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condition for a ring to be a direct sum of its ideals.
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1. INTRODUCTION

Let R be an associative ring with identity. A group action (or just action) of G on X is a
binary operation:
w: X xGr— X
(If there is no fear of confusion, we write p(z, g) simply as by z9 ) such that
(1) (z9)* = 29" for all z € X and g,h € G,
(I) ' =z for all z € X.
Following [12], we say that R is ZG-regular if, for every a € R, there exist positive integer
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n and g € G, such that a™ € a™ Ra™. A typical example is the class of classical w-regular
rings. In a similar way, a ring R is said to be strongly ZG-regular if, for every a € R, there
exist positive integer n and g € G, such that ™ € a(®DIR. For examples locally finite
ring and the ring of all n x n matrices and the n x n lower (upper) triangular matrices over
locally finite ring R are strongly ZG-regular rings.

For a more detailed information about ZG-regular rings and strongly ZG-regular rings, we
refer interested reader to [12].

The standard notations J(R), M(R), R, will stand for the Jacobson radical, a unique
maximal ZG-regular ideal, the complete matrix ring of order n over R, respectively. We
also denote by M* the ideal consisting of all elements a of R such that aM = Ma = 0.
Recall an element x of R is called regular (unit regular) if there exists y € R (a unit u € R)
such that zyzr = = (zuz = x). Some properties of regular rings and strongly regular has
been studied in [6, 9].

An element x € R is said to be w-regular if there exist y € R and a positive integer n such
that 2™ = 2"yz". An element x € R is said to be strongly m-regular if 2" = x?"y. The ring
R is m-regular if every element of R is m-regular and is strongly w-regular if every element
of R strongly m-regular. By a result of Azumaya [2] and Dischinger [8], the element x can
be chosen to commute with y. In particular this definition is left-right symmetric. m-regular
and strongly m-regular rings, are studied in particular in [1-5, 7].

Also in a ZG-regular ring, we define:

(a9)" = a9" for all a € R and g,h € G,

a' =a for all a € R,

ai"? = |},

qd1t9z = g9t a’?,

(zi)ier = (xi%)ier

In this note, we first show that the join of all ZG-regular ideals in an arbitrary ring R is
ZG-regular ideal, and that there exists a unique maximal ZG-regular ideal M = M (R) in
R. Also we prove a few fundamental properties of M = M(R) in R. For example these are
the following properties:

Theorem 3.1: M(R/M(R)) = 0, Theorem 3.2: if B an ideal in R, M(B) = B N M(B).
Theorem 3.3: if R, is complete matrix ring of order n over R, then M (R,,) = (M(R)),. Also
as final consequence, we prove that, under the decending chain condition for right ideals, R
is experssible as a direct sum R = M + M*, where M* is the ideal consisting of all elements
a € R such that aM = Ma = 0.

2. PRELIMINARIES

In this section, we present several lemmas and propositions that will be used in the sub-
sequent results.

Lemma 2.1. Let R be a ring with Jacobson radical J = J(R). Suppose that for all © € R
and y € J(R) we have vy = x(yx = x). Then x = 0.

Proof. Clearly from[15, Lemma 1]. O

Proposition 2.2. Fvery ZG-reqular ring has zero Jacobson radical.
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Proof. Let a € J, if there exist y € R, n € Z, g € G such that a™ = a™ya™. Since a™ € J
by Lemma 2.1 it follow that a™9 = 0 and thus a = 0. O

Proposition 2.3. A ZG-reqular ideal I € R is itself a ZG-regular ring.

Proof. For if a € I, there exist an element y € R, n € Z, g € G such that a™ = a™ya™9,
a™ € I. Tt follows that a™ya™ya™ = o™ and ya™y € I, so a™ is regular in the ring I,
therefore, by [16, Theorem 2.4], a is ZG-regular in the ring I. O

Lemma 2.4. Let y € R such that a™ — a™ya™ = a' and suppose that a’' is ZG-regular and
the group action satisfies (ay)? = a9%y9 for all a,y € R. Then a is ZG-reqular.

