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Abstract. In this paper, we consider a shape optimization problem associated

with the fractional Laplacian. We focus on J(Ω) = j(Ω, uΩ) where uΩ is

the solution of (1.3). We give an existence of optimal shape using different
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establish the shape derivative and topological derivative of the functional using

the minmax method.
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1. Introduction

Fractional calculus is a theory of integrals and derivatives of arbitrary or-

der, that unifies and generalizes the notions of integer-order differentiation and

n-fold repeated integration. Warma [37] clarified the Neumann and Robin

boundary conditions associated with the fractional Laplacian operator in open

subsets of RN . It shows the existence and regularity of weak solutions. For

questions regarding regularity, refer to the authors listed below. These types

of problems were first studied in more detail by Cafarelli and Sylvestre [8]. In

addition, Ros-Oton and Serra [28, 29, 30] provided another way of representing

the regularity up to the boundary of the domain Ω for the solution u of system

(1.3). Fall [21] extended the results in [30], where u is the non-local Schrodinger

solution. Dalibart and Gerard-Varet proved the shape derivative in the case

where s = 1
2 . Fall et al. [19] generalize Dalibart and Gerard-Varet’s work [11]

to the case of the fractional Laplacian, using shape optimization techniques. In

[19] the authors studied the optimality of the latter. For questions regarding

the existence of an optimal form, we refer to the works of Allaire, Henrot and

Pierre [1], Allaire, Henrot and Bucur [4], who studied the existence of an opti-

mal form in the case of the classical Laplacian. We also generalize the work to

the p-Laplacian case. For this, an optimal form existence study was established

using s-quasi opens. The cited works permit us to study the problem of the

existence of an optimal form in a much more general way, using two different

methods, but also proposes a new technique for calculating the shape deriva-

tive the minimax approach and establishes the topological derivative using the

same theoretical framework.

Let Uad ⊂ RN , N ≥ 2, denote the admissible set. Let Ω be a domain of Uad.
The solution of the optimization problem

min {J(Ω); Ω ∈ Uad} (1.1)

with J : Uad → R a shape functional defined by

J(Ω) = C(N, 2)

∫
RN

∫
RN

|uΩ(x)− uΩ(y)|2

|x− y|N+2s
dxdy. (1.2)

State uΩ is a solution to the following problem (1.3).

The aim of this study is to prove existence, and optimal conditions. First,

we will look at {
(−∆)suΩ = f in Ω,

uΩ = 0 on RN\Ω. (1.3)

with 0 < s < 1. We look for the existence of solutions to the fractional elliptic

boundary problem (1.3) and the shape optimization problem (1.1) under the

hypothesis of (s− γ)− convergence.

Then, the first-order optimality conditions of (1.1) is given by calculating

the shape and topological derivatives of the functional (1.2) using the minimax
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method. This problem has already been studied by Fall et al. [19], in which

the existence of a solution is obtained under the hypothesis of a uniform cone,

and the form resolution is obtained using the vector field method.

In this study, motivated by [11] and [19], we aim to prove the existence of

an optimal shape solution to the minimization problem (1.1). More precisely,

our main results are as follows:

Theorem 1.1. Let F : A(D) −→ (−∞,+∞] be a shape functional that is

lower (s− γ) semi-continuous weak. Subsequently, the following problem

min{F (Ω) : Ω ∈ A(D)} (1.4)

has a solution.

Theorem 1.2. Let O = {Ω ⊂ RN , vol(Ω) = c, ∂Ω ∈ C2}, and J be defined

by (1.2). Then there exists a domain Ω ∈ O such that

J(Ω) = inf
Ω∈O

J(Ω)

under the constraints {
(−∆)suΩ = f in Ω

uΩ = 0 on RN\Ω. (1.5)

Theorem 1.3. Let Ω be the solution to the optimization problem min{J(Ω), Ω ∈
O}. If the function R(ε) has a finite limit R(u, p), then the shape derivative of

J(Ω) is given by

DJ(Ω, V ) =

∫
RN

∫
RN
|p(x)− p(y)|2K ′0(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

(u(x)− u(y))(p(x)− p(y))K ′0(x, y) dxdy

−
∫

Ω

(∇f · V (0))p dx−
∫

Ω

fpdivV (0) dx+R(u, p),

where p is solution to the following adjoint equation∫
RN

∫
RN

(u(x)− u(y))(ϕ′(x)− ϕ′(y))K0(x, y) dxdy

= − 1

C(N, s)

∫
RN

∫
RN

(ϕ′(x)− ϕ′(y))(p(x)− p(y))K0(x, y) dxdy.

Theorem 1.4. Let 0 ≤ d < N , E verify Hypothesis H1 and t = αN−dr
N−d.

The topolo

gical derivative exists if the function R(t) has a finite limit denoted R(uΩ0
, pΩ0

).

Therefore, the topological derivative of the function is given by:

dJ = lim
t−→0

J(Ωt)− J(Ω)

αN−drN−d

dJ = R(uΩ0 , pΩ0)− f(x0) pΩ0(x0).
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where pΩ0
, uΩ0

are solutions of systems∫
RN

∫
RN

(φ′(x)− φ′(y)) [2C(N, s) (uΩ0
(x)− uΩ0

(y)) + (pΩ0
(x)− pΩ0

(y))]

| x− y |N+2s
dxdy = 0.

