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ARTICLE INFO ABSTRACT

?{rtic.le g%sg%r? v 2025 Let R be a commutative Noetherian ring and I an ideal
Aiii;;: 21 Oucilober 2025 of R. Suppose that S is a Serre subcategory of the cate-
Communicated by Shiroyeh Payrovi gory of R-modules which satisfies the condition C;. Let

M be a ZD-module and N an R-module. As a gener-
alization of the notion of S-depth(I, M), we define the

gzg&ordsz S-depth of I on the pair (N, M) by S-depth(I, N, M ):=
Local cohomology S-depth(Anng(N/IN),M). We investigate the con-
Serre subcategory nections between S-depth(I, N, M), local cohomology
ZD-module modules, and Ext functors. In particular, when N is

finitely generated, it is shown that S-depth(I, N, M) =
MSC: inf{i : HY(N,M) ¢ S} = inf{i : Extly(N/IN, M) ¢
13C15; 13C60; 13D45 S}. Moreover, various formulas are provided that re-

late this generalized S-depth to other notions of depth
in the literature.

1. INTRODUCTION

Throughout this paper, we assume that R is a commutative Noetherian ring with non-zero
identity, I is an ideal of R, and M and N are two R-modules. We also consider S to be a
Serre subcategory of the category of R-modules, i.e., S is closed under taking submodules,

quotients, and extensions. One can see that the class of finitely generated modules, Artinian
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modules, minimax modules, weakly Laskerian modules, and Matlis reflexive modules are
examples of Serre subcategories.

Aghapournahr and Melkersson [1] generalized the ordinary notion of regular sequences by
introducing the concept of S-sequences with respect to a Serre subcategory S. An element
a € R is called S-regular on an R-module M if (0 :py a) € S. A sequence ay,...,a; is
said to be an S-sequence on M if for each ¢ = 1,...,¢, the element a; is S-regular on
M/(aq,...,a;—1)M. Also, when S satisfies a special condition called the condition C7, they
introduced the S-depth of an ideal I on M, denoted by S-depth(/, M). More precisely, a
Serre subcategory S satisfies the condition Cj if, for any I-torsion R-module M, (0:p; I) € S
implies M € S. Examples of Serre subcategories satisfying the condition C include the zero
module, Artinian modules, I-cofinite Artinian modules, modules with finite support, and
modules N with dimgp N < k for some non-negative integer k. If S satisfies the condition
Cr, and M is a finitely generated R-module such that M/IM ¢ S, then any maximal S-
sequence in I has the same length. This common length is defined to be S-depth(Z, M). By
choosing appropriate Serre subcategories S, one recovers various depth concepts studied in
the literature, including the ordinary depth, filter depth (f-depth(I, M)), generalized depth
(g-depth(I, M)), etc.

The notion of ZD-modules (zero-divisor modules) was introduced by Evans in [5]. An R-
module M is said to be a Z D-module if, for every submodule N of M, the set of zero-divisors
of M/N is a finite union of associated prime ideals of M/N. As noted in [4, Example 2.2],
the class of ZD-modules includes a wide variety of important modules: finitely generated
modules, Laskerian and weakly Laskerian modules, linearly compact modules, Matlis reflex-
ive modules, and minimax modules. Moreover, this class contains modules whose quotients
have finite Goldie dimension, as well as those with finite support, particularly including all
Artinian modules.

In [7], we extended the concept of S-depth(I, M) to the class of ZD-modules. More
specifically, let S be a Serre subcategory satisfying the condition Cj, and let M be a ZD-
module. Assuming that the ideal I contains a maximal S-sequence on M, we proved that all
such maximal S-sequences in I have equal length. Moreover, we showed that if M/IM ¢ S,
then I indeed contains maximal S-sequences on M. Additionally, we generalized the notion
of S-depth(I, M) to pairs of ideals. For two ideals I and J of R, and a ZD-module M, we
defined S-depth(7, J, M) under the assumption that S satisfies the condition C7; see [8] for
details.

This paper aims to generalize the concept of S-depth to pairs of modules. Specifically, let
S be a Serre subcategory satisfying the condition C7, M be a Z D-module, and N an arbitrary
R-module. We define the S- depth of the ideal I on N and M, denoted by S-depth(I, N, M),
as S-depth(I, N, M) := S-depth(Anng(N/IN), M). It is immediate that if N = R, then
this definition coincides with the S-depth(7, M).

