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Abstract— Effective prediction of electric power demand is critical for maintaining the stability and reliability of the energy supply in both
residential and industrial sectors. Accurate energy demand forecasting is essential for balancing consumption needs with grid stability.
However, the complexity of energy consumption data, influenced by a variety of factors, makes this forecasting challenging. Traditional
methods often struggle to capture the intricacies of such complex data, highlighting the need for more advanced and adaptable approaches.
In this research, we propose a novel solution based on a Bagging ensemble of Multi-Layer Perceptron (MLP) and Long Short-Term Memory
(LSTM) networks, combined through a voting mechanism to improve the accuracy and generalization ability of the model. Metaheuristic
methods, including Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), are employed for optimal hyperparameter tuning
of the LSTM. Unlike many existing studies that rely on proprietary or limited datasets, this approach uses publicly available data from
the Electric Power Consumption dataset of Tetouan city (01-01-2017 to 12-31-2017), making it more accessible and applicable to broader
contexts. It also enhances prediction performance by combining the results of multiple models, allowing for a more robust and accurate
prediction of energy consumption. Experimental results demonstrate that the proposed approach significantly outperforms existing machine
learning and deep learning methods.
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NOMENCLATURE

GA Genetic Algorithm
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multi-Layer Perceptron
MSE Mean Absolute Error
MSLE Mean Squared Logarithmic Error
PSO Particle Swarm Optimization
r2 Coefficient of Determination
RMSE Root Mean Squared Error

1. INTRODUCTION

In today’s world, with the development of human society,
economic growth, and population growth, the need for various
amenities in the domestic, industrial, and transportation sectors
has increased in societies. In this regard, the vital need for
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energy and meeting the energy demand of various sectors has
become very important [1]. Generally, the supply and demand
are managed by scheduling on the generation side [2]. Accurate
forecasting of demand is a vital issue for any organization so that
it can respond to existing needs at the right time with proper
planning and achieve maximum efficiency. Demand depends on
many factors such as price, time, and place. If the supply of
energy exceeds demand, the maintenance and storage costs lead
to an increase in costs. On the other hand, supply falling short
of demand when the energy is in high demand causes economic
problems and creates a lot of dissatisfaction [3]. Accurate forecasts
of total electricity demand can contribute to grid stability, system
performance, reliability and safety through the detection of
irregular events, leading to the possibility of online planning at
higher levels and minimizing consumer dissatisfaction caused by
unmet demand. Conducting studies focused on forecasting energy
consumption using different techniques for different countries,
especially developing countries, is significant. Accurate forecasting
of this issue depends on several parameters that are related to
issues such as economic and political conditions of the country,
weather and market fluctuations. Accurate identification of these
features has a strong impact on energy consumption prediction.
The next issue that is very important to solve this problem is
choosing a suitable modeling method. The main challenge in this
field is the non-linear relationship between most of the input and
output variables in such a way that it is not possible to find
a precise mathematical relationship between the variables. The
modeling method should be able to predict future events with the
available data and perform well in the performance criteria [4].
Simple linear models and many existing statistical models cannot
interpret complex nonlinear relationships, and the influence of
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outliers in the data can hinder the accuracy of predictions in these
models. Research in this area has shown that artificial intelligence
and machine learning have significantly contributed to the accurate
estimation of aggregate demand [5]. Machine learning methods
are valuable techniques that have had a profound impact on a
wide range of applications and system automation and have been
used in the modernization of industrial systems. Building machine
learning models that incorporate existing recorded data allows
accurate energy consumption estimation based on reality [6]. In
fact, machine learning makes it possible to feed a huge amount
of data to a computer algorithm and force the computer to make
predictions based on the input data alone. This research presents
an innovative approach using an ensemble method that combines
Bagging models with MLP and LSTM, which are adjusted with
metaheuristic algorithms. The goal of this approach is to improve
prediction accuracy and model generalization. By leveraging
publicly available data, the proposed method compares prediction
performance with existing machine learning and deep learning
methods. The novelty of this approach lies in the integration of
multiple prediction models using an ensemble technique, combined
with hyperparameter optimization through metaheuristics, which
together provide a stronger and more accurate forecasting solution.
Next, in the Section 2, a number of methods that have recently
been used to solve this problem are examined. Section 3 introduces
the dataset used in the research. In Sectioin 4, the proposed system
of this research and the details of its different parts are described.
In Section 5, the simulation environment, implementation details,
and computational resources used in this study are described. In
Sectioin 6, the results obtained from the proposed system and its
comparison with other methods are presented. Finally, conclusions
are reported in Section 7.

