique 

The method has been used in this paper to optimizing 

problem, is the combination of genetic optimization 

algorithm and Monte Carlo simulation method.  

The Monte Carlo Simulation is used for generating 

different scenarios. This method is the general 

designation for stochastic simulation using random 

numbers. Applications of Monte Carlo techniques can 

be found in many fields such as complex 

mathematical calculations, stochastic process 

simulation, medical statistics, engineering system 

analysis, and reliability evaluation [29]. This method 

is a class of computational algorithms that depends on 

repeated random sampling for calculating their 

results. 

Also, the genetic algorithm is used to find the 

optimal solution for problem by considering 

uncertainties of the electricity price and output power 

of PVs which is modelled by MCS method.  

A genetic algorithm (GA) is a metaheuristic 

inspired by the process of natural selection that 

belongs to the larger class of evolutionary algorithms 

(EA). high-quality solutions to optimization and 

search problems are generated by using of Genetic 

algorithms. This algorithm generates the solutions by 

relying on bio-inspired operators such as mutation, 

crossover and selection. Genetic algorithm is 

described in more detail in the following. 

Main steps of this method can be summarized as 

follows: 

 

1. Electricity prices modeling by normal 

distribution function. 

2. Solar irradiance modeling by beta 

probability density function and obtaining 

the output power of PVs. 

3. Generating scenarios by MCS. 

4. Determining the state of 

charging/discharging state of BESSs by 

considering uncertain parameter values. 

5. Optimizing the objective function by GA in 

each scenario. 

6. Recording probabilistic optimal results in 

each scenario. 

7. Create PDF of total maximum profit. 

 

In this paper, by considering the historical data, the 

hourly mean value and standard deviation of solar 

radiation and electricity prices can be obtained by 

using the probability density functions. In other 

words, random variable of solar irradiance and 

electricity price generates for hour t at each scenario 

s. then, the generation of PV and electricity price at 

each hour t is obtained by fitting random variable to 

Beta distribution and Normal distribution, 

respectively for scenario s.  

Eventually, the vector of uncertainties for hour t at 

each scenario s is obtained. That way, the Monte 

Carlo simulation is used for generate different 

scenarios of electricity price and generation power of 

PVs.  

 

In step 5, the GA is used for optimization problem 

and it is summarized as follows: 

1. Coding: the decision variables to solve an 

optimization problem with a GA, are 

represented by a chromosome. Any 

individual or chromosome presents only one 

candidate solution. In this paper, each 

chromosome is composed of 24 genes. Each 

gene represents the amount of charging or 

discharging power of the battery in each 

hour t. Fig .1, shows the structure of 

chromosomes in this paper. According to 

this figure, charging or discharging power of 
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battery for the analysis period is generated in 

each population .The amount of battery 

power is generated randomly in each hour 

but the state of charging or discharging of 

battery (positive or negative sign) is 

determined according to the system 

conditions such as electricity price and PVs 

output power in each scenario and each hour. 

As also shown in (1), the battery is charged 

when the sign of battery power is selected 

positive. Also, the battery is discharged 

when the negative sign is selected for power 

of the battery. A more detailed description to 

control the battery is expressed in section 

IV. 

 

 
Fig.1. Structure of chromosomes 

 

2. Initialization: GA operates with a set of 

populations. In this paper, all initial 

populations are generated randomly. But the 

allowable maximum and minimum charging 

and discharging power of battery and SOC 

should be according Eqs. (7c) and (7b), 

respectively. If these constraints are 

violated, the initial population must be 

regenerated. 

3. Fitness evaluation: The fitness evaluation 

requires to determine which population is 

the better. In other words, the fitness value 

of each population is determined through the 

fitness evaluation procedure. In this paper, 

the fitness function is defined as follows: 

Fitness= ∑ [(𝐷𝑡 ∗ 𝑝𝑟𝑐𝑟𝑒𝑡) − (𝑃𝑛𝑒𝑡𝑡.𝑠 ∗ 𝑝𝑟𝑐𝑛𝑒𝑡𝑡.𝑠)𝑡∈𝑇  

− (𝑃𝑃𝑉𝑡.𝑠 ∗ 𝑝𝑟𝑐𝑝𝑣) − (𝑃𝑡.𝑠
𝑑𝑐ℎ ∗ 𝑝𝑟𝑐𝑑𝑐ℎ)] 

