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1. Introduction

Fractional calculus is a theory of integrals and derivatives of arbitrary or-
der, that unifies and generalizes the notions of integer-order differentiation and
n-fold repeated integration. Warma [37] clarified the Neumann and Robin
boundary conditions associated with the fractional Laplacian operator in open
subsets of RY. It shows the existence and regularity of weak solutions. For
questions regarding regularity, refer to the authors listed below. These types
of problems were first studied in more detail by Cafarelli and Sylvestre [3]. In
addition, Ros-Oton and Serra [28, 29, 30] provided another way of representing
the regularity up to the boundary of the domain €2 for the solution u of system
(1.3). Fall [21] extended the results in [30], where w is the non-local Schrodinger
solution. Dalibart and Gerard-Varet proved the shape derivative in the case
where s = 1. Fall et al. [19] generalize Dalibart and Gerard-Varet’s work [11]
to the case of the fractional Laplacian, using shape optimization techniques. In
[19] the authors studied the optimality of the latter. For questions regarding
the existence of an optimal form, we refer to the works of Allaire, Henrot and
Pierre [1], Allaire, Henrot and Bucur [4], who studied the existence of an opti-
mal form in the case of the classical Laplacian. We also generalize the work to
the p-Laplacian case. For this, an optimal form existence study was established
using s-quasi opens. The cited works permit us to study the problem of the
existence of an optimal form in a much more general way, using two different
methods, but also proposes a new technique for calculating the shape deriva-
tive the minimax approach and establishes the topological derivative using the
same theoretical framework.

Let U,q € RNV, N > 2, denote the admissible set. Let 2 be a domain of U,4.
The solution of the optimization problem

min {J(Q); Q € Upa} (1.1)
with J : U,q — R a shape functional defined by

2
J(Q) = C(N,2) /R i /R i “ﬁ@;'gzgg)' dwdy. (1.2)

State ugq is a solution to the following problem (1.3).

The aim of this study is to prove existence, and optimal conditions. First,
we will look at

(—AYug=f in Q
{ ug =0 on RN\Q.

with 0 < s < 1. We look for the existence of solutions to the fractional elliptic
boundary problem (1.3) and the shape optimization problem (1.1) under the
hypothesis of (s —v)— convergence.

(1.3)

Then, the first-order optimality conditions of (1.1) is given by calculating
the shape and topological derivatives of the functional (1.2) using the minimax
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method. This problem has already been studied by Fall et al. [19], in which
the existence of a solution is obtained under the hypothesis of a uniform cone,
and the form resolution is obtained using the vector field method.

In this study, motivated by [11] and [19], we aim to prove the existence of
an optimal shape solution to the minimization problem (1.1). More precisely,
our main results are as follows:

Theorem 1.1. Let F : A(D) — (—o00,400] be a shape functional that is
lower (s — ) semi-continuous weak. Subsequently, the following problem

min{F(Q) : Q € A(D)} (1.4)
has a solution.

Theorem 1.2. Let O = {Q C RN, vol(Q) = ¢, 90 € C?}, and J be defined
by (1.2). Then there exists a domain Q € O such that

Q) = inf J(Q
J( ) slzlelo J( )
under the constraints

{ (=A)ug=f in Q (15)

ug =0 on  RN\Q.

Theorem 1.3. Let ) be the solution to the optimization problem min{J (), 2 €
O}. If the function R(€) has a finite limit R(u,p), then the shape derivative of
J(Q) is given by

i@ V)= [ | 1ple) = o) Kyla ) dody
1 !/
s Lo L ) = ) 00 = ) K. 9)
- / (Vf-V(0))pdx — / fpdivV (0) dx + R(u, p),
Q Q

where p is solution to the following adjoint equation
/RN /RN (u(z) —u(y)) (' (x) = ' (y)) Ko(z, y) dxdy
- _ﬁ /RN /RN(%D'(JC) —¢'(y)(p(z) — p(y)) Ko(z,y) drdy.

Theorem 1.4. Let 0 < d < N, E verify Hypothesis H1 andt = an_qrN <.
The topolo

gical derivative exists if the function R(t) has a finite limit denoted R(uq,, Py )-
Therefore, the topological derivative of the function is given by:

7 = tim T8 =) _J‘V] (?)
t—0 QAN _—qT " ™~

dJ = R(uq,, pa,) — f(x0) pa,(zo)-
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where pq,, uq, are solutions of systems

/ / (¢'(@) = &' W) [2CWV, 5) (ugy (@) — sy () + (P (@) = oo @] 3y
]RN RN

|z —y [NF2

The paper is organized as follows: Section 2 is devoted to the preliminaries
of fractional Laplacian operators, as well as the minmax theory. In Section 3,
we study the existence of a solution to the shape optimization problem under
the (s —7)— convergence hypothesis. At this level, we will use two hypotheses
of solution existence, with (s — v)— convergence: the study of solution exis-
tence with (s — v)— convergence under the assumption of compactness of the
admissible set and the study of solution existence with the e— cone property.
Section 4 is devoted to prove existence of the shape and topological derivatives
of the functional under consideration. To accomplish this, we use the minimax
theory.