In Section 2, we establish some fundamental properties of S-depth(Z, N, M) and explore
its connections with local cohomology and Ext functors. Assuming S satisfies the condition
Cr, M is a ZD-module, and N is a finitely generated R-module, we prove in Theorems 2.7
and 2.9 that S-depth(I, N, M) =inf{i : H{(N,M) ¢ S} = inf{i : Extl(N/IN, M) ¢ S}.

In Section 3, we explore the connections among various notions of depth. Let S be a Serre
subcategory satisfying condition C7, and let M and N be finitely generated R-modules.
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Theorem 3.2 establishes that S-depth(I, N, M) = inf{depth(IR,, N,,M,) : p € V(I) N
Suppp (V) and R/p ¢ S}. Furthermore, Theorem 3.4 states that if S is closed under taking
injective hulls, M is a ZD-module, and N is finitely generated, then S-depth(I, N, M) =
inf{depth M, : p € V(I) N Suppyr(N) and R/p & S}.

2. S-depth of an ideal on a pair of modules and local cohomology

Recall that R is a Noetherian ring, [ is an ideal of R, M and N are R-modules, and S is

a Serre subcategory of the category of R-modules.

Definition 2.1. Suppose that S satisfies the condition Cj, M is a ZD-module, and N is an
arbitrary R-module. The S-depth of ideal I on N and M, denoted by S-depth(I, N, M), is
defined as S-depth(I, N, M) := S-depth(Anng(N/IN), M).

It is straightforward to see that when N=R, the equality S-depth(I, N, M)=S-depth(I, M)
holds.

In the following results, we establish some fundamental properties of S-depth(I, N, M),
which are helpful in the computation of this invariant.

Proposition 2.2. Assume that S satisfies the condition C;, M is a ZD-module, and J is
an ideal of R. Then
(i) S-depth(I, M) < S-depth(I, N, M).
(ii) If I C J, then S-depth(I, N, M) < S-depth(J, N, M).
(ili) S-depth(I + J,N,M) = S-depth(I, 5, M).
(iv) S-depth(XH, &, M) = S-depth(I, 5, 74).

Proof. Parts (i) and (ii) directly follow from [7, Proposition 3.1(i)]. For parts (iii) and (iv),
N

N N
observe that = {)’\(’ oy = I(‘{]ﬁN) 2 (Ij%N = (I+]YI) Therefore, we have Anng(ﬁ) =
N N
Anng(—2%~) which proves part (iii). Furthermore, note that Annr (-7 x—) contains an
I(Fx) L (EH (%)
S-sequence on J 17 if and only if, Anng (7% (= ) (X )) Annpg( (T\V’ ) contains an S-sequence
N IN)
on M. Thus, we obtain S- depth(”‘], N T MM) = S-depth(Z, % JﬂM) which is the same as
part (iv). O

Proposition 2.3. Suppose that S satisfies the condition C;, M is a ZD-module, and a =
ai,...,a is an S-sequence on M. Then
(i) Ifa € Anng(N/IN), then S-depth(I, N, (a) 77) = S-depth(I, N, M) —t.
(ii) Ifa € I, then
I N M N M
S-depth(— — S-depth(]. —— ——
epth( . ) (T (o )

= S-depth(I,N, M) —t.

M
= S-depth(I, N, ——
Sdept (7 ’(Q)M)

Proof. Part (i) follows from [7, Proposition 3.1(iv)]. Part (ii) follows from Proposition 2.2
and part (i). O

In the following result, we examine how the invariant S-depth(Z, N, M) behaves with

respect to exact sequences.
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Proposition 2.4. Suppose that S satisfies the condition Cy, and consider the exact sequence
of ZD-modules 0 — L — M — U — 0. Then the following inequalities hold:

(i) S-depth(I, N, M) > min{S-depth(I, N, L), S-depth({,N,U)}.
(ii) S-depth(I, N, L) > min{S-depth(I, N, M), S-depth(I, N,U) + 1}.
(iii) S-depth(I, N,U) > min{S-depth(I, N, L) — 1, S-depth(I, N, M)}.

Proof. All parts follow from [7, Proposition 3.2]. O
The following lemma plays a key role in the subsequent results.

Lemma 2.5. Suppose that S satisfies the condition Cy, M is a ZD-module, and N is a
finitely generated R-module. Then S-depth(I, N, M) = S-depth(I + Anng(N), M).

Proof. According to [9, Lemma 1.32], it follows that \/Anngr(N/IN) = /I + Anng(N).

Now, applying [7, Proposition 3.1(ii)], we get that
S-depth(I,N,M) = S-depth(Anng(N/IN),M) = S-depth(y/Anng(N/IN), M)
= S-depth(y/I + Anng(N), M) = S-depth(I + Anng(N), M).
U

Proposition 2.6. Suppose that S satisfies the condition C;, M is a ZD-module, and N is
a finitely generated R-module. Then

(i) S-depth(I,N, M) = S-depth(~/I, N, M).