+∑ [𝑃𝐹𝑃𝑉𝑡.𝑠]𝑡∈𝑇   

+∑ [𝑃𝐹𝐵𝑎𝑡𝑡 𝑡.𝑠]𝑡∈𝑇   

+∑ [𝑃𝐹𝑠𝑜𝑐 𝑡.𝑠]  𝑡∈𝑇  (8) 

   Equation (8) is the summation of objective function 

and penalty factors caused by the violations of 

constraints formulated in Eqs. (7b-7d), where 

PFPVt.s , PFBatt t.s , PFsoc t.s are the penalty factors for 

constraints of Eqs.  (7b), (7c), (7d), respectively. For 

example, to determine the  𝑃𝐹𝑠𝑜𝑐 𝑡.𝑠  , can be act as 

follows: 

 

  𝑖𝑓         𝑠𝑜𝑐 𝑚𝑖𝑛 ≤ 𝑠𝑜𝑐 𝑡.𝑠 ≤ 𝑠𝑜𝑐 𝑚𝑎𝑥  

𝑃𝐹𝑠𝑜𝑐 𝑡.𝑠 = 0     𝑒𝑙𝑠𝑒   𝑃𝐹𝑠𝑜𝑐 𝑡.𝑠 = 𝐾𝑆𝑂𝐶 (9) 

 

4. Crossover:  In genetic algorithms, Crossover 

is a process of taking more than one parent 

solutions and producing a child solution 

from them.  

5. Mutation: Mutation alters one or more gene 

values in a chromosome from its initial state. 

In mutation, the solution may change 

entirely from the previous solution. Hence 

GA can come to a better solution by using 

mutation. 

Therefore, according to the above description, the 

method of this paper can be shown as Fig. 2. 

In the flowchart of Fig.2, sample and s correspond 

to the total number of different probabilistic scenarios 

and scenario counter in Monte Carlo observations, 

respectively, t correspond to the hour in the time 

horizon(24h). Finally, k corresponds to the counter of 

iteration in genetic algorithm. 

As can be seen in Fig.2, at first, the uncertain 

electricity price and generation of PV units are 

calculated by using of probability distribution 

function and historical data, then these values are 

considered as input data for MCS-GA. According to 

these parameters, the state of charging or discharging 

of BESSs is determined for hour t at each scenario s. 

More detailed description of determine the state of 

BESSs is illustrated in flowchart of Fig.3. 

The next step is optimizing the problem by GA. In 

this step, the amount of charging or discharging 

power of battery for the analysis period is generated 

in each population randomly. Then with regard to the 

BESSs power, the daily maximum profit can be 

obtained in each scenario s. In the last step, 

considering that the optimal amount of obtained 

profits is probabilistic over the scenarios, the 

probability density function can also be obtained for 

the output parameters. Therefore, using the method 

shown in Fig .2, the optimal scheduling of battery 

energy storage system (amount and state of charging 

or discharging power), can be achieved to maximize 

the daily profit.  

https://en.wikipedia.org/wiki/Genetic_algorithm
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Fig. 2. Flowchart of MCS-GA 

 ALGORITHM FOR BESS CONTROL  

As previously mentioned, for optimal scheduling of 

battery, need to know the conditions of the system. 

In fact, the BESS is charged or discharged by 

considering electricity prices and generated power of 

PVs at each scenario s and each hour t. In other words, 

the state of charging or discharging of battery is 

determined by the uncertain parameters. The 

flowchart of BESS control is depicted in Fig.3. 

 
Fig. 3. Flowchart of BESS control in each scenario 

 

As can be seen in Fig. 3, battery can be charged or 

discharged at each hour t in the scenario s, in below 

cases: 

1. When the network electricity price is lower 

than the generation price of PVs and the 

price of discharging power from battery. In 

this case, the sign of battery power is 

positive and battery is charged.  

2. When the generation price of PVs is lower 

than the network electricity price and the 

load demand is lower than the generated 

power from PVs. In this case, the positive 

sign is selected for the power of battery, too. 

3. When the network electricity price is lower 

than the generation price of PVs but it is 

higher than the price of discharging power 

from battery. In this case, the sign of battery 

power is negative and battery is discharged. 

In this case, to meet demand, at first the 

battery discharges; then, If the load demand 

is not met yet, power can be purchased from 

the network. 
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4. When the generation price of PVs low and 

the load demand is higher than the generated 

power from PVs.  