The paper is organized as follows: Section 2 is devoted to the preliminaries

of fractional Laplacian operators, as well as the minmax theory. In Section 3,

we study the existence of a solution to the shape optimization problem under

the (s− γ)− convergence hypothesis. At this level, we will use two hypotheses

of solution existence, with (s − γ)− convergence: the study of solution exis-

tence with (s − γ)− convergence under the assumption of compactness of the

admissible set and the study of solution existence with the ε− cône property.

Section 4 is devoted to prove existence of the shape and topological derivatives

of the functional under consideration. To accomplish this, we use the minimax

theory.

2. Preliminaries

2.1. On the Fractional Problem. The following results can be found in [8]

and [37].

Theorem 2.1. Let s ∈ (0, 1) and p ∈ [1,+∞), q ∈ [1, p], Ω ⊂ RN be a bounded

extension domain for W s,p and T be a bounded subset of Lp. Suppose that

sup
f∈T

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

)
< +∞.

Then T is pre-compact in Lq.

Proof. See [19]. �

Corollary 2.2. Let s ∈ (0, 1), p ∈ [1,+∞) such that sp < N. If q ∈ [1, p∗),

Ω ⊆ RN is a bounded extension domain for W s,p and T are bounded subsets of

Lp. Suppose that

sup
f∈T

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

)
< +∞.

Then T is pre-compact in Lq.

Proof. See [19]. �

Definition 2.3. Let Ω ⊂ RN be an open set u ∈ L1
s. The distribution (−∆)su

is defined by :

< (−∆)su, ϕ >=

∫
RN

u(−∆)sϕdx, ∀ ϕ ∈ C∞c (Ω). (2.1)

Saying that (−∆)su = f in D′(Ω), is equivalent to the very weak formulation∫
RN

u(−∆)sϕdx =

∫
Ω

fϕdx, ∀ ϕ ∈ C∞c (Ω). (2.2)
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Definition 2.4. We define Ds,2(Ω) = C∞c (Ω)
‖.‖Hs

, as the completion of

C∞c (Ω), which is an Hilbert space with respect to the norm :

‖ ϕ ‖Ds,2(Ω)=

(∫
RN

∫
RN

[ϕ(x)− ϕ(y)]2

| x− y |N+2s
dxdy

) 1
2

. (2.3)

If u ∈ Ds,2(Ω) ⊂ L1
s satisfies :

(−∆)su = f in D′(Ω), we have the weak formulation :

< (−∆)su, ϕ >Ds,2(Ω)=

∫
Ω

fϕdx, ∀ ϕ ∈ D(Ω), (2.4)

where

< u,ϕ >Ds,2(Ω)= C(N, s)

∫
RN

∫
RN

(u(x)− u(y))(ϕ(x)− ϕ(y))

| x− y |N+2s
dxdy.

Let Ω ⊂ RN be a bounded open set with a Lipschitz boundary, and 0 < s <

1. Note here that for the space of smooth functions with compact support, we

take the notation C∞c instead of C∞0 .

Consider the following bilinear form :

<,>Ds,2 : C∞c (Ω)× C∞c (Ω) −→ R

(u, v) 7→
∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

| x− y |N+2s
dxdy

which is the scalar product of C∞c (Ω). We recall the Hilbert space Ds,2(Ω) as

the completion of C∞c (Ω).

Lemma 2.5. If Ω is a bounded Lipschitz open set

Ds,2(Ω) =
{
u ∈ Hs(RN ), such that u = 0 on RN \ Ω

}
.

Proposition 2.6. Let 0 < s < 1 and Ω be a bounded open set subset of RN .
Let f : Ω −→ R be a measurable function with compact support. Then, there

exists a positive constant C = C(N, s,Ω) depending on N , s and Ω such that

‖ f ‖L2(Ω)≤ C ‖ f ‖Ds,2(Ω) .

For more information on this subsection, the reader may also refer to [19].

We also have the following more general results:

Definition 2.7. Let 0 < s < 1 and p ∈ [2,+∞), N ≥ sp and Ω be a bounded

open set of RN , with the Lipchitz boundary,

[f ]s,p =

(∫
Ω

∫
Ω

| f(x)− f(y) |p

| x− y |N+ps
dxdy

) 1
p

be the Gagliardo semi norm of measurable function u.

1. W s,p(Ω) are defined as follows

W s,p(Ω) = {f ∈ Lp(Ω) such that [f ]s,p < +∞}
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endowed with the usual norm

‖ f ‖W s,p(Ω)=

(∫
Ω

|f |pLp + [f ]s,p

) 1
p

.

2. Consider the closed linear subspace W s,p
0 (Ω) by

W s,p
0 (Ω) =

{
f ∈W s,p(RN ) : f = 0; a.e in RN \ Ω

}
.

equivalently renormed by setting ‖f‖s,p = [f ]s,p.

Definition 2.8. Let Ω ⊂ RN be an open set. Given A ⊂ Ω, for any 0 < s < 1

and p ≥ 1, the Gagliardo s−capacity of A relatively to Ω as

caps(A,Ω) = inf {[u]ps : u ∈ C(Ω), u ≥ 0, A ⊂ {u ≥ 1}} ,

where

[u]ps =

∫
Ω

∫
Ω

| u(x)− u(y) |p

| x− y |N+ps
dxdy.

Definition 2.9. A subset A of Ω is a s-quasi open set if there exists a de-

creasing sequence {wk}k∈N of open subsets of Ω such that caps(wk,Ω) −→ 0,

as k −→ +∞, and A ∪ wk is an open set for all k ∈ N.

We now provide a definition of (s − γ)− convergence. This definition was

inspired by γ− convergence, [6, 7, 22].

