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ABSTRACT

Let R be a commutative Noetherian ring and I an ideal
of R. Suppose that S is a Serre subcategory of the cate-
gory of R-modules which satisfies the condition CI . Let
M be a ZD-module and N an R-module. As a gener-
alization of the notion of S- depth(I,M), we define the
S- depth of I on the pair (N,M) by S- depth(I,N,M):=
S- depth(AnnR(N/IN),M). We investigate the con-
nections between S- depth(I,N,M), local cohomology
modules, and Ext functors. In particular, when N is
finitely generated, it is shown that S- depth(I,N,M) =
inf{i : H i

I(N,M) /∈ S} = inf{i : ExtiR(N/IN,M) /∈
S}. Moreover, various formulas are provided that re-
late this generalized S- depth to other notions of depth
in the literature.
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1. Introduction

Throughout this paper, we assume that R is a commutative Noetherian ring with non-zero

identity, I is an ideal of R, and M and N are two R-modules. We also consider S to be a

Serre subcategory of the category of R-modules, i.e., S is closed under taking submodules,

quotients, and extensions. One can see that the class of finitely generated modules, Artinian
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modules, minimax modules, weakly Laskerian modules, and Matlis reflexive modules are

examples of Serre subcategories.

Aghapournahr and Melkersson [1] generalized the ordinary notion of regular sequences by

introducing the concept of S-sequences with respect to a Serre subcategory S. An element

a ∈ R is called S-regular on an R-module M if (0 :M a) ∈ S. A sequence a1, . . . , at is

said to be an S-sequence on M if for each i = 1, . . . , t, the element ai is S-regular on

M/(a1, . . . , ai−1)M . Also, when S satisfies a special condition called the condition CI , they

introduced the S- depth of an ideal I on M , denoted by S- depth(I,M). More precisely, a

Serre subcategory S satisfies the condition CI if, for any I-torsion R-module M , (0 :M I) ∈ S

implies M ∈ S. Examples of Serre subcategories satisfying the condition CI include the zero

module, Artinian modules, I-cofinite Artinian modules, modules with finite support, and

modules N with dimR N ≤ k for some non-negative integer k. If S satisfies the condition

CI , and M is a finitely generated R-module such that M/IM /∈ S, then any maximal S-

sequence in I has the same length. This common length is defined to be S- depth(I,M). By

choosing appropriate Serre subcategories S, one recovers various depth concepts studied in

the literature, including the ordinary depth, filter depth (f - depth(I,M)), generalized depth

(g- depth(I,M)), etc.

The notion of ZD-modules (zero-divisor modules) was introduced by Evans in [5]. An R-

module M is said to be a ZD-module if, for every submodule N of M , the set of zero-divisors

of M/N is a finite union of associated prime ideals of M/N . As noted in [4, Example 2.2],

the class of ZD-modules includes a wide variety of important modules: finitely generated

modules, Laskerian and weakly Laskerian modules, linearly compact modules, Matlis reflex-

ive modules, and minimax modules. Moreover, this class contains modules whose quotients

have finite Goldie dimension, as well as those with finite support, particularly including all

Artinian modules.

In [7], we extended the concept of S- depth(I,M) to the class of ZD-modules. More

specifically, let S be a Serre subcategory satisfying the condition CI , and let M be a ZD-

module. Assuming that the ideal I contains a maximal S-sequence on M , we proved that all

such maximal S-sequences in I have equal length. Moreover, we showed that if M/IM /∈ S,

then I indeed contains maximal S-sequences on M . Additionally, we generalized the notion

of S- depth(I,M) to pairs of ideals. For two ideals I and J of R, and a ZD-module M , we

defined S- depth(I, J,M) under the assumption that S satisfies the condition CI ; see [8] for

details.

This paper aims to generalize the concept of S- depth to pairs of modules. Specifically, let

S be a Serre subcategory satisfying the condition CI , M be a ZD-module, andN an arbitrary

R-module. We define the S- depth of the ideal I on N and M , denoted by S- depth(I,N,M),

as S- depth(I,N,M) := S- depth(AnnR(N/IN),M). It is immediate that if N = R, then

this definition coincides with the S- depth(I,M).

In Section 2, we establish some fundamental properties of S- depth(I,N,M) and explore

its connections with local cohomology and Ext functors. Assuming S satisfies the condition

CI , M is a ZD-module, and N is a finitely generated R-module, we prove in Theorems 2.7

and 2.9 that S- depth(I,N,M) = inf{i : H i
I(N,M) /∈ S} = inf{i : ExtiR(N/IN,M) /∈ S}.