In this case, the sign of battery power is 

negative and battery is discharged, too.  

After determining the charging and discharging 

state of the battery, by using of the genetic algorithm, 

the problem can be optimized in each scenario. For 

calculating the daily profit, it is necessary to consider 

the below points: 

 When the case 1 occurs, the required energy 

for charging the batteries and supplying the 

load demand is purchased from network. 

 When the case 2 occurs, the required energy 

for charging the batteries and supplying the 

load demand is purchased from PV units. 

 When the case 3 occurs, the required energy 

for supplying the load demand, at first is 

provided from discharging power from 

battery then if it is needed, is purchased from 

network. 

 When the case 4 occurs, the required energy 

for supplying the load demand, is provided 

from generation power of PVs and 

discharging power from battery. 

Another conclusion that can be derived from 

expressions, is that the load demand can be met from 

three sources as follows: 

a) from network 

b) from PV generation units 

c) from battery energy storage systems 

Also, the BESS can be charged from two sources 

as follows: 

a) from network 

b) from PV generations 

 TEST RESULTS AND DISCUSSIONS 

5.1. Test System Data 

The proposed method was implemented with 

MATLAB on a Windows based PC. A distribution 

feeder acquired from Taiwan Power Company is used 

as the test system. The 24-hour real power of loads for 

the typical summer days are shown in Fig.4. Table 1 

presents the parameters of PV module and BESS 

which are used in this paper as [19]. By considering 

of maximum solar irradiance (s =1 kw/m2), the 

number of PV modules can be obtained by (3). The 

mean value and standard deviation of electricity 

prices for each hour of the day are illustrated in Table 

3 as [30]. The corresponding hourly solar irradiance 

for the summer days acquired from Taiwan Weather 

Bureau are illustrated in Table 2. More detailed 

description of the test system, is presented in [19]. 

PVs generation resources with 1500 Kw maximum 

power are installed in the network. A BESS with 

3MWh installed capacities (C) is installed at the test 

system. The time step considered in this paper is 1 

hour. 

Table 1. Parameters of PV module and BESS 

Parameter Unit Value 

Ambient temperature of PV module, 

TA. 

°C 30.76 

Nominal operating temperature of PV 

module, Not. 

°C 43 

Current at maximum power point, 

Imppt. 

A 7.76 

Voltage at maximum power point, 

Vmppt. 

V 28.36 

Short-circuit current, Isc. A 8.38 

Open circuit voltage, Voc. V 36.96 

Current temperature coefficient, Ki. A / ° C 0.00545 

Voltage temperature coefficient, Kv. V / ° C 0.1278 

Minimum power of battery, 𝐏𝐦𝐢𝐧
𝐁𝐚𝐭𝐭. MWh 0.025*C 

Maximum power of battery, 𝐏𝐦𝐚𝐱
𝐁𝐚𝐭𝐭. MWh 0.25*C 

Initial state of charge, 𝐒𝐎𝐂𝟎.𝐬
𝐁𝐄𝐒. - 0.33 

Allowable minimum state of charge,  

𝐒𝐎𝐂𝐦𝐢𝐧. 

- 0.05 

Allowable maximum state of charge, 

𝐒𝐎𝐂𝐦𝐚𝐱. 
- 1 

Charge and Discharge efficiencies of 

the BESS, 𝛈𝐜𝐡/𝐝𝐜𝐡. 

- 0.95 

Table 2. Solar Irradiances of the Test System 

The prices of selling electricity to 

consumers(prcret), PVs production (prcpv) and 

battery discharge ( prc
dch

) are 70 €/MWh, 60 €/MWh 

and 65 €/MWh, respectively. These prices are 

considered constant in this paper.  

Hour 
Mean 

(Kw/m2) 

Standard Deviation 

(kw/m2) 

1-5 

6 
7 

8 

9 

10 

11 

12 
13 

14 

15 
16 

17 
18 

19 

20-24 

0.000 

0.007 
0.081 

0.237 

0.400 

0.523 

0.632 

0.663 
0.657 

0.612 

0.497 
0.349 

0.203 
0.068 

0.003 

0.000 

0.000 

0.021 
0.036 

0.56 

0.087 

0.127 

0.156 

0.162 
0.164 

0.147 

0.143 
0.116 

0.081 
0.063 

0.012 

0.000 
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Fig. 4. Daily load profiles of the test feeder 

With regard to these prices, it is observed that the 

price of PVs production has been assumed less than 

battery discharge price. The parameters of MCS-GA 

method are also presented in Table 4.  