2. LITERATURE REVIEW

In research [7] a method was proposed that uses Stacked
Auto Encoders (SAE) to extract building energy consumption
characteristics and Extreme Learning Machine (ELM) to predict
energy consumption. The results of this research were analyzed
on data from a retail building in Fremont, California, and showed
that this method had the best predictive performance compared
to the popular machine learning method. In the research [8], a
new method based on the kNN (k-nearest neighbor) algorithm was
proposed to predict energy demand and tested using real data. In
this method, the user can interact with the system by analyzing
the prediction and identifying the input parameters. The results
obtained from the scenarios investigated in this method show its
acceptable accuracy. In the article [9], a hybrid method based on
faster k-medoids clustering, support vector machine and artificial
neural network is proposed for device consumption forecasting and
peak demand forecasting. This method was able to achieve 99.2%
accuracy in predicting the consumption of electrical appliances,
which is a very good result. In the article [10], a method was
proposed to predict future electricity consumption for residential
households, in which Gaussian mixture clustering is used to
identify behavior clusters and XGBoost method is used to predict
the behavior pattern of the future day. This method reached a
value of 0.633 in the EDA metric based on the Euclidean distance,
which is a good output.In the research [11] proposed ARIMAX,
BOA-SVR, and BOA-NARX models to forecast annual electricity
consumption in Saudi Arabia. In this research, the pre-processing
operation was done by determining the important features and the
Bayesian optimization algorithm (BOA) was used to improve the
meta-parameters of the model. Among the investigated methods,
the BOA-NARX method has the best performance with a
MAPE value of 0.3219. In research [12], forecasting techniques
based on time series, machine learning and hybrid models were
implemented for load forecasting in Korea. SARIMAX time series
model, ANN, SVR and LSTM machine learning models and
SARIMAX-ANN, SARIMAX-SVR and SARIMAX-LSTM hybrid

models were investigated. The obtained results showed that the
combined methods work better than the time series and machine
learning approaches. LSTM-based methods have also performed
best among their group. In the paper [13], JLSTM model was
proposed to predict electric load and price in big data. In the
pre-processing stage, various techniques such as z-score method,
Jaya optimization method, and normalization were applied on the
data. The comparison of this method with other techniques such
as LSTM and SVM showed the superiority of this method. In the
article [14], a method based on Convolutional Neural Networks
(CNN) and Long Short Term Memory (LSTM) was proposed to
predict electricity consumption in smart homes. In this method,
gray wolf optimization (GWO) is used to improve the performance
of CNN-LSTM model. The implementation results showed that the
proposed method of this research obtains fewer errors compared
to the basic models. In the study [15], a total of 19 machine
learning models were examined for the initial selection of models
and a model based on stacking was proposed. Feature selection
was done in the investigated data set by achieving two effective
features. The obtained results showed that the proposed method
based on stacking with all available features performs better than
other implemented methods and the combination of other features.
In the article, deep learning algorithms including long short-term
memory (LSTM), gated recurrent units (GRU) and recurrent neural
networks (RNN) were used to build prediction models for accurate
estimation of electric load. The implementation results showed that
the GRU model, which is actually a type of RNN, achieved the best
performance in terms of accuracy and the least error. The paper
[16] introduced a new method for electricity demand forecasting
by combining PSO for feature extraction and CNN-MRMR for
model training. The model achieved an accuracy of 97.20%.

In the paper [17], the ICEEMDAN-LSTM-TCN-Bagging model
was proposed for short-term load forecasting methods. This
model combines ICEEMDAN for data decomposition, LSTM-
TCN for feature extraction. Experimental results show that the
proposed model outperforms traditional methods and achieves
higher forecasting accuracy with a root mean square error of
31.47 kW. In the study [18] a hybrid building load prediction
method for office buildings was proposed. The approach uses
EnergyPlus to generate a comprehensive building load database
and uses the LightGBM algorithm to identify key feature variables
for load prediction. Validation in real office buildings shows
promising results, with a MAPE of 12.42% and 7.97% for cooling
and heating load prediction, respectively. In the study [19], a
hybrid forecasting model combining GEP and ANFIS is proposed
for predicting electrical load demand in industries, which offers
high accuracy with reduced errors and lower computation time
compared to standalone models. This model was tested using
real-time electrical load data from Uganda and achieved an RMSE
of 0.0007.