In Section 3, we explore the connections among various notions of depth. Let S be a Serre

subcategory satisfying condition CI , and let M and N be finitely generated R-modules.



Depth of an ideal on a pair of modules 3

Theorem 3.2 establishes that S- depth(I,N,M) = inf{depth(IRp, Np,Mp) : p ∈ V(I) ∩
SuppR(N) and R/p ̸∈ S}. Furthermore, Theorem 3.4 states that if S is closed under taking

injective hulls, M is a ZD-module, and N is finitely generated, then S- depth(I,N,M) =

inf{depthMp : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.

2. S-depth of an ideal on a pair of modules and local cohomology

Recall that R is a Noetherian ring, I is an ideal of R, M and N are R-modules, and S is

a Serre subcategory of the category of R-modules.

Definition 2.1. Suppose that S satisfies the condition CI , M is a ZD-module, and N is an

arbitrary R-module. The S- depth of ideal I on N and M , denoted by S- depth(I,N,M), is

defined as S- depth(I,N,M) := S- depth(AnnR(N/IN),M).

It is straightforward to see that whenN=R, the equality S-depth(I,N,M)=S-depth(I,M)

holds.

In the following results, we establish some fundamental properties of S- depth(I,N,M),

which are helpful in the computation of this invariant.

Proposition 2.2. Assume that S satisfies the condition CI , M is a ZD-module, and J is

an ideal of R. Then

(i) S- depth(I,M) ≤ S- depth(I,N,M).

(ii) If I ⊆ J , then S-depth(I,N,M) ≤ S-depth(J,N,M).

(iii) S- depth(I + J,N,M) = S-depth(I, N
JN ,M).

(iv) S- depth( I+J
J , N

JN , M
JM ) = S- depth(I, N

JN , M
JM ).

Proof. Parts (i) and (ii) directly follow from [7, Proposition 3.1(i)]. For parts (iii) and (iv),

observe that
N
JN

( I+J
J

)( N
JN

)
∼=

N
JN

I( N
JN

)
∼=

N
JN

(I+J)N
JN

∼= N
(I+J)N . Therefore, we have AnnR(

N
(I+J)N ) =

AnnR(
N
JN

I( N
JN

)
) which proves part (iii). Furthermore, note that AnnR

J
(

N
JN

( I+J
J

)( N
JN

)
) contains an

S-sequence on M
JM , if and only if, AnnR(

N
JN

( I+J
J

)( N
JN

)
) = AnnR(

N
JN

I( N
JN

)
) contains an S-sequence

on M . Thus, we obtain S- depth( I+J
J , N

JN , M
JM ) = S- depth(I, N

JN , M
JM ) which is the same as

part (iv). □

Proposition 2.3. Suppose that S satisfies the condition CI , M is a ZD-module, and a =

a1, . . . , at is an S-sequence on M . Then

(i) If a ∈ AnnR(N/IN), then S- depth(I,N, M
(a)M ) = S- depth(I,N,M)− t.

(ii) If a ∈ I, then

S-depth(
I

(a)
,

N

(a)N
,

M

(a)M
) = S- depth(I,

N

(a)N
,

M

(a)M
) = S- depth(I,N,

M

(a)M
)

= S-depth(I,N,M)− t.

Proof. Part (i) follows from [7, Proposition 3.1(iv)]. Part (ii) follows from Proposition 2.2

and part (i). □

In the following result, we examine how the invariant S- depth(I,N,M) behaves with

respect to exact sequences.
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Proposition 2.4. Suppose that S satisfies the condition CI , and consider the exact sequence

of ZD-modules 0 −→ L −→ M → U −→ 0. Then the following inequalities hold:

(i) S- depth(I,N,M) ≥ min{S- depth(I,N, L), S- depth(I,N, U)}.
(ii) S- depth(I,N, L) ≥ min{S- depth(I,N,M), S- depth(I,N, U) + 1}.
(iii) S- depth(I,N, U) ≥ min{S- depth(I,N, L)− 1, S- depth(I,N,M)}.

Proof. All parts follow from [7, Proposition 3.2]. □

The following lemma plays a key role in the subsequent results.

Lemma 2.5. Suppose that S satisfies the condition CI , M is a ZD-module, and N is a

finitely generated R-module. Then S- depth(I,N,M) = S- depth(I +AnnR(N),M).

Proof. According to [9, Lemma 1.32], it follows that
√

AnnR(N/IN) =
√
I +AnnR(N).

Now, applying [7, Proposition 3.1(ii)], we get that

S- depth(I,N,M) = S- depth(AnnR(N/IN),M) = S- depth(
√

AnnR(N/IN),M)

= S- depth(
√

I +AnnR(N),M) = S- depth(I +AnnR(N),M).