(ii) If J is an ideal of R, then S-depth(IJ, N, M) = S-depth(I NJ, N, M).

Proof. Tt follows from [10, Exercise 2.25] that /I + Anng(N) = \/\/.7—1— Anng(N). Now,

using Lemma 2.5 along with [7, Proposition 3.1(ii)], we obtain

S-depth(I, N,M) = S-depth(I 4+ Anng(N), M) = S-depth(y/I + Anng(M), M)

= S depth(\/ VI 4 Anng(M), M) = S-depth(vI + Anng(M), M)
= S-depth(VI,N, M),
and the equality established in part (i) holds. Part (ii) follows directly from part (i). O
Now, we obtain some formulas on the relations between the S-depth of an ideal on a
pair of modules, and local cohomology and Ext functors. The following theorem serves as

a generalization of the results found in [2, Theorem 3.1], [3, Theorem 2.2], and [6, Remark
2.4].

Theorem 2.7. Suppose that S satisfies the condition Cr, M is a ZD-module, and N is a
finitely generated R-module. Then S-depth(I, N, M) = inf{i: H}(N,M) ¢ S}.

Proof. Using Lemma 2.5, together with [7, Lemma 3.1] and [11, Corollary 2.14], we obtain
that

S-depth(I, N, M) = S-depth(I + Anng(N), M) = inf{i : Hj, yp,. 0y (M) ¢ S}
= inf{i: Hi(N,M) ¢ S}.
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Lemma 2.8. Suppose that S satisfies the condition C;, M is a ZD-module, and N is a
finitely generated R-module. Then S-depth(Anng(N), M) = inf{i : Ext’%, (N, M) ¢ S}.

Proof. From [7, Lemma 3.1] and [1, Theorem 2.9], it follows that
S-depth(Anng(N), M) = inf{i : Extlz,(R/ Anng(N), M) ¢ S} = inf{i : Extl,(N, M) ¢ S}.
(]

Theorem 2.9. Suppose that S satisfies the condition Cr, M is a ZD-module, and N is a
finitely generated R-module. Then S-depth(I, N, M) = inf{i : Ext%,(N/IN, M) ¢ S}.

Proof. The statement is a direct consequence of Lemma 2.8. U

3. SOME RELATIONS BETWEEN DIFFERENT TYPES OF depths

In this section, we examine the relationships among various notions of depth. The following

lemma serves as a fundamental component in the proof of the upcoming theorem.

Lemma 3.1. Suppose that S satisfies the condition Cr, and M is a finitely generated R-
module. Then S-depth(I, M) = inf{depth(IRy, M) :p € V(I) and R/p & S}.

Proof. The proof is analogous to the argument given in the proof of [1, Theorem 2.18(d)].
Put t = S-depth(I, M). Tt follows from [7, Lemma 3.1] that Exti»(R/I, M) € S for all i < ¢,
and Exth(R/I, M) ¢ S. Suppose that p € V(I) and R/p ¢ S. By [1, Lemma 2.17], we have
p ¢ Suppr(Exti(R/I, M)) for all i < t, and hence EX‘E?RP(RP/IR,,, M,) =0foralli < t. Now,
it follows from [7, Lemma 3.1] that depth(/Ry, M,) > ¢, and so t < inf{depth(I Ry, M,) :
p € V(I) and R/p ¢ S}. On the other hand, since Exti(R/I, M) ¢ S, it follows from [1,
Lemma 2.17] that there exists q € Suppg(Extly(R/I,M)) such that R/q ¢ S. Therefore
Ext%q(Rq/IRq,Mq)) # 0, and hence q € V(I). Now, by reusing [7, Lemma 3.1], we have
depth(IRy, My) = t, and the claim follows. O

Theorem 3.2. Suppose that S satisfies the condition Cy, and M and N are two finitely
generated R-modules. Then S-depth(I, N, M) = inf{depth(IR,, Ny,M,) : p € V(I) N
Suppr(N) and R/p & S}.