Table 1 summarizes the information and results obtained from
the reviewed methods. In this table, in addition to the characteristics
of the research, the method used in it, the data used in the research
and the results recorded in it are also specified.

Recent research advancements in energy load forecasting have
focused on improving prediction accuracy, computational efficiency,
and model robustness. Studies such as those by [16] and [17]
have explored new hybrid models by combining optimization
techniques with deep learning methods to enhance load forecasting
performance. These advancements highlight the increasing reliance
on data-driven approaches to manage the growing electricity
demand in industrial and residential sectors. Despite the impressive
results of these newer models, challenges remain, such as the
need for high-quality, real-time data and the complexity of model
integration. Additionally, many studies rely on proprietary or
limited-access datasets, which may not be easily replicable or
applicable to all regions or industries.

In this context, the present study proposes a new model
that aims to improve prediction accuracy and generalization
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Table 1. Comparison of previous works.

Research Method Data collection Evaluation
[7] SAE-ELM A retail building in Fremont, California RMSE / 59.1812
[8] KNN The German municipal utility in the SIT4Energy project MAPE / 5.77%
[9] Aster k-medoids clustering + SVM + ANN Information of 550 households Accuracy / 99.2%

[10] Gaussian mixture clustering + XGBoost 500 residential users in a region of southeastern Spain EDA / 0.633
[11] BOA–NARX TEC data of the Kingdom of Saudi Arabia MAPE / 0.3219
[12] SARIMAX + LSTM Data of Korea was collected from KPX RMSE / 3093.37
[13] JLSTM Big data from different resources (microgrids, smart buildings, smart meters, EVs, factories) RMSE / 0.02
[14] CNN-LSTM-GWO Smart home energy consumption dataset RMSE / 0.6213
[15] Stacking Historic data from 1975–2019 in Turkey R-squared / 0.99
[20] GRU Tubas electricity company—palestine MSE / 0.00215
[16] PSO + CNN-MRMR Power plant units data Accuracy / 97.20%
[17] ICEEMDAN-LSTM-TCN-bagging Different load forecasting datasets Root mean square error / 31.47
[18] LightGBM Real office buildings data MAPE / 12.42% and 7.97% (cooling and heating load)
[19] GEP-ANFIS-LTLF Real-time electrical load data from Uganda RMSE / 0.0007

capability by combining multiple prediction results. Furthermore,
by using publicly accessible data, it provides a pathway for
future research to refine and expand existing methods, ensuring
continuous improvement and broader application. By leveraging
publicly available data, this model bridges a significant gap in
energy forecasting for developing regions and demonstrates its
practical viability in real-world industrial settings.

3. DATA SET AND DATA PREPROCESSING

In this research, the Electric Power Consumption dataset is used.
This dataset is widely utilized in the field of energy consumption
analysis and prediction. It is particularly valuable for researchers
and data scientists working on developing algorithms and models
to forecast energy consumption patterns. The dataset contains
energy consumption data from the city of Tetouan, Morocco,
which is located in the northern part of the country, near the
Mediterranean Sea. The city experiences a mild and rainy climate
in winter and a hot, dry climate in summer. The dataset consists of
52,416 observations, each representing energy consumption over a
10-minute interval. This data was collected between 01-01-2017
and 31-12-2017. The dataset includes 9 features recorded for each
sample, which can help in understanding the factors influencing
energy consumption. These features may include variables such
as temperature, humidity, wind speed, and other relevant metrics.
By analyzing these features, researchers can identify patterns and
relationships between them and energy consumption, which can be
used to build more accurate predictive models.

This dataset has been widely used in numerous studies and
research papers to develop and evaluate energy consumption
forecasting models, which have significant implications for energy
management, resource allocation, and overall sustainability efforts.
Some examples of this dataset are presented in Table 2.