2. Preliminaries

2.1. On the Fractional Problem. The following results can be found in [3]
and [37].

Theorem 2.1. Let s € (0,1) and p € [1,+00), g € [1,p], 2 C RY be a bounded
extension domain for WP and T be a bounded subset of LP. Suppose that

sup (/Q A dedy) < +o0.

fer |z —y [NFps

Then T is pre-compact in L.
Proof. See [19]. O

Corollary 2.2. Let s € (0,1), p € [1,+00) such that sp < N. If ¢ € [1,p*),
Q CRY is a bounded extension domain for WP and T are bounded subsets of

LP. Suppose that
| flx) = fQy) I )
sup ——— dxdy | < 4o0.
fET(/Q o |z—y|Ntes Y

Then T is pre-compact in L9.

Proof. See [19]. O
Definition 2.3. Let Q C RN be an open set u € LL. The distribution (—A)%u
is defined by :

< (—A)’u,p >= /]RN u(—=A)’pdz, V ¢ € C°(Q). (2.1)

Saying that (—A)*u = f in D'(Q), is equivalent to the very weak formulation

/ u(—A)’pdr = / fodx, ¥ ¢ € CZ(Q). (2.2)
RN Q



Shape and topological optimization for a fractional elliptic boundary problem 49

Definition 2.4. We define D*2(Q) = C’go(Q)H'HHS, as the completion of
C°(Q), which is an Hilbert space with respect to the norm :

po= ([ [0 )

If u € D*2(Q) C L] satisfies :
(=A)*u = f in D'(Q), we have the weak formulation :

el

< (7A)Sua $ >Ds2(Q)= /Qf%pdxv Ve D(Q)v (24)
where
<ty > pesy= C(N, ) /RN /RN (u(z) ll;(g))y(slﬂjv(ﬁs w(y))dzdy.

Let © c RY be a bounded open set with a Lipschitz boundary, and 0 < s <
1. Note here that for the space of smooth functions with compact support, we
take the notation C2° instead of C'§°.

Consider the following bilinear form :

<, >ps2: CX(Q) x CP(Q) — R
(u(z) —u(y))(v(z) —v(y))
(u,v) — /RN /]RN dxdy

|£U—y |N+25

which is the scalar product of C2°(Q2). We recall the Hilbert space D*?2(2) as
the completion of C2°(2).

Lemma 2.5. If Q is a bounded Lipschitz open set
D*2(Q) = {u € H*(RY), such that u=0on RN \ Q}.
Proposition 2.6. Let 0 < s < 1 and Q be a bounded open set subset of RN,

Let f: Q2 — R be a measurable function with compact support. Then, there
exists a positive constant C = C(N, s,Q) depending on N, s and Q such that

| fllezc)< Cl f lIps2q) -

For more information on this subsection, the reader may also refer to [19].
We also have the following more general results:

Definition 2.7. Let 0 < s <1 and p € [2,400), N > sp and Q be a bounded
open set of RN, with the Lipchitz boundary,

T </ﬂ 9 dedyy

be the Gagliardo semi norm of measurable function u.
1. WP(Q) are defined as follows

W*P(Q) = {f € LP(Q) such that [f];, < +o0}
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endowed with the usual norm

|thmF<AVﬂ+mwy

2. Consider the closed linear subspace W' () by
WP(Q) = {f e W*P(RY): f=0;aeinRY\Q}.
equivalently renormed by setting || flls,p = [f]s.p-
Definition 2.8. Let Q C RY be an open set. Given A C Q, for any 0 < s < 1
and p > 1, the Gagliardo s— capacity of A relatively to Q as
caps(A, Q) =inf {[u]f : welC(Q), u>0, AC {u>1}},

where

[u]? = /Q ) | u(z) —u(y) |pdxdy.

8 o=y o

Definition 2.9. A subset A of Q0 is a s-quasi open set if there exists a de-
creasing sequence {wi tren of open subsets of Q such that caps(wg, ) — 0,
as k — +o00, and AU wy is an open set for all k € N.

We now provide a definition of (s — v)— convergence. This definition was
inspired by y— convergence, [6, 7, 22].

Definition 2.10. Let {Ag}ren C As(QQ) and A € A4(QY). We say that Ay, vs A
if uy, — u} strongly in L?(Q).

Definition 2.11. Let 0 < s < 1 be fized and let Fs : A;(2) — R be such that:
F is lower semi continuous with respect to the (s —y)— convergence; that is

A vs A implies Fg(A) < lim inf F5(Ay).

k—+o00

F; is decreasing with respect to set inclusion; that is Fs(A) > Fs(B) whenever
ACB.

For more information on this theory, please consult [20].

Theorem 2.12. : Let €, be an open sequence in the class O.. Then there
exists an open ) € O, and an sub-sequence 2y, which converges towards €2
both in the sense of Hausdorff, in the sense of the characteristic functions and

in the sense of compact. Additionally, ), and 082y, converge in the Hausdorff
sense to Q and 05).

Proof. See [19, 25]. O
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Lemma 2.13. : Let K be a compact and B be a bounded open of R. Let Q,,
be a sequence of open with Q,, C K C B, verifying the ownership of the e—
cone.

Then there is an open §2 satisfying the ownership of the e— céne and an ex-
tracted sequence §1y,, such as

an H 597 XWnk Llpp X

9) Q, 00, H 09.