Definition 2.10. Let {Ak}k∈N ⊂ As(Ω) and A ∈ As(Ω). We say that Ak γs−−−−→
A

if usAk −→ usA strongly in L2(Ω).

Definition 2.11. Let 0 < s < 1 be fixed and let Fs : As(Ω) −→ R be such that:

Fs is lower semi continuous with respect to the (s− γ)− convergence; that is

Ak γs−−−−→
A implies Fs(A) ≤ lim

k−→+∞
inf Fs(Ak).

Fs is decreasing with respect to set inclusion; that is Fs(A) ≥ Fs(B) whenever

A ⊂ B.

For more information on this theory, please consult [20].

Theorem 2.12. : Let Ωn be an open sequence in the class Oε. Then there

exists an open Ω ∈ Oε and an sub-sequence Ωnk which converges towards Ω

both in the sense of Hausdorff, in the sense of the characteristic functions and

in the sense of compact. Additionally, Ωnk and ∂Ωnk converge in the Hausdorff

sense to Ω and ∂Ω.

Proof. See [19, 25]. �
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Lemma 2.13. : Let K be a compact and B be a bounded open of RN . Let Ωn
be a sequence of open with Ωn ⊂ K ⊂ B, verifying the ownership of the ε−
cône.

Then there is an open Ω satisfying the ownership of the ε− cône and an ex-

tracted sequence Ωnk such as

Ωnk H−−−−→Ω, χωnk L1p.p
−−−−−−−→

χΩ,

Ωnk H−−−−→Ω, ∂Ωnk H−−−−→∂Ω.

This is allowed us to characterize the existence of a solution.

Proof. See [19, 25]. �

2.2. Some initial results for the minmax method. In this subsection,

we describe how the calculation of the topological derivative using the min-

max approach, [13, 14, 26]. To First, we consider the following definitions and

notations.

Definition 2.14. A Lagrangian function is a function of the form

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R τ > 0

where X is a vector space, Y is a non empty subset of the vector space and the

function y 7→ L(t, x, y) is affine.

Associate with the parameter t the parametrized minimax

t 7→ g(t) = inf
x∈X

sup
y∈Y

L(t, x, y) : [0, τ ]→ R and dg(0) = lim
t→0+

g(t)− g(0)

t
.

When the limits exist, we will use the following notations

dtL(0, x, y) = lim
t→0+

L(t, x, y)− L(0, x, y)

t

ϕ ∈ X, dxL(t, x, y;ϕ) = lim
θ→0+

L(t, x+ θϕ, y)− L(t, x, y)

θ

φ ∈ Y dyL(t, x, y;φ) = lim
θ→0+

L(t, x, y + θφ)− L(t, x, y)

θ
.

Since L(t, x, y) is affine in y, for all (t, x) ∈ [0, τ ]×X,

∀ y, ψ ∈ Y dyL(t, x, y;ψ) = L(t, x, ψ)− L(t, x, 0) = dyL(t, x, 0, ψ). (2.5)

The state equation at t ≥ 0

Find xt ∈ X such that for all ψ ∈ Y, dyL(t, xt, 0;ψ) = 0. (2.6)

The set of states xt at t ≥ 0 is denoted

E(t) =
{
xt ∈ X, ∀ ψ ∈ Y, dyL(t, xt, 0;ψ) = 0

}
. (2.7)
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The adjoint equation at t ≥ 0 is

Find pt ∈ Y such that for all ϕ ∈ X, dxL(t, xt, pt;ϕ) = 0. (2.8)

The set of solutions pt at t ≥ 0 is denoted

Y (t, xt) =
{
pt,∈ Y, ∀ ϕ ∈ X, dxL(t, xt, pt;ϕ) = 0

}
. (2.9)

Finally the set of minimisers for the minimax is given by

X(t) =

{
xt ∈ X, g(t) = inf

x∈X
sup
y∈Y

L(t, x, y) = sup
y∈Y

L(t, xt, y)

}
. (2.10)

Lemma 2.15. (Constrained infimum and minimax)

We have the following assertions

(i)

inf
x∈X

sup
y∈Y

L(t, x, y) = inf
x∈E(t)

L(t, x, 0).

(ii) The minimax g(t) = +∞ if and only if E(t) = ∅. In this case X(t) =

X.

(iii) If E(t) 6= ∅, then

X(t) =

{
xt ∈ E(t) : L(t, xt, 0) = inf

x∈E(t)
L(t, x, 0)

}
⊂ E(t)

and g(t) < +∞.

Proof. See [13]. �

Here, we provide definitions and theorems of d-dimensional Minkowski content

and d-rectifiability.

Definition 2.16. Let E be a subset of a metric space X. E ⊂ X is d-rectifiable

if it is the image of a compact subset K of Rd by a continuous lipschitzian

function f : Rd → X.

Let E be a closed compact set of RN and r ≥ 0, the distance function dE
and the r-dilatation Er of E are defined as follows:

dE(x) = inf
x0∈E

|x− x0|, Er = {x ∈ RN : dE(x) ≤ r}.

Definition 2.17. Given d, 0 ≤ d ≤ N the upper and lower d-dimensional

Minkowski contents of a set E are defined by an r-dilatation of this set as

follows

M∗d(E) = lim sup
r→0+

mN (Er)

αN−drN−d
; Md

∗ (E) = lim inf
r→0+

mN (Er)

αN−drN−d

where mN is the Lebesgue measure in RN and αN−d is the volume of a ball of

radius 1 in RN−d.
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We need the following assumption for everything that follows:

Hypothesis (H0)

Let X be the vector space.