To utilize this dataset in research, a preprocessing and feature
engineering phase is conducted. In this stage, attributes such as
hour, day of the week, quarter, and month are extracted from the
date and time. Additionally, simple moving averages for 10-day,
15-day, and 30-day periods are calculated from the data. The final
characteristics obtained in the dataset used for this research are
shown in Table 3. In this table, some of the examples in the
dataset are given.

4. PROPOSED SYSTEM

Since artificial intelligence techniques have demonstrated
significant performance in the field of energy consumption
prediction, this research investigates the efficiency of basic
machine learning and deep learning methods to address this
problem. The proposed method combines both machine learning
and deep learning models to create a more accurate and robust
prediction system. The final prediction results are obtained through
an ensemble approach that leverages the performance of multiple
models. The method involves an ensemble technique where the
predictions from various models are combined using a weighted
average approach to generate the final prediction. The general

structure of the proposed method is presented in Fig. 1, which
outlines the main steps of data preparation, model training, and
final prediction. The system is structured as follows:

Data pre-processing: After obtaining the raw data,
preprocessing steps are performed, including normalization,
handling missing values, and transforming the data into a
suitable format for training.

Data splitting: The dataset is split into two categories: training
and testing data. Model Training: The LSTM model, adjusted
with PSO and GA, is trained on the training data. Additionally,
two Bagging regression models based on MLP are applied to the
training dataset.

Model aggregation: After obtaining predictions from all models,
a final result is computed using an averaging-based voting method.
This helps to combine the strengths of each model and minimize
the error.

Bagging regressor based MLP 1

Historical Dataset

Data split

Testing DatasetTraining Dataset

Sub Training set 1 Sub Training set nSub Training set 2

Weak MLP model 1 Weak MLP model nWeak MLP model 2

Sub Result 1 Sub Result nSub Result 2

Arithmetic mean

Apply the training models on testing data

Final prediction results

Weak MLP model 2

Data preprocessing

LSTM method adjusted using PSO &GA

Bagging regressor based MLP 2

Sub Training set 1 Sub Training set nSub Training set 2

Weak MLP model 1 Weak MLP model nWeak MLP model 2

Sub Result 1 Sub Result nSub Result 2

Arithmetic mean

Weak MLP model 2

Average voting

 

Fig. 1. Flowchart of proposed system.

4.1. Bagging regressor models based on MLP
A Multilayer Perceptron (MLP) is a type of fully connected

artificial neural network that includes an input layer, one or more
hidden layers, and an output layer. The MLP performs a series of
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Table 2. Examples of data in the electric power consumption dataset.

Date time 1/1/2017 0:00 1/1/2017 0:10 1/1/2017 0:20 1/1/2017 0:30 1/1/2017 0:40
Temperature (◦C) 6.559 6.414 6.313 6.121 5.921
Humidity (%) 73.8 74.5 74.5 75 75.7
Wind speed (m/s) 0.083 0.083 0.08 0.083 0.081
General diffuse flows 0.051 0.07 0.062 0.091 0.048
Diffuse flows 0.119 0.085 0.1 0.096 0.085
Power consumption_Zone1 (W) 34055.6962 29814.68354 29128.10127 28228.86076 27335.6962
Power consumption_Zone2 (W) 16128.87538 19375.07599 19006.68693 18361.09422 17872.34043
Power consumption_Zone3 (W) 20240.96386 20131.08434 19668.43373 18899.27711 18442.40964

Table 3. New features in the dataset after feature engineering.

Date time 1/1/2017 0:00 1/1/2017 0:10 1/1/2017 0:20 1/1/2017 0:30 1/1/2017 0:40
Temperature 6.559 6.414 6.313 6.121 5.921
Humidity 73.8 74.5 74.5 75 75.7
Wind speed 0.083 0.083 0.08 0.083 0.081
General diffuse flows 0.051 0.07 0.062 0.091 0.048
Diffuse flows 0.119 0.085 0.1 0.096 0.085
Power consumption_Zone1 34055.6962 29814.68354 29128.10127 28228.86076 27335.6962
Power consumption_Zone2 16128.87538 19375.07599 19006.68693 18361.09422 17872.34043
Power consumption_Zone3 20240.96386 20131.08434 19668.43373 18899.27711 18442.40964
Hour 0 0 0 0 0
Day Of week 6 6 6 6 6
Quarter 1 1 1 1 1
Month 1 1 1 1 1
Year 2017 2017 2017 2017 2017
Day Of year 1 1 1 1 1
Day Of month 1 1 1 1 1
Week Of year 52 52 52 52 52
SMA10 NaN NaN NaN NaN NaN
SMA15 NaN NaN NaN NaN NaN
SMA30D NaN NaN NaN NaN NaN

non-linear transformations on the input feature set, which allows it
to capture complex patterns and relationships in the data, making
it highly effective for regression tasks [21].

