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ABSTRACT

Let R be an associative ring with identity. The ring
R is called ZG-regular (resp. strongly ZG-regular) if,
for every a ∈ R, there exist positive integer n and g ∈
G, such that ang ∈ angRang (resp. ang ∈ a(n+1)gR).
In this paper, we shall show that the join of all ZG-
regular ideals in an arbitrary ring R is a ZG-regular
ideal, and so there exists a unique maximal ZG-regular
ideal M = M(R) in R, whose structure we investigate.
Furthermore, we establish the necessary and sufficient
condition for a ring to be a direct sum of its ideals.
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1. Introduction

Let R be an associative ring with identity. A group action (or just action) of G on X is a

binary operation:

µ : X ×G 7−→ X

(If there is no fear of confusion, we write µ(x, g) simply as by xg ) such that

(I) (xg)h = xgh for all x ∈ X and g, h ∈ G,

(II) x1 = x for all x ∈ X.

Following [12], we say that R is ZG-regular if, for every a ∈ R, there exist positive integer
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n and g ∈ G, such that ang ∈ angRang. A typical example is the class of classical π-regular

rings. In a similar way, a ring R is said to be strongly ZG-regular if, for every a ∈ R, there

exist positive integer n and g ∈ G, such that ang ∈ a(n+1)gR. For examples locally finite

ring and the ring of all n× n matrices and the n× n lower (upper) triangular matrices over

locally finite ring R are strongly ZG-regular rings.

For a more detailed information about ZG-regular rings and strongly ZG-regular rings, we

refer interested reader to [12].

The standard notations J(R), M(R), Rn will stand for the Jacobson radical, a unique

maximal ZG-regular ideal, the complete matrix ring of order n over R, respectively. We

also denote by M∗ the ideal consisting of all elements a of R such that aM = Ma = 0.

Recall an element x of R is called regular (unit regular) if there exists y ∈ R (a unit u ∈ R)

such that xyx = x (xux = x). Some properties of regular rings and strongly regular has

been studied in [6, 9].

An element x ∈ R is said to be π-regular if there exist y ∈ R and a positive integer n such

that xn = xnyxn. An element x ∈ R is said to be strongly π-regular if xn = x2ny. The ring

R is π-regular if every element of R is π-regular and is strongly π-regular if every element

of R strongly π-regular. By a result of Azumaya [2] and Dischinger [8], the element x can

be chosen to commute with y. In particular this definition is left-right symmetric. π-regular

and strongly π-regular rings, are studied in particular in [1-5, 7].

Also in a ZG-regular ring, we define:

(ag)h = agh for all a ∈ R and g, h ∈ G,

a1 = a for all a ∈ R,

[aij ]
ng =

[
angij

]
,

ag1+g2 = ag1ag2 ,

(xi)
g
i∈I = (xi

g)i∈I

In this note, we first show that the join of all ZG-regular ideals in an arbitrary ring R is

ZG-regular ideal, and that there exists a unique maximal ZG-regular ideal M = M(R) in

R. Also we prove a few fundamental properties of M = M(R) in R. For example these are

the following properties:

Theorem 3.1: M(R/M(R)) = 0, Theorem 3.2: if B an ideal in R, M(B) = B ∩ M(B).

Theorem 3.3: if Rn is complete matrix ring of order n over R, then M(Rn) = (M(R))n. Also

as final consequence, we prove that, under the decending chain condition for right ideals, R

is experssible as a direct sum R = M +M∗, where M∗ is the ideal consisting of all elements

a ∈ R such that aM = Ma = 0.

2. Preliminaries

In this section, we present several lemmas and propositions that will be used in the sub-

sequent results.

Lemma 2.1. Let R be a ring with Jacobson radical J = J(R). Suppose that for all x ∈ R

and y ∈ J(R) we have xy = x(yx = x).Then x = 0.

Proof. Clearly from[15, Lemma 1]. □

Proposition 2.2. Every ZG-regular ring has zero Jacobson radical.
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Proof. Let a ∈ J , if there exist y ∈ R, n ∈ Z, g ∈ G such that ang = angyang. Since ang ∈ J

by Lemma 2.1 it follow that ang = 0 and thus a = 0. □

Proposition 2.3. A ZG-regular ideal I ∈ R is itself a ZG-regular ring.