This is allowed us to characterize the existence of a solution.
Proof. See [19, 25]. O

2.2. Some initial results for the minmax method. In this subsection,
we describe how the calculation of the topological derivative using the min-
max approach, [13, 14, 26]. To First, we consider the following definitions and
notations.

Definition 2.14. A Lagrangian function is a function of the form

(t,z,y) — L(t,z,y) : [0, 7] x X xY >R 7>0
where X is a vector space, Y is a non empty subset of the vector space and the
function y — L(t,x,y) is affine.

Associate with the parameter ¢ the parametrized minimax

t) —g(0
t— g(t) = inf sup L(t,z,y) : [0,7] > R and dg(0) = lim M
z€X yey t—0+ t

When the limits exist, we will use the following notations
L(t,l‘,y) — L(O7x7y)

d:L(0,z,y) = lim

t—0+ t
L(t,x +0p,y) — L(t
P e X’ dIL(t"T7y7§0) = lim ( ,iL'—f— @,y) ( 73%9)
0—0+ 0
L(t 0¢) — L(t
0—0+ 0

Since L(t,z,y) is affine in y, for all (¢,z) € [0,7] x X,
Vy eV dyL(t,x,y;v) = L(t,z,¢) — L(t,x,0) = d,L(t,2,0,7). (2.5)
The state equation at ¢ > 0
Find 2' € X such that for all ¢ €Y, d,L(t,z",0;1) = 0. (2.6)
The set of states zf at ¢t > 0 is denoted
Eit)={s"e X, V¢ €Y, dyL(t,a"0;¢) =0}. (2.7)
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The adjoint equation at ¢t > 0 is
Find p' € Y such that for all ¢ € X, d,L(t,2",p";¢) = 0. (2.8)
The set of solutions p' at ¢ > 0 is denoted
Y(t,2') = {pt, €Y, Voe X, d.L(t,z" p'p) = O} . (2.9)
Finally the set of minimisers for the minimax is given by
X(t)= {a:t € X, g(t) = inf sup L(t,x,y) = sup L(t,xt,y)}. (2.10)
r€X yey yey

Lemma 2.15. (Constrained infimum and minimax)
We have the following assertions

(i)

inf L(t,xz,y) = inf L(t,z,0).
S A

(ii) The minimaz g(t) = +oo if and only if E(t) = 0. In this case X(t) =
X.
(i) If E(t) # 0, then
X(t)= {xt €E(t): L(t,x",0)= inf L(t,a:,O)} C E(¥)
zEE(t)

and g(t) < +oo.
Proof. See [13]. O

Here, we provide definitions and theorems of d-dimensional Minkowski content
and d-rectifiability.

Definition 2.16. Let E be a subset of a metric space X. E C X is d-rectifiable
if it is the image of a compact subset K of R? by a continuous lipschitzian
function f:R? — X.

Let E be a closed compact set of RY and r > 0, the distance function dg
and the r-dilatation FE, of E are defined as follows:

dp(z) = infE|x —xo|, E,={zeRY: dg(x) <r}.
To€

Definition 2.17. Given d, 0 < d < N the upper and lower d-dimensional
Minkowski contents of a set E are defined by an r-dilatation of this set as
follows

E,
M*4(E) = limsup %; MY(E) = lirrg(ijrlf -

r—0t ON-d

where my is the Lebesque measure in RY and an_g is the volume of a ball of
radius 1 in RN~
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We need the following assumption for everything that follows:
Hypothesis (HO)
Let X be the vector space.
(i) : For all t € [0,7], 2° € X(0), 2' € X(t) and y € Y, the function
0 — L(t,2°+6(xt —2°),%) : [0,1] — R is continuous. This implies that
for almost all @ the derivative exists and is equal to d,L(t,z° + 6(x* —
2%),y; 2t — 20) and it is the integral of its derivative. In particular

1
L(t,z°,y) = L(t,2°,y) + / do L(t, 2° + 0(z" — 2°), y; 2" — 2°) db.
0

ii) : For all t € [0,7], 2° € X(0), 2' € X(s) and y € Y, ¢ € X and for
almost all 6 € [0, 1], d,L(t, 2°+0(z' — 2°), y; ¢) exists and the functions
0~ d.L(t,2° + 0(z* — 20), y; ¢) belong to L[0, 1]

Definition 2.18. Given 2° € X(0) and x' € X (t), the averaged adjoint equa-
tion is:

1
Find y* €Y V¢ e X, / dyL(t,z° + 0(2' — 2°),9; ¢) df = 0.
0

The set of solutions is denoted Y (t,x°, xt).
Y (0,2°,2°) clearly reduce to the set of standard adjoint states Y (0,2°) att = 0.