The method of Bagging regression models based on MLP
involves several MLP regressors, each trained on a random subset
of the data. In Bagging, sampling is performed with replacement
to create different training subsets. The predictions from each
regressor are then aggregated to generate the final prediction.
This process helps reduce the variance of the model and improve
prediction stability.

In this study, the number of MLP sub-regressors is denoted
by N . A larger N increases the model’s potential to capture
more diverse patterns, leading to improved accuracy. However, the
model complexity and training time also increase with a larger
N . Based on empirical testing, the value of N was set to 10 in
the first model and 20 in the second model. The MLP regressors
in both models were trained using 10 and 20 different data sets,
respectively, achieving satisfactory results.

4.2. LSTM model adjusted with PSO and GA
The Long Short-Term Memory (LSTM) network is specifically

chosen for its proficiency in handling sequential data due to its
unique architecture, which includes memory cells that capture
and retain temporal dependencies. LSTM networks are especially
well-suited for time-series forecasting because of their ability to
model long-term dependencies in sequential data [22].

In machine learning, hyperparameters are predefined settings
that are not learned during the training process but must be set by
the user before training. The performance of the LSTM model is
highly dependent on the selection of appropriate hyperparameters.
Key hyperparameters in the LSTM model include the number of
hidden layers, the number of LSTM units per layer, and other
settings that directly impact model performance.

The primary objective of hyperparameter tuning is to identify
the optimal hyperparameter values to enhance model performance.
To achieve this, PSO and GA are employed in the proposed system
for hyperparameter optimization. As shown in Fig. 2, both PSO
and GA independently search for a set of optimal hyperparameters
and generate models that minimize the error when validated against
independent data. The final model is selected based on the highest
prediction accuracy and the lowest error, which is then used to
fine-tune the LSTM model’s hyperparameters.

5. SIMULATION ENVIRONMENT

The implementation was conducted in Python, utilizing libraries
such as pandas, numpy, matplotlib, seaborn, scikit-learn, xgboost,
and tensorflow.keras. Dataset details are provided in Section 3,
with 70% of the data used for training and 30% for testing.

For neural networks, we evaluated different solvers, including
lbfgs, sgd, and adam, and ultimately selected Adam as the
optimizer due to its superior performance. The experiments were
executed on a system with an Intel Core i7 processor, 16GB RAM,
and a Linux/Windows operating system.

Additionally, we conducted some tests using “Google Colab”,
which provides cloud-based computational resources. The hardware
configuration of Google Colab includes:

• CPU: Intel Xeon (2 vCPUs, 2.2 GHz)
• RAM: Up to 12GB (depending on runtime allocation)
• GPU: NVIDIA Tesla T4 (16GB VRAM) or NVIDIA Tesla

K80 (12GB VRAM), depending on session availability

Using Google Colab allowed us to leverage GPU acceleration for
training deep learning models, improving computational efficiency.
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Figure 2: Adjusting LSTM parameters using PSO and GA 

 

 

Fig. 2. Adjusting LSTM parameters using PSO and GA.

Table 4. Obtained values for adjusting LSTM parameters based on PSO
and GA methods.

Layer (type) Output shape Param #
lstm (LSTM) (None, 16) 1152

dense_3 (Dense) (None, 10) 170
dense_4 (Dense) (None, 8) 88
dense_5 (Dense) (None, 3) 27
dense_6 (Dense) (None, 1) 4

Total params: 1,441
Trainable params: 1,441
Non-trainable params: 0

6. RESULTS

In this section, the results obtained from the proposed research
system and its comparison with the basic methods reviewed are
presented. The performance of the proposed system has been
evaluated using a range of criteria, including explained variance,
MSLE, R2, MAE, MSE, RMSE, and MAPE, which provide a
comprehensive overview of the model’s accuracy, robustness, and
ability to generalize. Below is a brief definition of each of the
criteria used. In the following equations, Y are the actual values,
Ŷ are the predicted values, and n is the number of samples.