Proof. For if a ∈ I, there exist an element y ∈ R, n ∈ Z, g ∈ G such that ang = angyang,

ang ∈ I. It follows that angyangyang = ang and yangy ∈ I, so ang is regular in the ring I,

therefore, by [16, Theorem 2.4], a is ZG-regular in the ring I. □

Lemma 2.4. Let y ∈ R such that ang − angyang = a′ and suppose that a′ is ZG-regular and

the group action satisfies (ay)g = agyg for all a, y ∈ R. Then a is ZG-regular.

Proof. Since ang − angyang = a′ then we have:

ang = a′ + angyang

= (a′n
′hbn

′
a′n

′h)n
′−1h−1

+ angyang

= a′bh
−1
a′ + angyang

= (ang − angyang)bh
−1
(ang − angyang)

+angyang

= (angbh
−1 − angyangbh

−1
)(ang − angyang)

+angyang

= angbh
−1
ang − angyangbh

−1
ang

−angbh
−1
angyang + angyangbh

−1
angyang

+angyang

= ang(bh
−1 − yangbh

−1 − bh
−1
angy

+yangbh
−1
angy + y)ang

Now by taking b = bh
−1 − yangbh

−1 − bh
−1
angy + yangbh

−1
angy + y, we have ang = angbang,

then a is ZG-regular. □

We shall indicate by (a) the principal ideal in R generated by a.

Proposition 2.5. If M is the set of all elements a of R such that the principal ideal (a) is

ZG-regular and satisfies the property (a + b)ng = ang + bng for all a, b ∈ R, n ∈ Z, g ∈ G,

then M is an ideal in R.

Proof. Let z ∈ M and t ∈ R. Then zt ∈ M , since (zt) ⊆ (z). Similarly, tz ∈ M . If

z, w ∈ (z − w), then a = u − v for some u ∈ (z) and v ∈ (w). Since(z) is ZG-regular, then

there exist r ∈ R and n ∈ Z, g ∈ G such that ung = ungrung, then

ang − angrang = (u− v)ng − (u− v)ngr(u− v)ng

= ung − vng − ungrung + ungrvng + vngrung − vngrvng

= −vng + ungrvng + vngrung − vngrvng

Since v ∈ (w), this shows that ang−angrang ∈ (w) and is therefore ZG-regular. By applying

Lemma 2.4, we conclude that a is ZG-regular, and z − w ∈ M . This completes the proof of

the theorem. □
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Lemma 2.6. Let R be a ZG-regular ring. Then Rn, complete matrix ring of order n over

R, is a ZG-regular ring.

Proof. The first being the proof for n = 2, and then the extension to arbitrary n. If r ∈ R,

let us denote by r′ an element of R and n ∈ Z, g ∈ G such that rngr′rng = rng. Now let

A =

[
a b

c d

]
be an arbitrary element of Rn. If we set

X =

[
0 0

b′ 0

]
and denote Ang −AngXAng by Bng, we have:

[
a b

c d

]ng

−

[
a b

c d

]ng [
0 0

b′ 0

][
a b

c d

]ng

=

[
ang bng

cng dng

]
−

[
ang bng

cng dng

][
0 0

b′ 0

][
ang bng

cng dng

]

=

[
ang bng

cng dng

]
−

[
bngb′ang bngb′bng

0 dngb′bng

]

=

[
ang − bngb′ang bng − bngb′bng

cng dngdngb′bng

]

=

[
ang − bngb′ang 0

cng dngdngb′bng

]

Upper simple calculation shows that Bng =

[
j 0

h i

]
for suitable choice of element j, h, i of R.