(i) : For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(t) and y ∈ Y , the function

θ 7→ L(t, x0 +θ(xt−x0), y) : [0, 1]→ R is continuous. This implies that

for almost all θ the derivative exists and is equal to dxL(t, x0 + θ(xt −
x0), y;xt − x0) and it is the integral of its derivative. In particular

L(t, xs, y) = L(t, x0, y) +

∫ 1

0

dxL(t, x0 + θ(xt − x0), y;xt − x0) dθ.

ii) : For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(s) and y ∈ Y , φ ∈ X and for

almost all θ ∈ [0, 1], dxL(t, x0 +θ(xt−x0), y;φ) exists and the functions

θ 7→ dxL(t, x0 + θ(xt − x0), y;φ) belong to L1[0, 1]

Definition 2.18. Given x0 ∈ X(0) and xt ∈ X(t), the averaged adjoint equa-

tion is:

Find yt ∈ Y ∀ φ ∈ X,
∫ 1

0

dxL(t, x0 + θ(xt − x0), y;φ) dθ = 0.

The set of solutions is denoted Y (t, x0, xt).

Y (0, x0, x0) clearly reduce to the set of standard adjoint states Y (0, x0) at t = 0.

Theorem 2.19. Consider the Lagrangian functional

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R, τ > 0

where X and Y are vector spaces and the function y 7→ L(t, x, y) is an affine.

Assuming that (H0) and the following hypotheses are satisfied

(H1) for all t ∈ [0, τ ], g(t) is finite, X(t) = {xt} and Y (0, x0) = {p0} are

singletons,

(H2) dtL(0, x0, y0) exists,

and (H3) The following limit exists

R(x0, y0) = lim
t→0+

∫ 1

0

dxL

(
t, x0 + θ(xt − x0), p0;

xt − x0

t

)
dθ.

Then, dg(0) exists and dg(0) = dtL(0, x0, p0) +R(x0, p0).

Proof. See [13]. �

Corollary 2.20. Consider the Lagrangian functional

(t, x, y) 7→ L(t, x, y) : [0, τ ]×X × Y → R, τ > 0

where X and Y are vector spaces and the function y 7→ L(t, x, y) is an affine.

Assume that (H0) and the following assumptions are satisfied:

(H1a) for all t ∈ [0, τ ], X(s) 6= ∅, g(t) is finite, and for each x ∈ X(0),

Y (0, x) 6= ∅,
(H2a) for all x ∈ X(0) and p ∈ Y (0, x) dtL(0, x, p) exists,
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(H3a) there exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that the following limit

exists

R(x0, p0) = lim
t→0+

∫ 1

0

dxL

(
t, x0 + θ(xt − x0), p0;

xt − x0

t

)
dθ.

Then, dg(0) exists and there exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that

dg(0) = dtL(0, x0, p0) +R(x0, p0).

3. Existence of Optimal Shape

In this section, we are interested in the existence of an optimal form Ω,

solution of the problem (1.1). For the questions of existence shape we can refer

to the work of Henrot and Pierre [25] and Allaire and Henrot [1]. In these

works, the aforementioned authors use shape functionals dependent on non-

fractional PDE solutions. We aim to replicate the same work in the fractional

case by using a functional J(Ω), uΩ is a solution of a fractional-type equation.

Consequently, we obtain the following result indicating the existence of an

optimal form using two distinct methods:

3.1. Existence by compactness. Here, we weaken the assumptions, never-

theless the functional J remains lower

(s − γ)− semi-continuous for the topology of (s − γ)−convergence and we

study the compactness of A(D) for this convergence. The idea is to penalize

functional J . This gives us F (Ω) = J(Ω) + α1[|Ω| − c]+ where α ∈ R+ is a

penalization factor and

J(Ω) = C(N, s)

∫
RN

∫
RN

|uΩ(x)− uΩ(y)|2

|x− y|N+2s
dxdy (3.1)

We will study a problem of the type

min{F (Ω) : Ω ∈ A, |Ω| ≤ c}. (3.2)

with F : A(D) −→ R− a constrained shape functional of a parabolic boundary

problem with uΩ as its solution and is defined by{
(−∆)suΩ = f in Ω

u = 0 on RN\Ω. (3.3)

Proof of Theorem 1.1: Under the constraint of problem (3.3), we begin

by showing the lower semi-continuity of the functional. To do this, we set

m = inf{G(Ω),Ω ∈ A(D)} and uΩn = un. Since un is a solution of (3.3), the

m > −∞; and there exists a minimizing sequence Ωnk contained in A(D) such

that G(Ω) −→ m.

Consider un as a solution of the following problem{
(−∆)sun = f in Ωn
un = 0 on RN\Ωn.

(3.4)
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We define the function ũn by

ũn =

{
un if x ∈ Ωn

0 if x ∈ D\Ωn.
Now, from the variational formulas, we get∫

R2N

(un(x)− un(y))(v(x)− v(y))

| x− y |N+2s
dxdy =

∫
D

f(x)vΩnk
(x)dx ∀ v ∈ Ds,2(Ω).

(3.5)

We show that in [19] (un) is bounded in Ds,2(Ω). There exists a sub-sequence

(ukl)l≥1 of (uk)k≥1 such that

ukl ⇀ u∗Ω ∈ Ds,2(Ω),

ukl −→ u∗Ω ∈ L2(Ω),

and

ukl ⇀ u∗Ω ∈ L2(Ω), if l −→∞.
By passing to the limit when k −→ ∞ and weak convergence, we obtain the

following formulation∫
R2N

(u∗Ω(x)− u∗Ω(y))(ϕ(x)− ϕ(y))

| x− y |N+2s
dxdy =

∫
D

f(x)ϕ(x)dx, ∀ϕ ∈ Ds,2(Ω)

(3.6)

which is the weak formulation of the following problem
(−∆)su∗Ω = f in Ω

u∗Ω = 0 on RN \D.