Theorem 2.19. Consider the Lagrangian functional
(t,z,y) = L(t,z,y) : [0, 7] x X xY =R, 7>0

where X and Y are vector spaces and the function y — L(t,x,y) is an affine.
Assuming that (HO) and the following hypotheses are satisfied

(H1) for all t € [0,7], g(t) is finite, X(t) = {z'} and Y (0,2°) = {p°} are
singletons,

(H2) d:L(0,2°,9°) emists,

and (H3) The following limit exists

1 t_ .0
R(2°,4°) = lim d,L (t,xo +0(2 — 29), p°; R ) de.

t—0t 0 t

Then, dg(0) exists and dg(0) = dyL(0,2°,p°) + R(x°,p°).
Proof. See [13]. O

Corollary 2.20. Consider the Lagrangian functional
(t,z,y) — L(t,z,y) : [0, 7] x X xY =R, 7>0

where X and Y are vector spaces and the function y — L(t,x,y) is an affine.
Assume that (HO) and the following assumptions are satisfied:

(H1a) for all t € [0,7], X(s) # 0, g(t) is finite, and for each x € X(0),
Y(0,z) #0,

(H2a) for all z € X(0) and p € Y(0,2) dL(0,z,p) exists,
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(H3a) there exist 2° € X(0) and p° € Y (0,2%) such that the following limit

exists
1 :Et _ :EO
R(z%p") = lim d,L <t,x0 +6(zt — 29),p°%; ; ) de.

t—0t 0

Then, dg(0) exists and there exist 2° € X(0) and p® € Y(0,2°) such that
dg(0) = d; L(0,2°, p°) + R(x*,p°).

3. Existence of Optimal Shape

In this section, we are interested in the existence of an optimal form (2,
solution of the problem (1.1). For the questions of existence shape we can refer
to the work of Henrot and Pierre [25] and Allaire and Henrot [1]. In these
works, the aforementioned authors use shape functionals dependent on non-
fractional PDE solutions. We aim to replicate the same work in the fractional
case by using a functional J(), ugq is a solution of a fractional-type equation.
Consequently, we obtain the following result indicating the existence of an
optimal form using two distinct methods:

3.1. Existence by compactness. Here, we weaken the assumptions, never-
theless the functional J remains lower

(s — 7v)— semi-continuous for the topology of (s — 7)—convergence and we
study the compactness of A(D) for this convergence. The idea is to penalize
functional J. This gives us F(Q) = J(Q) + a1 [|] — ¢]* where a € RT is a
penalization factor and

luq(z) — ua(y)®
Q) =C(N dxd 1
() =0 ’S)/RN/RN o — gz Y 3.1)
We will study a problem of the type
min{F(Q) : Q € A,|Q| < c}. (3.2)

with F': A(D) — R~ a constrained shape functional of a parabolic boundary
problem with uq as its solution and is defined by
(—A)’ug = fin Q
{ u=0 on RM\Q. (3:3)
Proof of Theorem 1.1: Under the constraint of problem (3.3), we begin
by showing the lower semi-continuity of the functional. To do this, we set
m = inf{G(R),Q € A(D)} and uq, = u,. Since u,, is a solution of (3.3), the
m > —oo; and there exists a minimizing sequence {2, contained in A(D) such
that G(Q2) — m.
Consider u,, as a solution of the following problem

(-A)°u, = fin Q,
{ Uup =0 on RV\Q,,. (3.4)
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We define the function u, by

v — u, if € Q,
" 0if x € D\Q,.

Now, from the variational formulas, we get

(i)~ @) 0) o)y [
/RQN [z —y|N+2s dxdy_/Df( Jvg, (¥)dz V veED ((3{2;)

We show that in [19] (u,) is bounded in D*?2(£2). There exists a sub-sequence
(ugr)i>1 of (ug)k>1 such that

Ukl — u}} S DS’2(Q),

Uk — u;‘) S L2(Q),
and
up — ugy € LA(Q), if 1 — oo.

By passing to the limit when k& — oo and weak convergence, we obtain the
following formulation

[ OGN =D g, [ i)t v D0
(3.6)

which is the weak formulation of the following problem
(—A)*uf, = fin Q

uf, =0 on RV \ D.

Uy, is bounded in D*?2(Q) there exist M > 0 thus that ||, H < M and

|ugy (x) — ug(y)? / / |UQ — ug,, (y)?
dady < hm inf ik nk dxdy.
/RN /R \m— g = an Jew — gV Y

On the other hand, the lower seml—contlnulty of the Lebesgue measure leads

RN JRN |=’E—?J|N+2S

|ag,, (x) — g, (y)|? o
< hm inf /]RN /RN |x T dxdy + kh_r)noo inf ((mp(Qnk) —c) .

Then we have :
F(Q) < lim inf F(Qu).

k— 00

This completes the proof. O
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3.2. Existence under the ¢— coéne property.

Proof. of Theorem 1.2 . Because ug, is a solution of (1.5), then u,, is bounded,
therefore considering our function, we can use Holder’s inequality. ugq is a so-
lution of (1.5), then it is in D*2(2), for 0 < s < 1.

Let us show that J is bounded as:

J(Q) = C(N, 5) /R N (u(z) 11;(3);(%(3— “W) 4ray
| J(Q) |= C(N, s) /RQN (u(z) Wz(y);(ﬁv(ﬂs— U(y))dxdy‘ N

And on the other hand, using the Holder inequality we have

s (], U ) (], St )

2N

| J(9) < C(N,8) || 0 [ -

Hence J is bounded.
Let m = infqoep J(€2), we have infaeop J(€2) > —o00, so there exists a minimizing
sequence (Q,)nen C O such that

J(Qy) — m = inf J(Q).

Since Q,, C O, there exists a compact set K such that Q,, C K. Then according
to the compactness Theorem 2.12, there is an open set 0, with |Q,| = ¢ and
an extracted sequence (), such that €2,, H Qand xq, a-ex0
It remains to show that:

lim J(9,,) = J(Q) = inf J().