Explained variance: This metric measures the difference
between the target variance (the variation in the actual data)
and the prediction error variance (the variation in the differences
between the predicted and actual values). An upward trend in
explained variance indicates that the model is improving in
explaining the variation in the data.

EV = 1− Var(Y − Ŷ )

Var(Y )
(1)

MSLE (Logarithmic Mean Square Error): MSLE is used to
evaluate the performance of a model, especially for regression
problems. It calculates the mean square error after taking the

Table 5. The results of LSTM adjusted with GA and PSO.

Evaluation criteria Train results Test results
Explained_variance 0.9631 0.9596

MSLE 0.002 0.0017
r2 0.9569 0.9596

MAE 1011.8132 856.1678
MSE 2294596.6789 1761456.6761

RMSE 1514.7926 1327.1988
MAPE 0.9695 0.972

Table 6. The results of proposed system LSTM adjusted with GA and PSO.

Evaluation criteria LSTM tuned with GA and PSO Proposed system
Explained_variance 0.9596 0.9728

MSLE 0.0017 0.0013
r2 0.9596 0.9718

MAE 856.1678 760.9908
MSE 1761456.6761 1229701.8233

RMSE 1327.1988 1108.9192
MAPE 0.972 0.9302

natural logarithm of each predicted value. A lower MSLE value
suggests better model performance.

MSLE =
1

n

n∑
i=1

(log(yi + 1)− log(ŷi))
2 (2)

R2 (Coefficient of Determination): R2 measures how well the
regression model fits the data A higher R2 value (ranging from 0
to 1) means the model explains more of the variation in the data,
leading to a better fit.

R2(Y, Ŷ ) = 1−
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi − Y )2
(3)

MAE (Mean Absolute Error): MAE calculates the average
absolute difference between the predicted and actual values. It
measures the average magnitude of the errors made by the model.
Lower MAE values indicate better model performance.

MAE(Y, Ŷ ) =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (4)

MSE (Mean Squared Error): MSE is the average of the squared
differences between the true and estimated values. Like MAE, it
measures the average magnitude of the errors made by the model.
Lower MSE values suggest better model accuracy.

MSE(Y, Ŷ ) =
1

n

n∑
i=1

(Yi − Ŷi)
2 (5)

RMSE (Root Mean Square Error): RMSE is the square root of
MSE. It provides a measure of the average difference between
the model’s predicted values and the actual values. Lower RMSE
values indicate better model predictions.

RMSE(Y, Ŷ ) =

√
MSE(Y, Ŷ ) =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)
2

(6)

MAPE (Mean Absolute Percentage Error): MAPE calculates
the average absolute percentage difference between the predicted
and actual values. It expresses the error as a percentage, making
it useful for comparing models across different scales. A lower
MAPE value signifies better forecast accuracy.
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Table 7. Results of CNN, XGBRegressor, SVR, RandomForestRegressor and proposed system.

Evaluation criteria CNN XGB regressor SVR Random forest regressor Proposed system
Explained variance 0.9183 0.4306 0.8464 0.9728 0.948

MSLE 0.0033 0.031 0.0069 0.0013 0.003
r2 0.9158 0.3827 0.846 0.9718 0.932

MAE 1336.7707 4276.7629 2086.55 760.9908 1368.9875
MSE 3673252.7289 26915794.5338 6714329.5133 1229701.8233 2963509.9815

RMSE 1916.5732 5188.0434 2591.2023 1108.9192 1721.4848
MAPE 0.9573 0.8475 0.9315 0.9302 0.9553

1229701.823

3 

6714329.5133 26915794.533

8 

3673252.7289 2963509.981

5 

MSE 

1108.9192 2591.2023 5188.0434 1916.5732 1721.4848 RMSE 

0.9302 0.9315 0.8475 0.9573 0.9553 MAPE 

 

 

Figure 3. Comparison charts of methods in Explained_variance, MSLE, r2 andMAE criteria. 