ũn is bounded in Ds,2(Ω) there exist M > 0 thus that ‖ũnk‖ ≤M and∫
RN

∫
RN

|u∗Ω(x)− u∗Ω(y)|2

|x− y|N+2s
dxdy ≤ lim

k−→∞
inf

∫
RN

∫
RN

|uΩnk(x)− uΩnk(y)|2

|x− y|N+2s
dxdy.

On the other hand, the lower semi-continuity of the Lebesgue measure leads∫
RN

∫
RN

|u∗Ω(x)− u∗Ω(y)|2

|x− y|N+2s
dxdy + α (mL(Ω)− c)

≤ lim
k−→∞

inf

∫
RN

∫
RN

|ũΩnk(x)− ũΩnk(y)|2

|x− y|N+2s
dxdy + lim

k−→∞
inf ((mL(Ωnk)− c) .

Then we have :

F (Ω) ≤ lim
k−→∞

inf F (Ωnk).

This completes the proof. �
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3.2. Existence under the ε− cône property.

Proof. of Theorem 1.2 . Because uΩ is a solution of (1.5), then uω is bounded,

therefore considering our function, we can use Holder’s inequality. uΩ is a so-

lution of (1.5), then it is in Ds,2(Ω), for 0 < s < 1.

Let us show that J is bounded as:

J(Ω) = C(N, s)

∫
R2N

(u(x)− u(y))(u(x)− u(y))

| x− y |N+2s
dxdy

| J(Ω) |= C(N, s)

∣∣∣∣∫
R2N

(u(x)− u(y))(u(x)− u(y))

| x− y |N+2s
dxdy

∣∣∣∣ > −∞.
And on the other hand, using the Holder inequality we have

| J(Ω) |≤ C(N, s)

(∫
R2N

(| u(x)− u(y) |)2

| x− y |N+2s
dxdy

) 1
2
(∫

R2N

| (u(x)− u(y) |)2

| x− y |N+2s
dxdy

) 1
2

| J(Ω) |≤ C(N, s) ‖ u ‖2Ds,2(Ω) .

Hence J is bounded.

Let m = infΩ∈O J(Ω), we have infΩ∈O J(Ω) > −∞, so there exists a minimizing

sequence (Ωn)n∈N ⊂ O such that

J(Ωn) −→ m = inf J(Ω).

Since Ωn ⊂ O, there exists a compact set K such that Ω̄n ⊂ K. Then according

to the compactness Theorem 2.12, there is an open set Ω, with |Ωn| = c and

an extracted sequence Ωnk such that Ωnk H−−−−→Ω and χΩnk
a.e.−→χΩ

It remains to show that:

lim J(Ωnk) = J(Ω) = inf
Ω∈Oε orOad

J(Ω).

Let us show that the sequence uΩnk
is bounded in Ds,2(Ωnk). Replacing Ω

with Ωnk in the weak formulation, we obtain∫
R2N

(uΩnk
(x)− uΩnk

(y))(vΩ(x)− vΩ(y))

| x− y |N+2s
dxdy =

∫
Ωnk

f(x)vΩnk
(x)dx ∀ v ∈ Ds,2(Ω).

(3.7)

And from Proposition 2.6 we have(
2− C2

2

)
‖ uΩnk

‖2Ds,2(Ωnk )≤ m+
1

2
‖ f ‖2L2(Ωnk ) .

Therefore the sequence uΩnk
is bounded in Ds,2(Ωnk).

As (uΩnk
) is bounded in Ds,2(Ωnk), there exists u∗Ω ∈ Ds,2(Ω) and an extracted

subsequence (uΩnk
)k≥1 of (uΩnk

) still denoted by(uΩnk
)k≥1 such that:

(uΩnk
)k≥1 ⇀ u∗Ω ∈ Ds,2(Ω),
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(uΩnk
)k≥1 −→ u∗Ω ∈ L2(Ω),

and

(uΩnk
)k≥1 ⇀ u∗Ω ∈ L2(Ω), if k −→∞.

By passing to the limit when k −→ ∞ and weak convergence, we obtain the

following formulation∫
R2N

(u∗Ω(x)− u∗Ω(y))(ϕ(x)− ϕ(y))

| x− y |N+2s
dxdy =

∫
Ω

f(x)ϕ(x)dx, ∀ϕ ∈ Ds,2(Ω),

(3.8)

which is the weak formulation of the following problem


(−∆)su∗Ω = f in Ω

u∗Ω = 0 on RN \ Ω.

Finally by taking ϕ = uΩnk
in (3.7), we obtain

lim

(∫
R2N

| (uΩnk
(x)− uΩnk

(y)) |2

| x− y |N+2s
dxdy

)
= lim

∫
Ωnk

uΩnk
f(x)

=

∫
Ω

f(x)u∗Ω =

∫
R2N

[u∗Ω(x)− u∗Ω(y)]2

| x− y |N+2s
dxdy.

In the other hand, we have∫
R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]2

| x− y |N+2s
=

∫
R2N

[(uΩnk
(x)− uΩnk

(y))]2

| x− y |N+2s

−2

∫
R2N

(uΩnk
(x)− uΩnk

(y))(uΩ(x)− uΩ(y))

| x− y |N+2s
+

∫
R2N

[(uΩ(x)− uΩ(y))]2

| x− y |N+2s
.