(@) = J@) =it (@)
Let us show that the sequence ugq, is bounded in D%2%(Qy,). Replacing
with €, in the weak formulation, we obtain

(ug,, () —uq,, (¥)(va(r) —va(y)) B e
/Rw [z —y N2 dwdy/% f(@)va, (z)dz ¥V ve D¥(Q).

(3.7)

And from Proposition 2.6 we have

2-—C? 1
(255) uny ooy m+ 3117 Ixa,

Therefore the sequence ugq,, is bounded in D%2(Qy,,.).
As (uq,, ) is bounded in D*?(£,,, ), there exists ug, € D*?(Q2) and an extracted
subsequence (uq, )r>1 of (uq,, ) still denoted by(uq, )r>1 such that:

(ug,, k=1 = ug € D¥*(9),
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(uq,, Jk>1 — ug € L* (),
and
(uq,, Jk>1 — ug € L*(Q), if k — oo.

By passing to the limit when k& — oo and weak convergence, we obtain the
following formulation

((2) ~ o) —90)) | [ »
/RZN |z —y [N+2s dxdy = Qf( Jp(z)dz, Yo € D (5(2;,8)

(—A)Pusy=fin Q
which is the weak formulation of the following problem

u, =0 on RV \ Q.
Finally by taking ¢ = uq, in (3.7), we obtain

_ 2
lim (/}RM | (UQnrf) Y rj\?:;s(y)) | da:dy) = lim/Q ug,, f(z)

ni

_ . _ [ugy(2) — ugy(y)]?
_/Qf(a:)ug—/RzN 5=y N dxdy.

In the other hand, we have

/ [(ug,, () = uq,, (V) = (ua(z) — ua(y)) / [(uq,, (z) —ug,, ()]
R2N R2N

|z —y [V12s - |z —y [N+2s

B (uq,, () —uq,, (1)) (ua(z) —ua(y)) [(up(z) — ua(y)))?
2\/R2N * x/lRQN '

|m—y|N+23 ‘x_y‘N—&-Qs

Then taking the limits in the right hand side after equality, as k — oo

: [(ug,, () —uq, () (uq,, () — ug,, (v)(ua(x) — ua(y))
lim (/RM — Z/RZN

k—00 |£L’—y|N+2S |x_y|N+23

[ M) eGPy

|z —y |NVF2s
From which have

/ [(ua,, (@) —ua,, (y) = (ua(z) —ua(y))®
R2N

|z —y [NVF2s

=0.
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/ [(ug,, () = uq,, (V) — (ua(z) — ua(y))”

|{E—y |N+2s

=0

_ / (uq,, (x) —uaq,, (¥)) = (ua(zr) — ua(y))
R2N

|z —y [NF2

/Q f (uan — uQ> =0.

Then
ugq,, (¥) —uq, (y)_L* |uo(z) —ua(y)

Uan L—z>
So,

’LLan Ds72 uQ
Finally

| ug,, W) 12
kh:}nmJ(Q C(N,s) /]RN/RN |x— |N+2g dzdy

| ua(z) —ua(y) |
® S/RN/RN oy s ey =

We can conclude that there is an open * which minimizes J and Q* € O.. 0O

4. Shape and Topological Derivative via Minmax Method

4.1. Shape derivative. Shape optimization involves deforming an object in
an ideal manner to minimize or maximize a cost function. Therefore, to deter-
mine a suitable deformation method, we focus on a shape analogy with classical
derivatives. Here we use a method widely used in the litterature, see for in-
stance [16, 25, 35]. The use of derivatives is essential to minimize the function
J(92) depending on the domain €. Then for € > 0 and a vector field V, we
consider the following transformation ®., known as perturbation of identity

O () = x4 eV (x).
We define the perturbed domain as
Qe =0(Q) ={P(2) :=x+V(z), v € Q}.

We therefore define the shape derivative as follows:

DJ(, V) := lim S = I

e—0 €

We now give a provide the proof of Theorem 1.3 by applying Theorem 2.19.

Proof of Theorem 1.3: First, let us consider the following variational for-
mulation:

() (v(z) = v(y)) _ Polad
/RN /RN |m_ y|N+2s dl’dyf/ﬂf( Ju(x)d. (4.1)
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We define the transformation @, such that %Cbe(x)‘ezo = V(z). The perturbed
domain is defined by Qe = .(92). Then, in the perturbed domain we have

/RN /RN U () — ue y)f}(vvfi) v(y)) dxdy:/ﬁg flx)v(z) da. (4.2)

We return to the initial domain using the transfomation due to the fact that
Q. = 0.(0Q)

/ / (ue(®) — ue y)>1(vv($) —v) o ® Jace, (z)Jace, (y) dedy = / (fv) o ®cJace, () dx
RN JRN |z — y|Nt2s Q

or even

(uf(z) — u(y))(vo ®c(z) —vo P(y))
/]RN /RN D (z) — D (y)|N+2s Jace (z)Jace (y) dxdy

= / fodwod Jacs, () dx.
Q

With the change of variables ¢ = v o ®., we get

(uf(z) — u(y))(¢(x) = $(y)) _
/RN /RN @, 0(z) — @ ()| V2 Jacs, (x)Jace, (y) dedy = /Qf o®.pJace, (r)dx.