If Y =

[
j′ 0

0 i′

]
then Cng = Bng − BngY Bng =

[
0 0

k 0

]
, for k = cngj′(ang − bngb′ang) +

(dng − dngb′bng)i′cng of R. Finally, if Z =

[
0 k′

0 0

]
, we see that Cng − CngZCng = 0, since[

0 0

k 0

]
−

[
0 0

k 0

][
0 k′

0 0

][
0 0

k 0

]
=

[
0 0

k − k′kk 0

]
=

[
0 0

0 0

]
This means that C is ZG-regular and then by Lemma 2.4, B is ZG-regular. Again applying

Lemma 2.4, we see that A is ZG-regular, and this completes the proof for n = 2. Since

(R2)2 ∼= R4, it follows from the case just proved that R4 is ZG-regular, and similarly R2k

is ZG-regular for any positive integer k. Let n be an arbitrary positive integer. Choose an

integer k such 2k ⩾ n. If A ∈ Rn, let A1 be the matrix of R2k with A is the upper left-hand

corner and zeros else where. Now, as an element of R2k , A1 is ZG-regular, because there exist

an element X =

[
B C

D E

]
∈ R2k that (B ∈ Rn), g ∈ G and n ∈ Z such that Ang

1 = Ang
1 XAng

1 .

However, this implies that Ang = AngBAng and hence A is ZG-regular. The proof of the

lemma is therefore complete. □

Lemma 2.7. The only idempotent element in the Jacobson radical R is zero.
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Proof. Let α ∈ J(R) be an idempotent, i.e., α2 = α. Since 1 − α is a unit in R, then

α = 0. □

Lemma 2.8. Let I be an ideal of R. Then J(I) = I ∩ J(R).

Proof. The result follows from [13, Exercise 7, p. 68] □

Lemma 2.9. For any ring R, the following are equivalent.

1. For any a ∈ R, there exist x ∈ R, n ∈ Z, g ∈ G such that ang = angxang.

2. Every principal left(right) ideal is generated by an idempotent.

3. Every principal left(right) ideal is a direct summand of RR.

4. Every finitely generated left(right) ideal is generated by an idempotent.

5. Every finitely generated left(right) ideal is a direct summand of RR.

Proof. The equivalence (2) ⇔ (3) and (4) ⇔ (5) follows from standard arguments (See 13,

Exercise 7, P. 68).

Let us prove (1) ⇔ (2). Assume (1), let a ∈ R then there exist n ∈ Z, g ∈ G such that

ang ∈ R and consider a principal left ideal R.ang. Choose x ∈ R such that angxang = ang.

Then e := xang = xangxang = e2 and e ∈ R.ang while ang = angxang = ange ∈ R.e, so

R.ang = R.e. Conversely, assume (2) and let a ∈ R. Writing R.ang = R.e,where e = e2, we

have e = xang and ang = y.e for some x, y ∈ R. Then angxang = ye.e = ye = ang.

(4) ⇔ (2): since (4) obviously implies (2), it only remains to show that (2) ⇒ (4). By

induction, it suffices to show that, for any two idempotents e, f , I = Re+Rf is generated by

an idempotent. Now I = Re+Rf(1−e) andRf(1−e) = Re′ for some idempotent e′, for which

e′e ∈ Rf(1−e)e = 0. Thus e′(e′+e) = e′ which leads easily to I = Re+Re′ = R(e′+e). □

Lemma 2.10. A ring is semisimple if and only if it is Artinian and ZG-regular.

Proof. We have already see that semi simple rings are exactly the artinian and ZG-regular

by (13, Corollary 2.6) and Lemma 2.9.

Conversely, if a ring R is artinian and ZG-regular, then every ideal of R is finitely gener-

ated and hence a direct summand or RR, by using the characterization (5) of Lemma 2.9.

Therefore R is semi simple. □

3. Main Results

It is clear that M(R) in Proposition 2.5, being of the join of all ZG-regular ideals in R,

and being itself ZG-regular, is the unique maximal ZG-regular ideal in R.

Theorem 3.1. Let R be a ring. Then M(R/M(R)) = 0

Proof. Let a denote the residue class modulo M(R) which contains the element a of R. If

b ∈ M(R/M(R)) and a ∈ (b), then a ∈ (b). Since (b) is ZG-regular ideal in R/M(R),

then a is ZG-regular. If ang = angxang, ang − angxang ∈ M(R) therefore ang − angxang is

ZG-regular and Lemma 2.4 implies that a is ZG-regular. This shows that every element of

(b) is ZG-regular, and hence b ∈ M(R). Thus b = 0, completing the proof. □

Theorem 3.2. Let B be an ideal in R. Then M(B) = B ∩M(R).