5.2. Test System Results 

Considering that the electricity prices and solar 

irradiance are uncertain, so the probability density 

function of electricity prices and solar irradiances can 

be obtained for each hour. For example, the PDF of 

electricity prices and solar irradiances and PV power 
at hour 10 are depicted in Fig. 5. 

Table 3. Mean Value and Standard Deviation of Electricity Price 

Table 4. Parameters of MCS-GA method 

Parameter Value 

Iteration number of GA 200 

Population number of GA 150 

Crossover rate 0.7 

Mutation rate 0.2 

Number of scenarios 100 

Time horizon (hour) 24 

Uncertain parameters such as electricity prices can be 

generated in different scenarios by MCS method. For 

example, Fig. 6 illustrates different generated 

scenarios of electricity price. This figure provides the 

forecasted electricity price and the generated prices at 

the 25th, 44th, 50th, 75th and 100th scenarios. 

 

 

 

 
Fig. 5. .PDF of   a) Electricity prices.  b) Solar irradiance 

 c) PV power at hour 10 

 
Fig. 6. Electricity price in different scenarios 

According to the described method to optimize, an 

optimal solution for daily profit is obtained for each 

Monte Carlo iteration by using the genetic algorithm. 

So, the PDF and cumulative distribution function 

(CDF) of the maximum daily profit can be achieved 

during time horizon. Figure. 7. illustrates the PDF and 

CDF of maximum daily profit. It is observed from 

Fig.7 (a), that the daily profit which is ranged between 

2200 and 2500 (€), has the highest probability of 

occurrence at all scenarios. Furthermore, it can be 

assumed that the scenario which has the profit with 

Hour 
Mean Price 

[€/MWh] 

Standard 

Deviation 

[€/MWh] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

28.55 

28.30 

28.95 

27.71 

27.53 

26.55 

26.40 

60.20 

61.98 

69.04 

70.34 

68.89 

68.76 

68.68 

70.16 

70.41 

69.52 

64.48 

61.67 

57.34 

58.04 

61.85 

41.80 

41.50 

3.64 

5.26 

4.56 

3.23 

3.48 

4.63 

2.43 

12.89 

8.09 

7.89 

6.29 

8.90 

9.20 

8.57 

8.14 

5.61 

8.07 

8.08 

12.09 

13.78 

12.74 

11.46 

8.79 

8.59 
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highest probability of occurrence to be selected as the 

best scenario. Considering this assumption, the 

electricity prices (€/MWh), purchased power from 

network (MW), purchased power from PV units 

(MW), optimal charging/discharging power of battery 

(MW) at this scenario, are depicted in Fig. 8. 

 

 
Fig.7.  a) PDF of maximum daily profit.  b) CDF of maximum 

daily profit 

 

 

 

 
Fig.8. Results of a) Electricity prices.  b) Purchased power from 
network(MW).  c) Purchased power from PV generation units 

(MW). d) Charging/Discharging power of battery (MW) 

In this paper, the 44th scenario is the best scenario. 

Maximum daily profit in this scenario is 2377.8(€). 

For example, the value of this parameters at 44th 

scenario and hour 22, are depicted in Table 5.  As can 

be expected, according to the Fig. 8, when the 

electricity price is lower than the generation price of 

PVs and discharging price of battery, required power 

for supply the demand and charge the battery is 

purchased from network (hours 1-7, 9,13, 18-24), at 

other times, power is supplied through the PV units. 

On the other hand, in these hours (8,10-12,14-17), 

since the demand is higher than the generation power 

of PVs, the battery is also discharged to supply the 

demand. 

Table 5. Obtained value of parameters in scenario 44 and time 22 

Parameter Value 

Generation price of PVs 60 (€/MWh) 

Discharging price of BESSs 65(€/MWh) 

Network electricity price 72.511(€/MWh) 

State of BESSs Discharge (-) 

Load demand 2.8(MW) 

Pnet 2.5139(MW) 

Ppv 0 

PBatt (P
dch ) -0.28609(MW) 

It should be noted that in the hours that PVs 

generation cannot generate electricity, such as night, 

regardless of the electricity prices, power for supply 

the demand and charge the battery, is purchased from 

network. Hour 22 is a sample for this type. In this 

hour, electricity price is high. Thus, due to the low 

price of battery discharge, firstly battery discharged 

to meet demand. Then due to the PV units cannot 

generate any power in this hour, power is purchased 

from network. Also, the PDF of total purchased 

power from network and PV units are depicted in 

Fig.9. 