□

Proposition 2.6. Suppose that S satisfies the condition CI , M is a ZD-module, and N is

a finitely generated R-module. Then

(i) S- depth(I,N,M) = S- depth(
√
I,N,M).

(ii) If J is an ideal of R, then S- depth(IJ,N,M) = S- depth(I ∩ J,N,M).

Proof. It follows from [10, Exercise 2.25] that
√

I +AnnR(N) =
√√

I +AnnR(N). Now,

using Lemma 2.5 along with [7, Proposition 3.1(ii)], we obtain

S- depth(I,N,M) = S- depth(I +AnnR(N),M) = S- depth(
√

I +AnnR(M),M)

= S- depth(

√√
I +AnnR(M),M) = S- depth(

√
I +AnnR(M),M)

= S- depth(
√
I,N,M),

and the equality established in part (i) holds. Part (ii) follows directly from part (i). □

Now, we obtain some formulas on the relations between the S- depth of an ideal on a

pair of modules, and local cohomology and Ext functors. The following theorem serves as

a generalization of the results found in [2, Theorem 3.1], [3, Theorem 2.2], and [6, Remark

2.4].

Theorem 2.7. Suppose that S satisfies the condition CI , M is a ZD-module, and N is a

finitely generated R-module. Then S- depth(I,N,M) = inf{i : H i
I(N,M) /∈ S}.

Proof. Using Lemma 2.5, together with [7, Lemma 3.1] and [11, Corollary 2.14], we obtain

that

S- depth(I,N,M) = S- depth(I +AnnR(N),M) = inf{i : H i
I+AnnR(N)(M) /∈ S}

= inf{i : H i
I(N,M) /∈ S}.

□
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Lemma 2.8. Suppose that S satisfies the condition CI , M is a ZD-module, and N is a

finitely generated R-module. Then S- depth(AnnR(N),M) = inf{i : ExtiR(N,M) /∈ S}.

Proof. From [7, Lemma 3.1] and [1, Theorem 2.9], it follows that

S- depth(AnnR(N),M) = inf{i : ExtiR(R/AnnR(N),M) /∈ S} = inf{i : ExtiR(N,M) /∈ S}.

□

Theorem 2.9. Suppose that S satisfies the condition CI , M is a ZD-module, and N is a

finitely generated R-module. Then S- depth(I,N,M) = inf{i : ExtiR(N/IN,M) /∈ S}.

Proof. The statement is a direct consequence of Lemma 2.8. □

3. Some relations between different types of depths

In this section, we examine the relationships among various notions of depth. The following

lemma serves as a fundamental component in the proof of the upcoming theorem.

Lemma 3.1. Suppose that S satisfies the condition CI , and M is a finitely generated R-

module. Then S- depth(I,M) = inf{depth(IRp,Mp) : p ∈ V(I) and R/p ̸∈ S}.

Proof. The proof is analogous to the argument given in the proof of [1, Theorem 2.18(d)].

Put t = S- depth(I,M). It follows from [7, Lemma 3.1] that ExtiR(R/I,M) ∈ S for all i < t,

and ExttR(R/I,M) /∈ S. Suppose that p ∈ V(I) and R/p ̸∈ S. By [1, Lemma 2.17], we have

p /∈ SuppR(Ext
i
R(R/I,M)) for all i < t, and hence ExtiRp

(Rp/IRp,Mp) = 0 for all i < t. Now,

it follows from [7, Lemma 3.1] that depth(IRp,Mp) ≥ t, and so t ≤ inf{depth(IRp,Mp) :

p ∈ V(I) and R/p ̸∈ S}. On the other hand, since ExttR(R/I,M) /∈ S, it follows from [1,

Lemma 2.17] that there exists q ∈ SuppR(Ext
t
R(R/I,M)) such that R/q /∈ S. Therefore

ExttRq
(Rq/IRq,Mq)) ̸= 0, and hence q ∈ V(I). Now, by reusing [7, Lemma 3.1], we have

depth(IRq,Mq) = t, and the claim follows. □

Theorem 3.2. Suppose that S satisfies the condition CI , and M and N are two finitely

generated R-modules. Then S- depth(I,N,M) = inf{depth(IRp, Np,Mp) : p ∈ V(I) ∩
SuppR(N) and R/p ̸∈ S}.