Then, by setting K.(z,y) = C(N, S)W’ the previous expresion

becomes

! (x) —u T) — T rdy = o ace (x)dx
S5 o [ 0@ = @)@ — oK ) dody = [ o@ebTacs, (@) do.

The objective function in the perturbed domain is defined by

J(Q) = C(N, Juclz) —u@) (4.3)
) RN JRN |93_ |N+25 v .

In the same way, we come back to the unperturbed domain via the transfor-
mation ®.. Doing this, we obtain

2
Ue
sog=cws [ [ 5 ymﬁ' o @ Jacs, (1) Jaca, () dudy

2
— C(N, s /R ) /R S )(|N)|+2S Jace, (x)Jace. (y) dedy

/RN / Ju(x) — u (y) K (x, y) dedy.

Using the variational formulation and the objective function in the perturbed

domain, we construct the perturbed Lagrangian as follows:

Le..6) = // Ply) PK () dady
s L / (9(0) = ) (60) ~ S Kol dody — [ (7080 ace, @) dr
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The derivative of the Lagrangian with respect to € is:

(€,0,0) = / / lo(z (z,y) dzdy
N,s /RN /RN — ¢(y)) K. (z,y) dzdy
_ /Q(VﬁV(e))qﬁJac@e (x) dw — /Q(fo<1>€)¢Jva>£ (x)divV (€) o @, dx

where

Kl ()], = — [(N #2220 Py(ay) — @V (o) + dioV ()] Kot

and Py € L= (RN x RY) is given by
Viz) = V(y)
|z =yl
To define the function R(e€), we must calculate the derivative of the Lagrangian

Pv(.’lﬁ,y) =

with respect to ¢ in one direction ¢’. In doing so, we

doL(e, ¢, ¢5¢") :/R / — @' (y) Ke(z, y) dedy

N s) /RN /RN ¢' (W) ((z) — d(y) Ke(z, y) dudy.

mo= [ [ (9) - (4 )H(“ )| e gt
ANAN[<”€(x)+“() ( ) () oy
e o Lo | () - ( ely) - (y))]u) p(y)) Koz, y) dudy.

Substituting ¢’ = ==+ i

[ [0 [ (M2 (U]
aiig oo o [(BE2 ) - () o) o) o) oy = 0
R0= [ ) oty [ (A0 ()]

[ (0 [ () )) (0]
A

u(x)) - <u5(y) — u(y)>] (p(z) — p(v)) K. (2, y) dedy.

into the adjoint equation for p, we obtain

(N S) RN
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Or
[ Lt — o [ (M) (D) | g oy

v o [ () (MDY o) = ) K ) oy

In this case R(¢) becomes

/RN /RN (u6 — E(y)) [(ue(x);u(x)) B (’U/e(y>€_u(y)>:| K.(o.y) dady,

This completes the proof. O

4.2. Topological Derivative. Let © be a regular domain of RV and w, C
Q. Given ; the perturbed domain obtained by removing w;, the topological
derivative of objective function J(£2) at point z¢ is defined by

e J(Q) - J(9)
DrJ(Q)(xo) = }E}% Ta (4.4)
verifying the following asymptotic topological expansion
J(Q) = J(Q) + |we| DrJ (2)(x0) + o(t), with ¢t — 0. (4.5)

The aim of this section is to provide a proof of Theorem 1.4, based on the result
for the derivation of the topological derivative or the shape derivative given by
Theorem 2.19.

Proof of Theorem 1.4: Let us consider the function defined in §; as

| ug, () — ug, (y)
J(Q:) =C(N,s) /RN/RN |z— s dxdy. (4.6)

where uq, be the solution to the following problem

(—A)ug, = fin Q4
ug, = 0 on RV\ (.

(4.7)

We recall that t = ay_grN "% Let us consider as shape functional J define by

lua(z) — ua(y)l?
J(Q)=C(N,s /RN /RN |x—y|N+23 dxdy (4.8)

and ug € D%2%(Q) is solution to the variational problem

u() — un(y)) (o(z) — w2
L. /RN [z — gV Doy = | Sz e < - (2)9)

We aim to compute the topological derivative of the functional J(€;)

iy 28) = J(Q)
Y Ty



62 Malick FALL et al.

Thus, the Lagrangian dependent on t will be written in the form :

L(t, ¢, @ NS/RN/RN |x_ |N
/RN /RN |x_)(|?;(+m2)g 2D goay - [ fa)b(o)da.

Q
= inf sup t, ¢, D).
(62) $€D*>2(Q) peD=2(Q) L )

y) |2
+29 ———dxdy

From this, we can evaluate the derivative of the Lagrangian, dependent on ¢,
with respect to ¢.

dsL(t,6,9,¢') = C(N,s) // NGAE |¢;_>y)|<£<+21¢<y”dxdy
(¢ (2) — ¢/ () (2(x) — D(y))
/RN RN |x—y|N+2s dzdy.

The initial adjoint state pgo, is a solution of dyL(0, uq,,pa,,¢’) = 0 for all ¢’
for t = 0. Thus the variational formulation of the adjoint equation of state is
given by

[ [ =) ROMS 0 —un o) + pre) =208 g, o,

[a—y 7

Next, we derive the Lagrangian with respect to ®.

deL(t, ¢, ®, ') /RN /RN |x _)(‘ﬁ;&z)s W) ity 5 F(2)® (z)dz.

