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 An Advanced State Estimation Method Using Virtual Meters   

A. Rabiee 

Department of Electrical Engineering, Shahrekord University, Shahrekord,  Iran. 

Abstract-  Power system state estimation is a central component in energy management systems of power system. The 

goal of state estimation is to determine the system status and power flow of transmission lines. This paper presents an 

advanced state estimation algorithm based on weighted least square (WLS) criteria by introducing virtual meters. For 

each bus of network, except slack bus, a virtual meter is considered, using the concept of KCL law. Regarding virtual 

meter, an improved state estimation algorithm is obtained with higher accuracy and lower computation burden. In the 

case study, at first, a simple 6-bus test system is presented and the proposed state estimation algorithm is followed step 

by step. Then, in order to evaluate the effectiveness and applicability of algorithm, IEEE 30-bus and IEEE 118-bus 

test systems are also taken into consideration. The obtained results verify the usefulness of the proposed method in 

large size power systems including thousands of buses. 
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1. INTRODUCTION 

This document provides an example of the desired layout 

for a JOAPE The definition of state estimation is 

assignment of a value to an unknown variable based on 

measurements data taken from that system. A state 

estimator receives field measurement data from remote 

terminal units through data transmission systems, such as 

a supervisory control and data acquisition (SCADA) 

system [1]. Generally, the solution methodology of state 

estimation are based on two groups namely, 

mathematical methods and intelligent methods. Weighted 

Least Squares (WLS), Weighted least Absolute Value 

(WLAV) and Estimation with Non-Fixed Error (M-

Estimator) belong to first group [1-4]. However, the 

intelligent based works are Neural Network based state 

estimation [6], Fuzzy Inference System (FIS) [7], and 

Adaptive Neuron Fuzzy Inference System (ANFIS) [8] 

and also evolutionary algorithm such as particle swarm 

optimization [9]. Intelligent based methods state 

estimation are faster than the mathematical ones but with 

lower accuracy.  

Owning to the important role of state estimation in 

power systems, so many works are published to study 

state estimation from different aspects. The real-time 

system state evaluation and control for secure operation 

of sustainable power systems is proposed in [10]. 

Different methods of state estimations and solutions 

algorithms are taken in [11,12]. In [13], the phasor 

measurement unit (PMU) placement in electric power 

networks is presented in the form of multi-objective 

model. In [14], the optimal placement of PMU is 

presented based on branch placement. Also the 

communication feasibility analysis for smart grid with 

phasor measurement units is presented in [15]. Optimal 

location of pharos measurement units (PMUs) is solved 

in the form of linear programming (LP) problem to 

decrease the number of measurements while increasing 

the accuracy of estimation [16]. An autonomous state 

estimation is used to extract the real-time model of smart 

in which raw data is filtered to reach a reliable 

mathematical model [17]. Also the impact of load 

modeling in distribution state estimation is studied in [18]. 

A joint estimation of state and parameter with synchro-

phasor is proposed [19]. Finally, condition monitoring 

techniques of power transformers is reviewed in [20], 

indicating the important role of state estimation and 

condition monitoring of system and elements in power 

system. 

Among mathematical based methods, the Weighted 

least squares (WLS) state estimation approach has been 

an important tool for determining the optimal estimate of 

power system states [21]. State estimation for electric 

transmission grids was first formulated as a weighted 

least-squares problem by Fred Schweppe and his 

research group in 1969 [22]. The Impacts of load levels 

and topology errors on WLS state estimation 
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convergence is assessed in [23]. A new formulation for 

power system state estimation is proposed based on the 

regularized least squares method, which can deal with ill-

posed problems; eliminating, the mathematical 

unfeasibility caused by lack of measurements [24]. In 

[25], an approach has been proposed called extended 

least squares for estimating parameters of pseudo-linear 

models which was firstly applied to power system state 

estimation in [26] to consider measurement errors and 

model errors.  