Proof. Suppose that B is an ideal in R, and let b be an element of B which generates a

ZG-regular ideal (b)′ in the ring B. Let (b) be the ideal in R generated by the element b,
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and let c = mbng + rbng + bngs+
∑

rib
ngsi, (m is integer; r, sri, si ∈ R, n ∈ Z, g ∈ G) be any

element of (b). Since b is ZG-regular in B, we have bng = bngb1b
ng for some b1 in B. Hence

c = nbng+(rbngb1)b
ng+ bng(b1b

ngs)+
∑

(rib
ngb1)b

ng(b1b
ngsi), and thus c ∈ (b)′, therefore (b)

is ZG-regular, since it coincides with (b)′. This shows that if b ∈ M(R), then b ∈ B ∩M(R).

Conversely, if b ∈ B ∩M(R), then b is an element of B which is ZG-regular in R, and it is

easy to see that b is therefore ZG-regular in the ring B. Since B ∩M(R) is ZG-regular ideal

in the ring R, it follows that B ∩M(R) ⊆ M(B). We have therefore proved theorem. □

Theorem 3.3. If Rn is complete matrix ring of order n over R, then M(Rn) = (M(R))n.

Proof. By Lemma 2.6, we proved (M(R))n is a ZG-regular ideal in Rn and hence (M(R))n ⊆
M(Rn). Conversely, let A be a matrix in M(Rn), and let aij be a fixed element of A. Since

(A) is a ZG-regular ideal, there exist an element X of Rn and n ∈ Z, g ∈ G such that

Ang = AngXAng = AngXAngXAng, and therefore angij =
∑

tngpq apqs
ng
pq , for suitable elements

tpq, spq of R. But it is easy to see that there exists a matrix of (A) with tpqapqspq in (1, 1)

position and zeros elsewhere, and hence an element of (A) with aij in (1, 1) position and

zeros elsewhere. Now if b is any element of the principal ideal in R generated by aij , it is

clear that there exists an element B of (A) with b in the (1, 1) position and zeros elsewhere.

Furthermore for n ∈ Z, g ∈ G, we have Bng = BngY Bng for suitable choice of Y in Rn, since

(A) is ZG-regular. But this implies that bng = bngy11b
ng and hence b is ZG-regular. This

shows aij ∈ M(R), and so that M(Rn) ⊆ (M(R))n, completing the proof of the theorem. □

Definition 3.4. For an ideal B of a ring R, annihilator B∗ is meant the ideal consisting of

all a ∈ R such that aB = Ba = 0.

Theorem 3.5. If M is the maximal ZG-regular ideal of a ring R and J is the Jacobson

radical of R. Then:

1. M ∩ J = 0.

2. J ⊆ M∗, M ⊆ J∗.

3. M ∩M∗ = 0.

4. J is the radical of the ring M∗ and M is the maximal ZG-regular ideal of the ring J∗

Proof. Since J contains no nonzero idempotent element by Lemma 2.7, M ∩ J = 0.

From 1, it follows that MJ = JM = 0, so J ⊆ M∗, M ⊆ J∗.

If a ∈ M ∩M∗, then a = axa for some x and 1 ∈ Z, 1 ∈ G. But a ∈ M and xa ∈ M∗, hence

M ∩M∗ = 0.

By Lemma 2.8, if B is any ideal in R, the radical of the ring B is just B ∩ J . Since J ⊆ M∗,

then J is the radical of the ring M∗. Also M is the maximal ZG-regular ideal of the ring J∗

follow from the analogous of Theorem 3.2. □

Definition 3.6. A ring is R is bound to its radical J if and only if J∗ ⊆ J .

Theorem 3.7. If R is a ring such that R/J is ZG-regular, then M = 0 if and only if R is

bound to J .

Proof. If R is bound to J , it follows that M = 0, even without the condition that R/J be

ZG-regular. For M ∩ J = 0, and this implies, as in Theorem 3.5, that M ⊆ J∗ ⊆ J . Hence

M = 0.