The initial state ug, is a solution of dgL(0,uq,,0,®, ) = 0V & € D*?(Q)
and in this case, we have:

ugy (¢ UQO W@ (2) = 'W) ;0 [ ) () —
/]RN /]RN y|N+2s dwdy /Qf( )(I) d

And we have

(v0,(@) — v, )@@ = @) [
/RN /IRN |x — y|N+2s dxdyf/ﬂf( VO’ (x)dx.

L(t.6.9) = 100.6.9) = [ f@)p(@)do - /Q F(@)®(x)dx

L(t,¢,®) — L(0,¢,P) = A f(z)®(x)dx — f(z)®(x)dx — A f(z)®(x)dx
L(t,¢,®) — L(0,¢,P) = — f(z)®(x)dx
1
AL(0.6.8) = = lim oy VB( @)

dt ( 7¢a ): —f(l’o)q)(xo)
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We will now define R(t) by

1 —
R(t) = / dyL (t,uszo U (ug, — ugy) s P (““f ; ““°>> dav.
0

By substituting ¢/ = “="%0 and ¥ = “2_2% into the adjoint equation for

Pa,, We obtain:
R(t) =

Uy —U90 ) () [ M2 UQ0 ug, +ua, o) — ug, +un,
C(N”)/RN/RN?« ) @) = (o) ) ((252) @0 - (*25%2) 0)

|z —y [N+

N / / (U ) (@) - (425 ) (1) (pay (@) “pal)

lo — y|N+2s

_ / [(uq, (x) — uq, (y)) — (ugy (x) — ua, W) [C(V, 5) (ug, (x) — ua,(y)) + po, («)] drdy
R2N tlo—y |Vt

/ (e, (@) = ua,(y)) = (uay (@) = uay @] ICN, 5) (uay (2) = uay(¥) = Pau®)] ;4
t|o—y |[N+2s

uq, () — ugq, — (uq, (z) — uq, C(N, s)((uq,(z) — uq,
) M) 0,0 = (o)~ v ) OOV, )~ 0,0 1,

[ ) o) = 00,0~ N OY.) () ~ vl + 2005,
t|x—y |[Nt2s

/ (e, (@) = uay (@) = (ua.(y) = ua, W] CN, 5) (uay (2) = u0y(¥)) = Pau®)] ;4
t|o—y |[N+2s

[(uq, () = ua, () — (ug, () — ug, W)] [C(N, 5)((ug, (z) — ug, (y))]
+/R2N t | r—Y |N+25 d;vdy

uq, (x) —u — (ugy () —u C(N, s)((uq,(z) — uq,
R(t):/ﬂw [(ug, () — ua, () — ( QO(tixg;OT%)j]%[ (W, ) ((ua, (2) = ua W] ;4

N — 2 N -
R(t) — C( ’ 8) / ‘th (.’L‘) Ugy, (y)‘ d(Ed’y _ C( 78) / (UQO (‘rE) UQ, (y)) d!l?dy
Vit Jren Vi |z —y [N Vit Jrey Vi@ —y [N
Then, we get the proof. O

Conclusion. In this study, we investigate the problems of the existence of
an optimal form for a given cost function using (s — v)— convergence. Thus
we have shown the existence of an optimal form in the s-quasi open class with
compactness of the admissible set. Then this existence was also shown using the
e-cone property. Next, we computed the shape derivative of the cost function
under consideration, but use the minmax method. Finally, the topological
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derivative of the same functional is established. In future work, we intend to
generalize this problem and propose a numerical method for calculating the
cost function.

REFERENCES

1. G. Allaire and A. Henrot, On some recent advances in shape optimization, Comptes
Rendus de I’Académie des Sciences-Series IIB-Mechanics. 329 (5) (2001), 383-396.

2. T. Briancon, M. Hayouni, and M. Pierre, Lipschitz continuity of state functions in some
optimal shaping, Calculus of Variations and Partial Differential Equations. 23 (1) (2005),
13-32.

3. D. Bucur, G. Buttazzo, Variational methods in shape optimization problems, Progress in
Nonlinear Differential Equations 65, Birkhauser Verlag, Basel, 2005. (Cited on p.p 212,
217, 643, 650).

4. D. Bucur, G. Buttazzo, and A.Henrot, Ezistence results for some optimal partition prob-
lems, Advances in Mathematical Sciences and Applications. 8 (1998), 571-579.

5. G. Buttazzo and G. Dal Maso, Shape optimization for dirichlet problems: relaxed formu-
lation and optimality conditions Applied Mathematics and Optimization. 23 (1) (1991),
17-49.

6. G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization
problems, Archive for Rational Mechanics and Analysis. 122 (1993), 183-195.

7. G. Buttazzo, G. Dal Maso, A. Garroni, A. Malusa, et al, On the relaxed formulation of
some shape optimization problems, Advances in Mathematical Sciences and Applications.
7 (1997), 1-24.

8. L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian,
Communications in partial differential equations. 32 (8) (2007), 1245-1260.