Then taking the limits in the right hand side after equality, as k −→∞

lim
k−→∞

(∫
R2N

[(uΩnk
(x)− uΩnk

(y))]2

| x− y |N+2s
− 2

∫
R2N

(uΩnk
(x)− uΩnk

(y))(uΩ(x)− uΩ(y))

| x− y |N+2s

+

∫
R2N

[(uΩ(x)− uΩ(y))]2

| x− y |N+2s

)
= 0.

From which have∫
R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]2

| x− y |N+2s
= 0.
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R2N

[(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))]2

| x− y |N+2s

=

∫
R2N

(uΩnk
(x)− uΩnk

(y))− (uΩ(x)− uΩ(y))

| x− y |N+2s
= 0∫

Ωnk

f
(
uΩnk

− uΩ

)
= 0.

Then

uΩnk
(x)− uΩnk

(y) L2

−−−−→uΩ(x)− uΩ(y)

uΩnk
L2

−−−−→uΩ.

So,

uΩnk
Ds,2

−−−−−−→uΩ

Finally

lim
k−→∞

J(Ωnk) = C(N, s)

∫
RN

∫
RN

| uΩnk
(x)− uΩnk

(y) |2

| x− y |N+2s
dxdy

= J(Ω) = C(N, s)

∫
RN

∫
RN

| uΩ(x)− uΩ(y) |2

| x− y |N+2s
dxdy = m.

We can conclude that there is an open Ω∗ which minimizes J and Ω∗ ∈ Oε. �

4. Shape and Topological Derivative via Minmax Method

4.1. Shape derivative. Shape optimization involves deforming an object in

an ideal manner to minimize or maximize a cost function. Therefore, to deter-

mine a suitable deformation method, we focus on a shape analogy with classical

derivatives. Here we use a method widely used in the litterature, see for in-

stance [16, 25, 35]. The use of derivatives is essential to minimize the function

J(Ω) depending on the domain Ω. Then for ε > 0 and a vector field V , we

consider the following transformation Φε, known as perturbation of identity

Φε(x) := x+ εV (x).

We define the perturbed domain as

Ωε = Φε(Ω) = {Φε(x) := x+ εV (x), x ∈ Ω}.

We therefore define the shape derivative as follows:

DJ(Ω, V ) := lim
ε→0

J(Ωε)− J(Ω)

ε
.

We now give a provide the proof of Theorem 1.3 by applying Theorem 2.19.

Proof of Theorem 1.3: First, let us consider the following variational for-

mulation:∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω

f(x)v(x)dx. (4.1)
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We define the transformation Φε such that d
dεΦε(x)|ε=0

= V (x). The perturbed

domain is defined by Ωε = Φε(Ω). Then, in the perturbed domain we have∫
RN

∫
RN

(uε(x)− uε(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ωε

f(x)v(x) dx. (4.2)

We return to the initial domain using the transfomation due to the fact that

Ωε = Φε(Ω)∫
RN

∫
RN

(uε(x)− uε(y))(v(x)− v(y))

|x− y|N+2s
◦ ΦεJacΦε(x)JacΦε(y) dxdy =

∫
Ω

(fv) ◦ ΦεJacΦt(x) dx

or even∫
RN

∫
RN

(uε(x)− uε(y))(v ◦ Φε(x)− v ◦ Φε(y))

|Φε(x)− Φε(y)|N+2s
JacΦε(x)JacΦε(y) dxdy

=

∫
Ω

f ◦ Φεv ◦ ΦεJacΦε(x) dx.

With the change of variables φ = v ◦ Φε, we get∫
RN

∫
RN

(uε(x)− uε(y))(φ(x)− φ(y))

|Φεv(x)− Φε(y)|N+2s
JacΦε(x)JacΦε(y) dxdy =

∫
Ω

f ◦ ΦεφJacΦε(x) dx.

Then, by setting Kε(x, y) = C(N, s)
JacΦε (x)JacΦε (y)
|Φε(x)−Φε(y)|N+2s , the previous expresion

becomes

1

C(N, s)

∫
RN

∫
RN

(uε(x)− uε(y))(φ(x)− φ(y))Kε(x, y) dxdy =

∫
Ω

f ◦ ΦεφJacΦε(x) dx.

The objective function in the perturbed domain is defined by

J(Ωε) = C(N, s)

∫
RN

∫
RN

|uε(x)− uε(y)|2

|x− y|N+2s
dxdy. (4.3)

In the same way, we come back to the unperturbed domain via the transfor-

mation Φε. Doing this, we obtain

J(Ωε) = C(N, s)

∫
RN

∫
RN

|uε(x)− uε(y)|2

|x− y|N+2s
◦ ΦεJacΦε(x)JacΦε(y) dxdy

= C(N, s)

∫
RN

∫
RN

|uε(x)− uε(y)|2

|Φ(x)− Φ(y)|N+2s
JacΦε(x)JacΦε(y) dxdy

=

∫
RN

∫
RN
|uε(x)− uε(y)|2Kε(x, y) dxdy.