 CONCLUSIONS 

This paper proposed an optimal 

charging/discharging scheduling of BESS to 

maximize the daily profit. The MCS-GA method is 

used for optimizing problem. A probabilistic method 

is used to uncertainty modelling. Different scenarios 

for electricity price and PVs output power are 

generated by PDF and MCS approach. Because of 

probabilistic behaviour of input vector such as 

electricity price and renewable power generation, the 

extracted results for maximum daily profit are defined 

in PDF and CDF forms. According to the results, it 
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can be observed that the presence of battery energy 

storage in the distribution network, can reduce the 

impact of electricity prices and PVs generation 

uncertainties. In other words, the battery can reduce 

the cost and increase the profits, by saving the energy 

during the hours that electricity price and demand are 

low and by delivering the power at hours with high 

price and high demand. Further work will include the 

modelling of other renewable DG technologies with 

uncertainty in the primary energy sources and 

electricity demand. 

 
Fig. 9.  PDF of total purchased power from   a) Network   b) PV 

generation units 

  

REFERENCES 

[1] N. Rugthaicharoencheep and S. Auchariyamet, 

“Technical and economic impacts of distributed 

generation on distribution system”, Int. J. Electr. 

Comput. Energetic Electron. Commun. Eng., vol. 6, 

no. 4, pp.385-389,2012.  

[2] I. Dincer, “Renewable energy and sustainable 

development: a crucial review”, Renewable 

Sustainable Energy Rev., vol. 4, no. 2, pp. 157-175, 

2000. 

[3] F. Shaaban, M. and E.F. El-Saadany “Optimal 

allocation of renewable DG for reliability 

improvement and losses reduction” in Proce. of  Power 

Energy Soc. Gen. Meeting, San Diego, CA, USA, 2012, 

pp.1-8. 

[4] S. Surender Reddy and P.R. Bijwe, “Real time 

economic dispatch considering renewable energy 

resources”, Renewable Energy, vol. 83, pp. 1215-

1226, 2015. 

[5] E. Mohammadi, and S. Esmaeili, “A Novel optimal 

placement of PV system for loss reduction and voltage 

profile improvement”, Tech. Phys. Prob. Eng., vol.4, 

no. 4, pp. 11-16, 2012.  

[6] B. Zeng, J. Zhang, Xu. Yang, J. Wang, J. Dong, and 

Yu. Zhang, “Integrated planning for transition to low-

carbon distribution system with renewable energy 

generation and demand response”, IEEE Trans. power 

syst., vol. 29, no. 3, pp.1153-1165,2014. 

[7] Y.M. Atwa, E.F. El-Saadany, and M.M.A. Salama, 

“Optimal renewable resources mix for distribution 

system energy loss minimization”, IEEE Trans. Power 

Syst., vol. 25, no. 1, pp. 360-370, 2010. 

[8] S. Talari, M. Yazdaninejad, and M.-R. Haghifam, 

“Stochastic-based scheduling of the microgrid 

operation including wind turbines, photovoltaic cells, 

energy storages and responsive loads”, IET Gen., 

Transm. Distrib., vol. 9, pp. 1498-1509, 2015. 

[9] A. Badri, K. Hoseinpour Lonbar, “Stochastic 

multiperiod decision making framework of an 

electricity retailer considering aggregated optimal 

charging and discharging of electric vehicles”, J. Oper. 

Autom. Power Eng., vol. 3, no. 1, pp. 34-46, 2015. 

[10] S.M. Mohseni-Bonab, A. Rabiee, S. Jalilzadeh, B. 

Mohammadi-Ivatloo, S. Nojavan, “Probabilistic multi 

objective optimal reactive power dispatch considering 

load uncertainties using Monte Carlo simulations”, J. 

Oper. Autom. Power Eng., vol. 3, no. 1, pp. 83-93, 

2015. 

[11] N. Nikmehr, and S. Najafi-Ravadanegh, “Optimal 

operation of distributed generations in micro-grids 

under uncertainties in load and renewable power 

generation using heuristic algorithm”, IET Renewable 

Power Gen., vol. 9, pp. 982-990,2015. 