Conversely, let R/J be ZG-regular and M = 0. We show first by induction that J ∩J∗2 = 0.
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Suppose that j ∈ J and that j =
∑m

i=0 aibi where ai, bi ∈ J∗. It must be proved that j = 0.

In the ZG-regular ring R/J , ai is ZG-regular, so there exist elements xi ∈ R and 1 ∈ Z,
1 ∈ G such that ai − aixiai = ji ∈ J . Since bi ∈ J∗; we have:

j =
∑m

i=0 aibi =
∑m

i=0(ji + aixiai)bi
∑m

i=0 aixiaibi (1)

If m = 1, this implies that j = a1x1a1b1 = a1x1j = 0 since a1 ∈ J∗. If m ̸= 1, then

ambm = j −
∑m−1

i=0 aibi. Thus by (1)

j =
∑m−1

i=0 aixiai)bi + amxm(j −
∑m−1

i=0 aibi) =
∑m−1

i=0 (ai)xi − ambm)ai)bi

But the induction hypothesis asserts that if j =
∑m−1

i=0 cidi that ci, di ∈ J∗, then j = 0.

because((ai)xi−ambm)ai)bi)ai, ai ∈ J∗, it follows that j = 0 and we proved that J ∩J∗2 = 0.

This implies, however, that J∗2 is a ZG-regular ideal. For if a ∈ J∗2 , then in the ZG-

regular ring R/J , the element ai is ZG-regular, that is, for some x and 1 ∈ Z, 1 ∈ G,

a− axa ∈ J ∩ J∗2 = 0, so a is ZG-regular. Hence J∗2 ⊆ M = 0, from which it follows that

J∗ ⊆ J Since the radical contains all nill ideal [13, Lemma 4.11, P. 56]. Thus R is bound to

J . □

By applying before results, we obtain our final consequence.

Theorem 3.8. If a ring R satisfies the descending chain condition for right ideals, then

R = M +M∗, where the ring M is semisimple and the ring M∗ is bound to its radical.

Proof. If an ideal I in a ring R has a unit element e, then R = I + I∗ (1), since the existence

of a unit element in I implies that I ∩ I∗ = 0. If x ∈ R, then ex + xe ∈ I and hence

(ex + xe)e = e(ex + xe), from which it follows that xe = ex and e is in the center of R.

Thus the peirce decomposition x = ex+ (x− ex) expresses each element x ∈ R as a sum of

elements ex ∈ I and (x− ex) ∈ I∗.

On the other hand, a right ideal I in the ring M is right ideal in R. For if a ∈ I, r ∈ R then

ar ∈ M , hence for some element y ∈ R and 1 ∈ Z, 1 ∈ G, aryar = ar. But ryar ∈ M , so

ar ∈ I. Thus I is a right ideal in R. Then, it follows that if the descending chain condition

for right ideals hold in R, it holds also in M . In the presence of this chain condition, ZG-

regularity is equivalent to semisimplicity by Lemma 2.10. Hence M has a unit element, and

so R = M +M∗ by (1).

The semi simplicity of M is implied by the ZG-regularity of M . Since the maximal ZG-

regular ideal of M∗ is zero by Theorem 3.2, and the chain condition holds in M∗, it follows

from Theorem 3.7 that M∗ is bound to its radical. □

Example 3.9. For the ring R = R×R, where R is the field of real numbers. The ring M can

be taken as R× 0, which is semisimple, since it is isomorphic to R (a simple ring). Also the

ring M∗ can be taken as 0×R. This is a simple ring but it is also bounded to its radical as

its Jacobson radical is zero. The direct sum M +M∗ gives:

M +M∗ = (R× 0) + (0× R) = R× R = R

The descending chain condition for right ideals holds, because in R × R, any descending

sequence of right ideals will eventually stabilize.
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4. Conclusions

In this paper, various characterizing properties of maximal ZG-regular ideal M(R) have

been investigated. Results have contained a description of M(R). Also final theorem in this

research shows that the semisimple component is precisely the maximal ZG-regular ideal M

of R, and the bound component is the annihilator of M .
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