Using the variational formulation and the objective function in the perturbed

domain, we construct the perturbed Lagrangian as follows:

L(ε, ϕ, φ) =

∫
RN

∫
RN
|ϕ(x)− ϕ(y)|2Kε(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(φ(x)− φ(y))Kε(x, y) dxdy −
∫

Ω

(f ◦ Φε)φJacΦε(x) dx.
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The derivative of the Lagrangian with respect to ε is:

dεL(ε, ϕ, φ) =

∫
RN

∫
RN
|ϕ(x)− ϕ(y)|2K ′ε(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(φ(x)− φ(y))K ′ε(x, y) dxdy

−
∫

Ω

(∇f · V (ε))φJacΦε(x) dx−
∫

Ω

(f ◦ Φε)φJacΦε(x)divV (ε) ◦ Φε dx

where

K ′ε(x, y)
∣∣
ε=0

= −
[
(N + 2s)

x− y
|x− y|

· PV (x, y)− (divV (x) + divV (y))

]
K0(x, y)

and PV ∈ L∞(RN × RN ) is given by

PV (x, y) =
V (x)− V (y)

|x− y|
.

To define the function R(ε), we must calculate the derivative of the Lagrangian

with respect to ϕ in one direction ϕ′. In doing so, we

dϕL(ε, ϕ, φ;ϕ′) =

∫
RN

∫
RN

(ϕ(x)− ϕ(y))(ϕ′(x)− ϕ′(y))Kε(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

(ϕ′(x)− ϕ′(y))(φ(x)− φ(y))Kε(x, y) dxdy.

R(ε) =

∫
RN

∫
RN

[(
uε(x) + u(x)

2

)
−
(
uε(y) + u(y)

2

)][(
uε(x)− u(x)

ε

)]
Kε(x, y) dxdy

−
∫
RN

∫
RN

[(
uε(x) + u(x)

2

)
−
(
uε(y) + u(y)

2

)][(
uε(y)− u(y)

ε

)]
Kε(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
(p(x)− p(y))Kε(x, y) dxdy.

Substituting ϕ′ = uε−u
ε into the adjoint equation for p, we obtain∫

RN

∫
RN

(u(x)− u(y))

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
Kε(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
(p(x)− p(y))Kε(x, y) dxdy = 0.

R(ε) =

∫
RN

∫
RN

(u(x)− u(y))

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
Kε(x, y) dxdy

+

∫
RN

∫
RN

(
uε(x)− uε(y)

2

)[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
Kε(x, y) dxdy

+
1

C(N, s)

∫
RN

∫
RN

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
(p(x)− p(y))Kε(x, y) dxdy.
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Or∫
RN

∫
RN

(u(x)− u(y))

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
Kε(x, y) dxdy

= − 1

C(N, s)

∫
RN

∫
RN

[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
(p(x)− p(y))Kε(x, y) dxdy

In this case R(ε) becomes

R(ε) =

∫
RN

∫
RN

(
uε(x)− uε(y)

2

)[(
uε(x)− u(x)

ε

)
−
(
uε(y)− u(y)

ε

)]
Kε(x, y) dxdy.

This completes the proof. �

4.2. Topological Derivative. Let Ω be a regular domain of RN and ωt ⊂
Ω. Given Ωt the perturbed domain obtained by removing ωt, the topological

derivative of objective function J(Ω) at point x0 is defined by

DTJ(Ω)(x0) = lim
t→0

J(Ωt)− J(Ω)

|ωt|
, (4.4)

verifying the following asymptotic topological expansion

J(Ωt) = J(Ω) + |ωt|DTJ(Ω)(x0) + o(t), with t→ 0. (4.5)

The aim of this section is to provide a proof of Theorem 1.4, based on the result

for the derivation of the topological derivative or the shape derivative given by

Theorem 2.19.

Proof of Theorem 1.4: Let us consider the function defined in Ωt as

J(Ωt) = C(N, s)

∫
RN

∫
RN

| uΩt(x)− uΩt(y) |2

| x− y |N+2s
dxdy. (4.6)

where uΩt be the solution to the following problem{
(−∆)suΩt = f in Ωt
uΩt = 0 on RN\Ωt.

(4.7)

We recall that t = αN−dr
N−d. Let us consider as shape functional J define by

J(Ω) = C(N, s)

∫
RN

∫
RN

|uΩ(x)− uΩ(y)|2

|x− y|N+2s
dxdy (4.8)

and uΩ ∈ Ds,2(Ω) is solution to the variational problem∫
RN

∫
RN

(uΩ(x)− uΩ(y))(v(x)− v(y))

|x− y|N+2s
dxdy =

∫
Ω

f(x)v(x)dx ∀v ∈ Ds,2(Ω).

(4.9)

We aim to compute the topological derivative of the functional J(Ωt)

dJ = lim
t−→0

J(Ωt)− J(Ω)

αN−drN−d
.
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Thus, the Lagrangian dependent on t will be written in the form :

L(t, φ,Φ) = C(N, s)

∫
RN

∫
RN

| φ(x)− φ(y) |2

| x− y |N+2s
dxdy

+

∫
RN

∫
RN

(φ(x)− φ(y))(Φ(x)− Φ(y))

|x− y|N+2s
dxdy −

∫
Ωt

f(x)Φ(x)dx.

J(Ωt) = inf
φ∈Ds,2(Ω)

sup
Φ∈Ds,2(Ω)

L(t, φ,Φ).

From this, we can evaluate the derivative of the Lagrangian, dependent on t,

with respect to φ.

dφL(t, φ,Φ, φ′) = C(N, s)

∫
RN

∫
RN

2
(φ′(x)− φ′(y)) (φ(x)− φ(y))

| x− y |N+2s
dxdy

+

∫
RN

∫
RN

(φ′(x)− φ′(y))(Φ(x)− Φ(y))

|x− y|N+2s
dxdy.