[12] A. Zakariazadeh, S. Jadid, and P. Siano, "Stochastic 

operational scheduling of smart distribution system 

considering wind generation and demand response 

programs", Int. J. Electr. Power Energy Syst., vol. 63, 

pp. 218-225,2014. 

[13] M. Haghifam, H. Falaghi, and O. Malik, “Risk-based 

distributed generation placement”, IET Gen. Transm. 

Distrib., vol. 2, pp. 252-260, 2008. 

[14] A. Soroudi, “Possibilistic-scenario model for DG 

impact assessment on distribution networks in an 

uncertain environment”, IEEE Trans. Power Syst., vol. 

27, no. 3, pp.1283-1293, 2012. 

[15] J. Eyer, G. Corey, “Energy storage for the electricity 

grid: Benefits and market potential assessment guide”, 

Sandia National Laboratories,  2010, pp. 380. 

[16] B. Berseneff, et al., “The significance of energy 

storage for renewable energy generation and the role 

of instrumentation and measurement”, in IEEE 

Instrum. Meas. Magazine, pp.32-40, 2014. 

[17] T. Zhang, “The economic benefits of battery energy 

storage system in electric distribution system”, 

Worcester Polytechnic Institute, pp.324, 2013. 

[18] B. Lu, M. Shahidehpour, “Short-term scheduling of 

battery in grid-connected PV/battery system”, IEEE 

Trans. Power Syst., vol. 20, no.2, pp.1053-1061, 2005. 

[19] J.-H. Teng, et al. “Optimal charging/discharging 

scheduling of battery storage systems for distribution 

systems interconnected with sizeable PV generation 

systems”, IEEE Trans. Power Syst., vol. 28, no. 2, pp. 

1425-1433, 2013. 

[20] C.A. Hill, M.C. Such, Do. Chen, J. Gonzalez and W. 

Mack Grady, “Battery energy storage for enabling 

integration of distributed solar power generation”, 

IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 850-857, 

2012. 

[21] D.Q. Hung, N. Mithulananthan, R. Bansal, 

“Integration of PV and BES units in commercial 

distribution systems considering energy loss and 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6330648
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6330648


R. Afshan, J.Salehi: Optimal Scheduling of Battery Energy Storage System in Distribution Network Considering …         12 

voltage stability”, Appl. Energy, vol. 113, pp. 1162-

1170,2014. 

[22] J. Tant, F. Geth, D. Six, P. Tant, and J. Driesen, "Multi-

objective battery storage to improve PV integration in 

residential distribution grids", IEEE Trans. 

Sustainable Energy, vol. 4, no. 1, pp. 182-191, 2013.  

[23] R. Khalilpour, A. Vassallo, “Planning and operation 

scheduling of PV-battery systems: A novel 

methodology”, Renewable Sustainable Energy 

Reviews, vol. 53, pp. 194-208, 2016. 

[24] Y. Zheng, Z.Y. Dong, F.J. Luo, “Optimal allocation of 

energy storage system for risk mitigation of DISCOs 

with high renewable penetrations”, IEEE Trans. 

Power Syst., vol. 29, pp. 212-220, 2014. 

[25] A. Gabash, “Flexible optimal operation of battery 

storage systems for energy supply networks”, IEEE 

Trans. Power Syst., vol. 28, no. 3, pp. 2788-2797, 

2013. 

[26] R. Afshan, J.  Salehi, “Optimal operation of 

distribution networks with presence of distributed 

generations and battery energy storage systems 

considering uncertainties and risk analysis”, J. 

Renewable Sustainable Energy, vol. 9, pp. 12, 2017. 

[27] V. H. Johnson, “Battery Performance Models in 

ADVISOR,” J. Power Sources, vol. 110, pp. 321-329, 

2002. 

[28] M. Amelin, “On Monte Carlo simulation and analysis 

of electricity markets”, Ph.D. dissertation, Dept. Elect. 

Eng. Royal Inst. Tech, Stockholm, 2004. 

[29] R. Billinton, H. Chen, R. Ghajar, “Time-series models 

for reliability ealuation of power systems including 

wind energy”, Microelectron. Reliab., vol. 36, 

pp.1253-1291, 1996.  

[30] M. Dicorato, G. Forte, M. Trovato, and E. Caruso, 

“Risk-constrained profit maximization in day-ahead 

electricity market”, IEEE Trans. Power Syst., vol. 24, 

no. 3, pp. 1107-1114, 2009. 

 

 