In the above mentioned papers, and also the other 

papers in the area, the state estimation issue is considered 

from different viewpoint. Considering the computation 

burden decrease and also increasing accuracy of state 

estimation, and regarding the widely using WLS method 

in state estimation, in this paper, a new method is 

proposed, based on WLS for state estimation. The 

novelty of the proposed method in this paper is its 

applicability for large size power systems with lower 

computation burden and more accuracy in comparison 

with the method presented in [1].  

The remainder of this paper is organized as follows. In 

section 2, maximum likelihood WLS state estimation 

presented in [1] is reviewed in brief. The proposed 

method is taken in section 3. The effectiveness of 

proposed method is studied in small, medium and large 

size power systems in section 4. Finally, section 5 

includes conclusions. 

2. MAXIMUM LIKELIHOOD WEIGHTED 

STATE  ESTIMATION  

 In order to present the proposed method, the method for 

state estimation presented in [1] is first review in brief as 

follows. 

In the maximum likelihood weighted least square state 

estimation, the objective function is: 
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where Nmis the number of measurements, X = [x1, x2, x, 

…, xNs] is state vector and x1, x2, x3, …, xnare state variable 

being estimated. Also fi(X) is the function used for 

calculating the value that is measured by the ith meter. If   

f (x1, x2, x, …, xNs) is a linear function, then it can be 

written as [1]: 

1 2

1 21 2

( , , ,..., ) ( )

                     ...

s

ss

Ni i

Ni i iN

f x x x x f X

h x h x h x

=

= + + +
 (2)

Accordingly, vector f(X) can be written as follows. 
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where [H] is matric Nm×Ns including coefficients of 

linear function f (X). 

Nm   number of measurements 

Ns   number of variables being estimated 

On the other hand: 

[ ]

1

2

.
;

.

.

m

meas

meas

meas meas

meas

N

Z

Z

H X Z Z

Z

 
 
 
 

= =  
 
 
 
  

 
(4)

where Zmeas is measurement matrix Nm × 1. 

Including the measurement value of the meters in the 

system, Eq. (1) can be written as [1]: 
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where [R], is variance matrix indicating the 

measurement errors of meters [1].  
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Finally, the estimated value of unknown variables in 

case of overdetermined, i.e., Nm>Ns, can be obtained 

according to the Eq. (7) [1]: 
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The method in [1] is based on H matrix. Therefore, in 

the remainder of this paper, the proposed method in [1] is 

known as H method and the proposed method will be 

known as H* method. 

3. THE PROPOSED METHOD 

 Using DC load flow model, the active power balance 

equation in the ith node of network is: 
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where, Pi,Gen, Pi, Load  are active power generation and 

load of the ith bus, respectively. fij is the active power flow 

of line connecting bus i to bus j, and xij is the reactance 

of that line. θi , θi are voltage phase angle of bus i and j, 

respectively in radian. Considering the right hand side of 

Eq. 8(a), a virtual meter is introduced at each bus. The 

measurement of the virtual meter is equal to the sum of 

the measurements of the meters that measure the flow of 

lines connected to the interested bus. This matter is better 

illustrated in Fig 1. In this figure, three lines are 

connected to the bus whose active flows are measured by 

meter1, meter 2 and meter 3. Therefore, the measurement 

of virtual meter for this bus is equal to the sum of 

measurements of meter1, meter 2 and meter 3. Suppose 

Ki is a set of far end nodes of lines connected to the ith bus 

of the network and also, Mik is the measurement of meter 

installed at line between node i and k. Then 
VirMeas

iM is 

defined as the measurements of virtual meter at bus i, 

calculated as follows. 

i

VirMeas

i i k

k K

M M
∈

= ∑  
(9)

It is noted that, in order to measure the flow of each 

line, only one meter is needed, because in the case of 

using DC power flow, the system is lossless and the 

active power flow in near end and far end of line is equal 

in value but with opposite direction. 