Proof. It is easy to see that, (AnnR(N))Rp = AnnRp(Np) for any prime ideal p of R. Now,

it follows from Lemma 2.5 and Lemma 3.1 that

S- depth(I,N,M) = S- depth(I +AnnR(N),M)

= inf{depth((I +AnnR(N))Rp,Mp) : p ∈ V(I +AnnR(N)) and R/p ̸∈ S}

= inf{depth(IRp + (AnnR(N))Rp,Mp) : p ∈ V(I) ∩V(AnnR(N)) and R/p ̸∈ S}

= inf{depth(IRp +AnnRp(Np),Mp) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}

= inf{depth(IRp, Np,Mp) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.

□

Proposition 3.3. Suppose that S satisfies the condition CI , and M and N are two finitely

generated R-modules. Then

(i) S- depth(I,N,M) = inf{S-depth(p, N,M) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.
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(ii) If L is a finitely generated R-module such that SuppR(L) ⊆ SuppR(N), then

S-depth(I,N,M) ≤ S-depth(I, L,M).

(iii) If J is an ideal of R, then

S-depth(I ∩ J,N,M) = min{S- depth(I,N,M), S- depth(J,N,M)}.

Proof. First, we prove the equality of part (i). By Proposition 2.2(ii), we have

S- depth(I,N,M) ≤ S- depth(p, N,M)

for all p ∈ V(I). Therefore

S- depth(I,N,M) ≤ inf{S- depth(p, N,M) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.

To prove the converse inequality, suppose that p ∈ V(I)∩SuppR(N) and R/p ̸∈ S. According

to Theorem 3.2, we have

S- depth(p, N,M) = inf{depth(IRq, Nq,Mq) : q ∈ V(p) ∩ SuppR(N) and R/q ̸∈ S}

≤ depth(IRp, Np,Mp).

By applying Theorem 3.2 once again, we obtain

inf{S- depth(p, N,M) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}

≤ inf{depth(IRp, Np,Mp) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}

= S- depth(I,N,M)

and the equality of part (i) follows. Parts (ii) and (iii) directly follow from part (i). □

Aghapournahr and Melkersson [1] established that any Serre subcategory that is closed

under taking injective hulls necessarily satisfies the condition CI . Examples of such Serre

subcategories include the class of zero modules, Artinian modules, modules with finite sup-

port, and the class of R-modules N with dimR N ≤ k, where k is a non-negative integer.

Moreover, the class of I-cofinite Artinian modules forms a Serre subcategory of the category

of R-modules that satisfies the condition CI ; however, it does not remain closed under taking

injective hulls.

Theorem 3.4. Suppose that S is a Serre subcategory closed under taking injective hulls, M

is a ZD-module, and N is a finitely generated R-module. Then

S-depth(I,N,M) = inf{depthMp : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.

Proof. From Lemma 2.5 and [7, Theorem 3.1], it follows that

S- depth(I,N,M) = S- depth(I +AnnR(N),M)

= inf{depthMp : p ∈ V(I +AnnR(N)) and R/p ̸∈ S}

= inf{depthMp : p ∈ V(I) ∩V(AnnR(N)) and R/p ̸∈ S}

= inf{depthMp : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.

□

Proposition 3.5. Suppose that S is a Serre subcategory closed under taking injective hulls,

M is a ZD-module, and N is a finitely generated R-module. Then

(i) S- depth(I,N,M) = inf{S-depth(p, N,M) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.
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(ii) If L is a finitely generated R-module such that SuppR(L) ⊆ SuppR(N), then

S-depth(I,N,M) ≤ S-depth(I, L,M).

(iii) If J is an ideal of R, then

S-depth(I ∩ J,N,M) = min{S- depth(I,N,M), S- depth(J,N,M)}.

Proof. The proof, included here to assist the reader, follows a method similar to that em-

ployed in the proof of Proposition 3.3. First, we prove the equality of part (i). It follows from

Proposition 2.2(ii) that S- depth(I,N,M) ≤ S- depth(p, N,M) for all p ∈ V(I). Therefore

S- depth(I,N,M) ≤ inf{S- depth(p, N,M) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}.

To prove the converse inequality, suppose that p ∈ V(I)∩SuppR(N) and R/p ̸∈ S. According

to Theorem 3.4, we have

S- depth(p, N,M) = inf{depthMq : q ∈ V(p) ∩ SuppR(N) and R/q ̸∈ S} ≤ depthMp.

By applying Theorem 3.4 once again, we obtain

inf{S- depth(p, N,M) : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}

≤ inf{depthMp : p ∈ V(I) ∩ SuppR(N) and R/p ̸∈ S}

= S- depth(I,N,M)

and the equality of part (i) follows. Parts (ii) and (iii) directly follow from part (i). □
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