The initial adjoint state pΩ0
is a solution of dφL(0, uΩ0

, pΩ0
, φ′) = 0 for all φ′

for t = 0. Thus the variational formulation of the adjoint equation of state is

given by∫
RN

∫
RN

(φ′(x)− φ′(y)) [2C(N, s) (uΩ0(x)− uΩ0(y)) + (pΩ0(x)− pΩ0(y))]

| x− y |N+2s
dxdy = 0.

Next, we derive the Lagrangian with respect to Φ.

dΦL(t, φ,Φ,Φ′) =

∫
RN

∫
RN

(φ(x)− φ(y))(Φ′(x)− Φ′(y))

|x− y|N+2s
dxdy−

∫
Ωt

f(x)Φ′(x)dx.

The initial state uΩ0 is a solution of dΦL(0, uΩ0 , 0,Φ
′
Ω0

) = 0 ∀ Φ′Ω0
∈ Ds,2(Ω)

and in this case, we have:∫
RN

∫
RN

(uΩ0
(x)− uΩ0

(y))(Φ′(x)− Φ′(y))

|x− y|N+2s
dxdy −

∫
Ω

f(x)Φ′(x)dx = 0.

And we have∫
RN

∫
RN

(uΩ0(x)− uΩ0(y))(Φ′(x)− Φ′(y))

|x− y|N+2s
dxdy =

∫
Ω

f(x)Φ′(x)dx.

L(t, φ,Φ)− L(0, φ,Φ) =

∫
Ωt

f(x)Φ(x)dx−
∫

Ω

f(x)Φ(x)dx

L(t, φ,Φ)− L(0, φ,Φ) =

∫
Ωt

f(x)Φ(x)dx−
∫
ωt

f(x)Φ(x)dx−
∫

Ωt

f(x)Φ(x)dx

L(t, φ,Φ)− L(0, φ,Φ) = −
∫
ωt

f(x)Φ(x)dx

dtL(0, φ,Φ) = − lim
r−→0

1

|B(x0, r)|

[∫
B(x0,r)

f(x)Φ(x)

]
dx

dtL(0, φ,Φ) = −f(x0)Φ(x0).
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We will now define R(t) by

R(t) =

∫ 1

0

dφL

(
t, uΩ0

+ Ψ (uΩt − uΩ0
) , pΩ0

,

(
uΩt − uΩ0

t

))
dΨ.

By substituting φ′ =
uΩt−uΩ0

t and Ψ =
uΩt−uΩ0

2 into the adjoint equation for

pΩ0
, we obtain:

R(t) =

C(N, s)

∫
RN

∫
RN

2

((
uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y)
)((

uΩt+uΩ0

2

)
(x)−

(
uΩt+uΩ0

2

)
(y)
)

| x− y |N+2s

+

∫
RN

∫
RN

(
uΩt−uΩ0

t

)
(x)−

(
uΩt−uΩ0

t

)
(y) (pΩ0

(x)− pΩ0
(y))

|x− y|N+2s
dxdy.

=

∫
R2N

[(uΩt(x)− uΩt(y))− (uΩ0
(x)− uΩ0

(y))] [C(N, s) (uΩ0
(x)− uΩ0

(y)) + pΩ0
(x)]

t | x− y |N+2s
dxdy

+

∫
R2N

[(uΩt(x)− uΩt(y))− (uΩ0(x)− uΩ0(y))] [C(N, s) (uΩ0(x)− uΩ0(y))− pΩ0(y)]

t | x− y |N+2s
dxdy

+

∫
R2N

[(uΩt(x)− uΩt(y))− (uΩ0
(x)− uΩ0

(y))] [C(N, s)((uΩt(x)− uΩt(y))]

t | x− y |N+2s
dxdy

=

∫
R2N

[(uΩt(x)− uΩ0
(x))− (uΩt(y)− uΩ0

(y))] [C(N, s) (uΩ0
(x)− uΩ0

(y)) + pΩ0
(x)]

t | x− y |N+2s
dxdy

+

∫
R2N

[(uΩt(x)− uΩ0(x))− (uΩt(y)− uΩ0(y))] [C(N, s) (uΩ0(x)− uΩ0(y))− pΩ0(y)]

t | x− y |N+2s
dxdy

+

∫
R2N

[(uΩt(x)− uΩt(y))− (uΩ0
(x)− uΩ0

(y))] [C(N, s)((uΩt(x)− uΩt(y))]

t | x− y |N+2s
dxdy

R(t) =

∫
R2N

[(uΩt(x)− uΩt(y))− (uΩ0
(x)− uΩ0

(y))] [C(N, s)((uΩt(x)− uΩt(y))]

t | x− y |N+2s
dxdy

R(t) =
C(N, s)√

t

∫
R2N

|uΩt(x)− uΩt(y)|2√
t | x− y |N+2s

dxdy − C(N, s)√
t

∫
R2N

(uΩ0
(x)− uΩ0

(y))√
t | x− y |N+2s

dxdy.

Then, we get the proof. �

Conclusion. In this study, we investigate the problems of the existence of

an optimal form for a given cost function using (s − γ)− convergence. Thus

we have shown the existence of an optimal form in the s-quasi open class with

compactness of the admissible set. Then this existence was also shown using the

ε-cône property. Next, we computed the shape derivative of the cost function

under consideration, but use the minmax method. Finally, the topological



64 Malick FALL et al.

derivative of the same functional is established. In future work, we intend to

generalize this problem and propose a numerical method for calculating the

cost function.
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