 

 
 

Fig. 1. Virtual meter of a bus with 3 lines 

 

Considering virtual meters at buses of network, similar 

to Eqs. (3) and (4), Z* measand H* can be introduced as 

follows. 
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Equation (10) is similar to similar to Eq. (3). The left 

hand side of Eq. (10) is H* matrix while the right hand 

side of Eq. (10) is Z*meas . Therefore Eq. (10) is rewritten 

as: 
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where fij the flow of line connecting bus i to j, as 

written in Eq. 8(a) and 
VirMeas

iM  is the virtual 

measurement of the ith bus as defined in Eq. (9). In fact, 

matrix H* is network admittance matrix in which the row 

and column related to slack bus is deleted. Therefore, H* 

is (N-1)×(N-1) matrix which N is the number of network 

buses. Similar to Eq. (7), considering H* and virtual 

measurements Z* meas, the estimated value of X* is: 
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In the proposed method, R* is (N-1)*(N-1) matrix. The 

variance of virtual meter of each bus is considered as 

equal to the maximum variance of meters connected to 

that bus. The advantages of the proposed method (H* 

method) in comparison with the (H method) are: 

a) The dimension of H* and R* are independent of the 

number of transmission lines (or number of meters) and 

their dimensions are (N-1)×(N-1), (N is the number of 

network nodes). But the dimension of H and R, are 

directly related to the number of network lines (or 

number of meters). 

b) Lower memory space is needed to matrix H* since H* 

is (N-1)×(N-1) matrix, while H is (N-1) * Nm   and Nm> 

N-1 

c) The calculation speed of computation is increased in 

the H* method for the reason mentioned in item b. 

d) In the H method, both positive error and negative error 

in measurement, degrades the estimated values. 

However, in the proposed H* method, a positive 

measurement error of a meter installed on a line 

connected to a bus (say meter1 in Fig.1), would be 

possibly neutralized by the negative measurement error 

of the other meter installed on the other line connected to 

that bus (say meter2 in Fig.1). Accordingly, the proposed 

method is more robust to measurement errors and thereby 

estimates the systems unknown variables more 

accurately than the previously presented H method. The 

flowchart of the proposed method is presented in Fig. 2. 
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Fig. 2. Flowchart of the proposed method 

4. CASE STUY 

In order to easily follow and understand the proposed 

method, at first, a 6-bus test system [1] is studied, and 

after that, IEEE 30-bus and IEEE 118-bus test systems 

are used to study the effectiveness of H*method. 

4.1. Simple 6-bus test system 

A simple 6 bus test system with 11 transmission lines is 

shown in Fig. 3 [1]. Based on the proposed method, 11 

measurements are needed to measure the flow of lines as 

shown in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Simple 6-bus test system [1] 

Since the system lossless, only one meter is required 

to measure the active power of each line, not important 

whether it is installed at near end node or far end node of 

the interested line. Therefore, this matter does not cause 

any inaccuracy in the state estimation algorithm. The H* 

matrix is made inspired by KCL. Therefore, the proposed 

method is valid for both AC and DC state estimation. 

However, without loss of generality, in the case study, 

DC power flow is used, to easily follow the proposed 

method and compare it with H method taken in reference 

[1] of the paper.   

The unknown variable being estimated (X) is the phase 

angle of network buses voltage (X = θ). Bus 1 is 

considered as slack bus. Therefore, (x1= ɵ1 = 0). The 

system load and generation data are taken in Table 1. 

Also Sbase = 100 MVA. Using DC power flow, the true 

values of system phase angles are reported in the last 

column of Table 1. 

Table 1. 6-bus test system data and phase angle of buses  

(DC load flow) 

Bus 

No. 
PG (MW) PD(MW) 

Bus angle 

(degree) 

1 100 0 0 

2 50 0 -2.9024 

3 60 0 -3.1679 

4 0 70 -4.7632 

5 0 70 -5.6902 

6 0 70 -5.7418 

The system lines and meters data are taken in Table 2. 