Fig. 3. Comparison charts of methods in explained_variance, MSLE, r2, and MAE criteria.

MAPE(Y, Ŷ ) =
100

n

n∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ (7)

6.1. Results of LSTM tuned with GA and PSO
In this section, the results obtained from the adjusted LSTM

method using PSO and GA methods are presented. By running
the PSO and GA methods to obtain the best values for the
hyperparameters, the same results were obtained that were used to
adjust the LSTM. The Table 4 shows the values obtained for the
hyperparameters of the LSTM method. The number of layers and
the number of neurons in them are among those whose optimal
values are determined by PSO and GA methods. By adjusting
the LSTM parameters based on these values, the results presented
in the Table 5 have been obtained using the LSTM method. In
this table, different criteria are presented in the training and test
data. Obtaining good results in different criteria shows the good
performance of LSTM method. However, in order to obtain more

suitable results in the proposed system, a method based on voting
has been proposed, in which this LSTM method adjusted with
PSO and GA methods acts as a part of it. It is expected that the
final results will improve significantly.

In this section, the results obtained from the adjusted LSTM
method using PSO and GA methods are presented. By running
the PSO and GA methods to obtain the best values for the
hyperparameters, the same results were obtained that were used to
adjust the LSTM.

The Table 4 presents the values obtained for the hyperparameters
of the LSTM method, including the number of layers and neurons.
These were optimized using PSO and GA methods to achieve
the best performance. The fine-tuned LSTM model, using these
methods, demonstrated strong predictive power as shown in Table
5. Compared to basic methods, the LSTM method achieved
optimal values in several evaluation metrics, such as explained
variance and R2, which are indicative of the model’s effectiveness
in capturing the underlying patterns in the data.
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6.2. Results of proposed system
In this section, the results obtained from the proposed system

are presented. Table 6 compares the performance of the proposed
system to the LSTM model adjusted with PSO and GA methods.
It is evident that the proposed system significantly outperforms
the individual LSTM model across all the evaluation criteria.
Specifically, the proposed method achieves higher values in
explained variance and R2, and lower values in MSLE, MAE,
MSE, RMSE, and MAPE. These improvements suggest that the
proposed ensemble approach, which integrates the LSTM model,
leads to more accurate and stable predictions by reducing the error
in forecasting.

 

Figure 4. Comparison charts of methods in MSE, RMSE and MAPE criteria. 

The results obtained from this study highlight the superiority of the proposed system in comparison 

to basic machine learning models. The proposed system integrates three models: the LSTM model 

fine-tuned using PSO and GA, and two Bagging-based MLP regression models. These models are 

combined using an averaging-based voting method, which enables the system to leverage the 

strengths of each individual model for improved overall performance. 

The results show that the proposed ensemble approach outperforms the individual LSTM model 

in all key evaluation metrics, including explained variance, R², MAE, MSE, RMSE, and MSLE. 

The increase in explained variance and R² indicates that the proposed system is better able to 

capture the underlying patterns in the data, leading to more accurate predictions. Furthermore, the 

reduction in error metrics such as MAE, MSE, RMSE, and MSLE confirms the enhanced accuracy 

and robustness of the ensemble system. 

 

Figure 4. Comparison charts of methods in MSE, RMSE and MAPE criteria. 

The results obtained from this study highlight the superiority of the proposed system in comparison 

to basic machine learning models. The proposed system integrates three models: the LSTM model 

fine-tuned using PSO and GA, and two Bagging-based MLP regression models. These models are 

combined using an averaging-based voting method, which enables the system to leverage the 

strengths of each individual model for improved overall performance. 

The results show that the proposed ensemble approach outperforms the individual LSTM model 

in all key evaluation metrics, including explained variance, R², MAE, MSE, RMSE, and MSLE. 

The increase in explained variance and R² indicates that the proposed system is better able to 

capture the underlying patterns in the data, leading to more accurate predictions. Furthermore, the 

reduction in error metrics such as MAE, MSE, RMSE, and MSLE confirms the enhanced accuracy 

and robustness of the ensemble system. 

 

Figure 4. Comparison charts of methods in MSE, RMSE and MAPE criteria. 