9. H. W. Alt and L. A. Caffarelli, Ezistence and regularity results for a minimum problem
with free boundary, J. Reine Angew. Math., 325 (1981), 107-144.

10. R. Correa and A. Seeger, Directional derivative of a minimax function, Nonlinear Anal-
ysis: Theory, Methods & Applications. 9 (1) (1985), 13-22.

11. A.-L. Dalibard and D. Gérard-Varet, On shape optimization problems involving the frac-
tional Laplacian, ESAIM: Control, Optimisation and Calculus of Variations. 19 (4)
(2013), 976-1013.

12. M. C. Delfour, Differentials and semidifferentials for metric spaces of shapes and ge-
ometries, In IFIP Conference on System Modeling and Optimization. Springer, (2015),
230-239.

13. M. C. Delfour, Control, shape, and topological derivatives via minimaz differentiability
of lagrangians, Numerical Methods for Optimal Control Problems. (2018), 137-164.

14. M. C. Delfour, Topological derivative of state-constrained objective functions: a direct
method, SIAM Journal on Control and Optimization. 60 (1) (2022), 22-47.

15. M. C. Delfour and K. Sturm, Minimaz differentiability via the averaged adjoint for
control/shape sensitivity, IFPAC-Papers OnLine. 49 (8) (2016), 142-149.

16. M. C. Delfour and J.-P. Zolésio, Shapes and geometries: metrics, analysis, differential
calculus, and optimization, STAM. (2011).

17. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev
spaces, Bulletin des sciences mathématiques. 136 (5) (2012), 521-573.

18. L. C. Evans, Partial differential equations, American Mathematical Society. 19 (2022).

19. M. Fall, I. Faye, A. Sy, and D. Seck, On shape optimization theory with fractional lapla-

cian, Applied and Computational Mathematics. 10 (3) (2021), 56-68.



Shape and topological optimization for a fractional elliptic boundary problem 65

20. M. Fall, A. Sy, I. Faye, and D. Seck, On shape optimization theory with fractional p-
laplacian operators, In Abstract and Applied Analysis, volume 2025, page 1932719.

21. M. M. Fall, Regularity estimates for nonlocal schroidinger equations. arXiv:1711.02206,
2017.

22. J. Ferndndez Bonder, A. Ritorto, and A. M. Salort, A class of shape optimization prob-
lems for some monlocal operators, Advances in Calculus of Variations. 11 (4) (2018),
373-386.

23. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Mul-
tiscale Model ing & Simulation, 7 (3) (2009), 1005-1028.

24. M. Hayouni, Lipschitz continuity of the state function in a shape optimization problem,
Journal of Convex Analysis. 6 (1) (1999), 71-90.

25. A. Henrot and M. Pierre, Variation et optimisation de formes: une analyse géométrique,
Springer Science & Business Media. 48 (2005).

26. M. G. Ngom, I. Faye, and D. Seck, A minimaz method in shape and topological derivatives
and homogenization: the case of Helmholtz equation, Nonlinear Studies. 30 (1), 2023.

27. A. A. Novotny and J. Sokolowski, An introduction to the topological derivative method.
Springer, 2020

28. X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: regularity
up to the boundary, Journal de Mathématiques Pures et Appliquées. 101 (3) (2014),
275-302.

29. X. Ros-Oton and J. Serra, Boundary regularity for fully monlinear integro-differential
equations. Duke Math. J. 165 (2016), 2079-2154.

30. X. Ros-Oton and J. Serra, Regularity theory for general stable operators, Journal of
Differential Equations. 260 (12) (2016), 8675-8715.

31. G. I. Sadio, A. Seck, and D. Seck, Numerical and theoretical analysis for optimal shape
inverse problems, In Nonlinear Analysis, Geometry and Applications: Proceedings of the
Second NLAGA BIRS Symposium, Cap Skirring, Senegal, January 25-30, 2022. Springer,
(2022), 275-315.

32. V. H. Schulz, M. Siebenborn, and K. Welker, Structured inverse modeling in parabolic
diffusion problems, SIAM Journal on Control and Optimization. 53 (6) (2015), 3319-
3338.

33. V. H. Schulz, M. Siebenborn, and K. Welker, Towards a lagrange-newton approach for
pde constrained shape optimization, New Trends in Shape Optimization. (2015), 229-249.

34. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization,
SIAM journal on control and optimization. 37 (4) (1999), 1251-1272.

35. J. Sokolowski, and J.-P. Zolésio, Introduction to shape optimization. Springer, 1992.

36. K. Sturm, Minimaz lagrangian approach to the differentiability of monlinear pde con-
strained shape functions without saddle point assumption, STAM Journal on Control and
Optimization. 53 (4) (2015), 2017 2039.

37. M. Warma, The fractional relative capacity and the fractional Laplacian with neumann
and robin boundary conditions on open sets, Potential Analysis. 42 (2015), 499-547.

Received: 16.06.2025
Accepted: 30.08.2025



	1. Introduction
	2. Preliminaries
	2.1. On the Fractional Problem
	2.2. Some initial results for the minmax method

	3. Existence of Optimal Shape
	3.1. Existence by compactness
	3.2. Existence under the - cône property

	4. Shape and Topological Derivative via Minmax Method
	4.1. Shape derivative 
	4.2. Topological Derivative
	Conclusion

	References