Also the true values of line flows, i.e., all meters are ideal, 

are shown in the last column of Table 2. 

Using DC load flow equation, for meter M12 , the 

following equation will be written: 
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Writing the equation of all 11 meters, like that written 

for meter M12 in (13), the H matrix of this system will 

be obtained as follows [1]: 
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(14)

It is noted that ɵ1 is not included in Eq. (14), because 

it is a known value (ɵ1 = 0). Since it is assumed that meter 

is ideal, the right hand side of Eq. (14) are the true value 

of lines flow, reported in the last column of Table 2. The 

system includes 11 lines and 5 unknown variables. 
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Accordingly, the size of H for this system is (11 × 5). 

Table 2. System lines and meters data and lines flows obtained 

from DC load flow 

Line 

No. 

 

X (p.u.) 

 

Meter ID 
Near 

End bus 

Far End 

bus 

Line flow 

(MW) 

1 0.20 M12 1 2 25.3 

2 0.20 M41 4 1 -41.5 

3 0.30 M15 1 5 33.1 

4 0.25 M23 2 3 1.8 

5 0.10 M24 2 4 32.5 

6 0.30 M52 5 2 -16.2 

7 0.20 M62 6 2 -24.8 

8 0.26 M53 5 3 -16.9 

9 0.10 M36 3 6 44.9 

10 0.40 M45 4 5 4 

11 0.30 M56 5 6 0.3 

In order to obtain H* and Z*meas, Eqs. (9) and (10) 

are used. Since bus 1 is the slack bus, then (x1= ɵ1 =0). 

Accordingly, the virtual meter should be considered at 

buses 2, 3, …, 6 of the network. Consider bus 2 of 

network. Nodes {1, 3, 4, 5, 6} are connected to bus 2 of 

network. So based on Eq. (10), for bus 2 of network, i=2 

and K2 = {1, 3, 4, 5, 6}.  Considering Eq. (10), for bus 2 

of the network, it will be as follows. 
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Using Eq. (10) for buses 3, 4, 5, 6 of network, the H* 

matrix will be obtained as following equation: 
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(15)

Once the H and H* of network is made, the voltage 

angle of network buses can be estimated by using Eq. (7) 

for H method and Eq. (12) for H* method. In order to 

evaluate the effectiveness of the H* method, four cases 

are considered and the estimated values of H* method are 

compared with those of H method. 

Case 1: all meters are ideal 

Case 2: all meters but M12 are ideal; M12=20 MW 

instead of 25.3 MW 

Case 3: all meters but M53, M36 are ideal (M53 = -13 

MW instead of -16.9 MW and M36 = 50 MW instead of 

44.9 MW) 

Case 4: all meters includes errors 

The meter’s measurements for case 1 and case 4 are 

taken in Table 3. The value of variance matrix for all 

meters are considered identical and equal to 0.0001 (σ = 

0.01). The results of these four cases are shown in Table 

4. Since in case 1, all meters are ideal, the results of both 

H and H* methods are equal to the true values of voltage 

angles of buses obtained by DC power flow which are 

reported in the second column of Table 4. 

Table 3. The measurement of meters in case 1 and case 4 

Line 

No. 

Meter 

ID 

Meter Measurement  

in Case 1 (MW) 

Meter measurement 

in Case 4 (MW) 

1 M12 25.3 27 

2 M41 -41.5 -44 

3 M15 33.1 32 

4 M23 1.8 4 

5 M24 32.5 30 

6 M52 -16.2 -19 

7 M62 -24.8 -22 

8 M53 -16.9 -14 

9 M36 44.9 40 

10 M45 4 5 

11 M56 0.3 1 

The results of cases 2, 3, and 4 shows the superiority 

of H* method to H method. As shown in the last row of 

Table 4, the maximum error of estimation in H* method 

is lower than that of H method. In almost all of case 

studies, the error of H* is lower than that of H method. 