Proof. It is easy to see that, (Anng(NN))R, = Anng,(N,) for any prime ideal p of R. Now,
it follows from Lemma 2.5 and Lemma 3.1 that

S-depth(I, N, M) = S-depth(I + Anng(N), M)
= inf{depth((I + Anng(N))Ry, M,) : p € V(I + Anng(N)) and R/p ¢ S}
= inf{depth(IR, + (Anngr(N))Ry, M,) : p € V(I) N V(Anng(N)) and R/p ¢ S}
= inf{depth(IRy, + Anng, (N,), M) : p € V(I) N Suppg(N) and R/p € S}
= inf{depth(IRy, Ny, M) : p € V(I) N Supppr(N) and R/p & S}.
U

Proposition 3.3. Suppose that S satisfies the condition Cy, and M and N are two finitely
generated R-modules. Then

(i) S-depth(I, N, M) = inf{S-depth(p, N, M) : p € V(I) N Suppr(N) and R/p & S}.
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(ii) If L is a finitely generated R-module such that Suppr(L) C Suppgr(N), then
S-depth(I, N, M) < S-depth(I, L, M).
(iii) If J is an ideal of R, then
S-depth(I NJ, N, M) = min{S-depth(I, N, M), S-depth(J, N, M)}.
Proof. First, we prove the equality of part (i). By Proposition 2.2(ii), we have
S-depth(I, N, M) < S-depth(p, N, M)
for all p € V(I). Therefore
S-depth(I, N, M) < inf{S-depth(p, N,M) :p € V(I) N Suppr(N) and R/p & S}.

To prove the converse inequality, suppose that p € V(I)NSuppr(N) and R/p ¢ S. According

to Theorem 3.2, we have
S-depth(p, N, M) = inf{depth(IRq, Nq, My) :q € V(p) N Suppr(N) and R/q & S}
< depth(IRy,, Ny, M,).
By applying Theorem 3.2 once again, we obtain
inf{S-depth(p, N, M) :p € V(I) N Suppr(N) and R/p & S}

< inf{depth(IRy, Ny, M;) : p € V(I) N Suppr(N) and R/p & S}

= S-depth(I, N, M)
and the equality of part (i) follows. Parts (ii) and (iii) directly follow from part (i). O

Aghapournahr and Melkersson [1] established that any Serre subcategory that is closed
under taking injective hulls necessarily satisfies the condition Cj. Examples of such Serre
subcategories include the class of zero modules, Artinian modules, modules with finite sup-
port, and the class of R-modules N with dimrp N < k, where k is a non-negative integer.
Moreover, the class of I-cofinite Artinian modules forms a Serre subcategory of the category
of R-modules that satisfies the condition C7; however, it does not remain closed under taking
injective hulls.

Theorem 3.4. Suppose that S is a Serre subcategory closed under taking injective hulls, M
is a ZD-module, and N 1is a finitely generated R-module. Then

S-depth(Z, N, M) = inf{depth M, : p € V(I) N Suppy(N) and R/p & S}.
Proof. From Lemma 2.5 and [7, Theorem 3.1], it follows that
S-depth(I, N,M) = S-depth(I + Anng(N), M)
= inf{depthM, :p € V(I + Anng(N)) and R/p & S}
= inf{depth M, :p € V()N V(Anng(N)) and R/p ¢ S}
= inf{depth M, : p € V(I) N Suppr(N) and R/p & S}.
O

Proposition 3.5. Suppose that S is a Serre subcategory closed under taking injective hulls,
M is a ZD-module, and N is a finitely generated R-module. Then

(i) S-depth(I, N, M) = inf{S-depth(p, N, M) : p € V(I) N Supppr(N) and R/p & S}.



Depth of an ideal on a pair of modules 7

(ii) If L is a finitely generated R-module such that Suppr(L) C Suppr(N), then
S-depth(I, N, M) < S-depth(I, L, M).
(iii) If J is an ideal of R, then

S-depth(I NJ, N, M) = min{S-depth(I, N, M), S-depth(J, N, M)}.

Proof. The proof, included here to assist the reader, follows a method similar to that em-
ployed in the proof of Proposition 3.3. First, we prove the equality of part (i). It follows from
Proposition 2.2(ii) that S-depth(I, N, M) < S-depth(p, N, M) for all p € V(I). Therefore

S-depth(I, N, M) < inf{S-depth(p, N,M) :p € V(I) N Suppr(N) and R/p & S}.

To prove the converse inequality, suppose that p € V(I)NSuppr(N) and R/p ¢ S. According
to Theorem 3.4, we have

S-depth(p, N, M) = inf{depth My : q € V(p) N Suppy(N) and R/q & S} < depth M,.
By applying Theorem 3.4 once again, we obtain

inf{S-depth(p, N, M) :p € V(I) N Suppr(N) and R/p ¢ S}
< inf{depth M, : p € V(I) N Suppg(N) and R/p ¢ S}
= S-depth(I, N, M)

and the equality of part (i) follows. Parts (ii) and (iii) directly follow from part (i). O
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