The results obtained from this study highlight the superiority of the proposed system in comparison 

to basic machine learning models. The proposed system integrates three models: the LSTM model 

fine-tuned using PSO and GA, and two Bagging-based MLP regression models. These models are 

combined using an averaging-based voting method, which enables the system to leverage the 

strengths of each individual model for improved overall performance. 

The results show that the proposed ensemble approach outperforms the individual LSTM model 

in all key evaluation metrics, including explained variance, R², MAE, MSE, RMSE, and MSLE. 

The increase in explained variance and R² indicates that the proposed system is better able to 

capture the underlying patterns in the data, leading to more accurate predictions. Furthermore, the 

reduction in error metrics such as MAE, MSE, RMSE, and MSLE confirms the enhanced accuracy 

and robustness of the ensemble system. 

Fig. 4. Comparison charts of methods in MSE, RMSE, and MAPE criteria.

6.3. Comparison with basic methods
To compare the proposed system, methods such as

CNN, XGBRegressor, SVR, and RandomForestRegressor were
implemented. Table 7 clearly shows that the proposed method
significantly outperforms these basic methods in most of the
criteria, indicating its superiority in making accurate predictions.
The only exception is the MAPE metric, where SVR outperforms

the proposed system. However, this should not overshadow the
overall performance of the proposed method, which excels in other
important criteria, such as R2 and explained variance.

The comparison charts in Figs. 3 and 4 provide a visual
representation of how the proposed system compares with other
methods. These charts illustrate the trends and differences in
performance across various evaluation criteria, providing clear
evidence of the proposed method’s strengths.

The results obtained from this study highlight the superiority
of the proposed system in comparison to basic machine learning
models. The proposed system integrates three models: the LSTM
model fine-tuned using PSO and GA, and two Bagging-based
MLP regression models. These models are combined using an
averaging-based voting method, which enables the system to
leverage the strengths of each individual model for improved
overall performance.

The results show that the proposed ensemble approach
outperforms the individual LSTM model in all key evaluation
metrics, including explained variance, R2, MAE, MSE, RMSE, and
MSLE. The increase in explained variance and R2 indicates that
the proposed system is better able to capture the underlying patterns
in the data, leading to more accurate predictions. Furthermore, the
reduction in error metrics such as MAE, MSE, RMSE, and MSLE
confirms the enhanced accuracy and robustness of the ensemble
system.

Compared to basic methods like RandomForestRegressor,
XGBRegressor, and SVR, the proposed system demonstrates a
clear advantage. While the SVR method achieves a lower MAPE,
it performs significantly worse in the other criteria, particularly
explained variance and R2, where the proposed system excels.
This highlights the importance of using multiple evaluation metrics
to assess model performance comprehensively. The use of the
averaging-based voting method helps to mitigate the weaknesses
of individual models. The key strength of the proposed system
lies in the ensemble approach, where the combination of multiple
models, each capturing different aspects of the data, leads to a
more reliable and stable prediction.

7. CONCLUSION
In this research, we propose a novel method for predicting

energy consumption using a voting-based ensemble approach that
integrates multiple machine learning techniques. The combination
of different models reduces errors, improves prediction accuracy,
and enhances the robustness of the system. The dataset was
pre-processed by extracting time-related features (e.g., hour, day
of the week, month) and computing rolling averages (10-day,
15-day, 30-day) from the original data. We employed an LSTM
model optimized through PSO and GA, along with two Bagging
Regressor models based on MLP with different architectures. The
results of these three models were combined using an averaging
method to produce the final predictions. The experimental results
demonstrated that the proposed ensemble method significantly
outperforms individual machine learning techniques, proving its
effectiveness in energy consumption forecasting. This approach is
especially useful in real-world scenarios where data varies and
demand forecasting must be adaptable. Future work can focus on
incorporating additional external features and extending the dataset
to multiple regions. While our dataset includes essential variables
such as temperature, humidity, wind speed, and solar radiation,
there are other factors that could potentially improve prediction
accuracy. Data on seasonal trends, public holidays, and events
that influence energy consumption patterns could be incorporated.
These features, combined with real-time data from smart sensors
or IoT devices, would provide richer insights into consumption
behavior and improve the robustness of the predictive model.
Furthermore, the current model relies on data from a single city,
Tetouan. Expanding the dataset to include data from multiple
cities or regions with different demographic and environmental
characteristics would make the model more generalizable.
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