However, in some rare cases, such as case 3, the H* error 

is more than H method. 

4.2. IEEE 30-bus and IEEE 118-bus test systems 

The IEEE 30-bus test system includes 30 buses and 41 

transmission lines as shown in Fig. 4. Bus 1 is the slack 

bus, and therefore θ1 is known and the other voltage angle 

of 29 buses of network should be estimated. Therefore, H 

is a (41×29) matrix, while H* is a (29×29) matrix. The 

IEEE 118-bus test system includes 118 buses and 186 

transmission lines. Bus 69 is the slack bus, therefore θ69 

is known and the other voltage angle of 117 buses of 
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network should be estimated. Therefore, for IEEE 118-

bus system, H is a (186×117) matrix, while H* is a 

(117×117) matrix. The results of case 4 (in which all 

meter includes measurement errors and σ = 0.01) for 

these two systems are taken in Table 5.  

Table 4. The estimated and true value of system phase angle 

(degree) in H method and H* method 

Bus 

No. 
 

θ
est (degree) 

Case 1 Case 2 Case 3 Case 4 

H H* H H* H H* H H* 

1 0 0 0 0 0 0 0 0 0 

2 -2.90 -2.90 -2.90 -2.61 -2.97 -2.92 -3.08 -3.12 -2.70 

3 -3.17 -3.17 -3.17 -2.90 -3.21 -3.15 -3.43 -3.59 -2.84 

4 -4.76 -4.76 -4.76 -4.53 -4.61 -4.77 -4.89 -4.87 -4.58 

5 -5.69 -5.69 -5.69 -5.48 -5.70 -5.68 -5.88 -5.83 -5.41 

6 -5.74 -5.74 -5.74 -5.48 -5.78 -5.74 -6.13 -5.85 -5.24 

error% 0 0 10.15 2.39 3.46 8.29 13.55 10.12 

 

 
 

Fig.4. IEEE 30-bus test system 

The results of Table 5 show that, in both test systems, 

the proposed H*method reaches to more accurate 

solution with lower computation time with respect to H 

method. Especially, for IEEE 118-bus system, the 

computation burden of H method is more than twice of 

that of H* method, indicating the advantage of H* 

method in large size power system including hundreds of 

buses. 

It is noted that the reported computation time in Table 

5, includes both of making H matrix time and state 

estimation time (calculating X).        

Table 5. Comparison of the H* and H method results 

 

Computation time Maximum error (%) 

H* method H method H* method H method 

IEEE 30-bus 0.0013 0.0015 18.53 19.42 

IEEE 118-bus 0.0169 0.0350 6.43 9.60 

In almost all of case studies, the error of H* is lower 

than that of H method. However, in some rare cases, such 

as case 3 in Table 4, the H* error is more than H method. 

However, it is rare that such case happens in real power 

systems. As reported, for IEEE 30 and IEEE 118 bus test 

system, the results of H* method have lower error than 

those of H method. Accordingly, considering case 3 of 

Table 4, we should conclude that the error of H* method 

usually (not always) is lower than that of H method. Also 

it can be concluded that, H* method is usually more 

accurate than H method. 

5. CONCLUSIONS 

A more robust and accurate state estimation method is 

proposed in this paper, based on WLS method, by 

considering virtual meter for each bus, which is 

conceptually based on KCL law. By the suggested simple 

but applicable method, the state estimation algorithm is 

improved. As shown in the case studies, the proposed 

method is usually more insensitive to meter errors. The 

other salient feature of this method is its independency to 

the number of meters. It only depends on the number of 

networks buses. Furthermore, the proposed method 

yields more accurate results with lower computation 

burden, in comparison with the pervious method 

discussed in the paper. The capability of the proposed 

method would be better understood in real power systems 

including hundreds of transmission lines. 
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