Proof. Since a™ — a™ya™ = o’ then we have:

av = a/+angyang

/ / / /—1p—1
— (a/n hbn a/n h)n h

+ a™ya™
-1
— a/bh a/+angyang
-1

= (a™ — a™ya™ )" (a9 — a™Iya™)
+a"9ya™d

-1 -1
— (angbh _ angyangbh )(ang _ angyang)
+a"9ya™d
— a9 g9 — a™ya™d b g
_angbh_langyang 4 angyangbh_langyang
+a™ya™d

-1 -1 -1
— ang(bh _ yangbh _ bh angy

+ya"Ibh " "y + y)a"

Now by taking b= b""" — ya™9b" ' — b 'a"9y + yaIbh " 4"y + y, we have a9 = a"9ba"9,

then a is ZG-regular. O
We shall indicate by (a) the principal ideal in R generated by a.

Proposition 2.5. If M is the set of all elements a of R such that the principal ideal (a) is
ZG-regular and satisfies the property (a 4+ b)" = a™ + ™ for all a,b € R, n € Z, g € G,
then M is an ideal in R.

Proof. Let z € M and t € R. Then zt € M, since (zt) C (z). Similarly, tz € M. If
z,w € (z —w), then a = u — v for some u € (2) and v € (w). Since(z) is ZG-regular, then
there exist r € R and n € Z, g € G such that v« = «™9ru™, then

a™ —a"ra™ = (u—v)" — (u—v)"r(u—v)"
=u™ — "™ —u"Iru™ + uIrv™ + v™Iru™9 — v"™Iro™
= —v™ 4+ u™rv™ + v"™ru™ — ™M™
Since v € (w), this shows that a9 —a™ra™ € (w) and is therefore ZG-regular. By applying

Lemma 2.4, we conclude that a is ZG-regular, and z — w € M. This completes the proof of
the theorem. O
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Lemma 2.6. Let R be a ZG-reqular ring. Then R,, complete matriz ring of order n over

R, is a ZG-regular ring.

Proof. The first being the proof for n = 2, and then the extension to arbitrary n. If r € R,

let us denote by 7’ an element of R and n € Z, g € G such that r"97'r™ = r™9. Now let

A [a b]
c d
be an arbitrary element of R,. If we set
X — 00
b0

and denote A™ — A™ X A™ by B™, we have:

a b " a b " 0 O] |a b "

c dl e al |¥ o|l|ec d
Jams o a 9] [0 ol [ans b9
e oara| e @) Yool | dne

a b "Iy a9 b"IY b”9]

9 dn9 0 dybe
a9 — oI a9 — b9 b
:[ 9 dmIdIy b ]
a9 — b9y a9 0
:[ 9 dngdngb/bngl

Upper simple calculation shows that B™ = J

1

0
] for suitable choice of element j, h, ¢ of R.

-/
Ty = |’ O,] then C"9 = B" — Br9Y B9 = [2 8] for k = ¢"9j'(a"9 — b"9ban9) +
i
iy o 0 K .
(d™ — d™b'b™)i'c™ of R. Finally, if Z = 0 ol we see that C™ — C™9Z(C™ = (), since
oo [oolfo#]foo] [ o o [oo
k0 k 0|0 Of||k 0] |k—FKEKk 0 [0 O

This means that C' is ZG-regular and then by Lemma 2.4, B is ZG-regular. Again applying
Lemma 2.4, we see that A is ZG-regular, and this completes the proof for n = 2. Since
(R2)2 = Ry, it follows from the case just proved that Ry is ZG-regular, and similarly Rox
is ZG-regular for any positive integer k. Let n be an arbitrary positive integer. Choose an
integer k such 2¥ > n. If A € R,,, let A; be the matrix of R, with A is the upper left-hand

corner and zeros else where. Now, as an element of Ry, A; is ZG-regular, because there exist

B C
an element X = b gl € Ryk that (B € Ry,), g € G and n € Z such that A7Y = AT9XA}Y.
However, this implies that A™ = A™BA™ and hence A is ZG-regular. The proof of the
lemma is therefore complete. (]

Lemma 2.7. The only idempotent element in the Jacobson radical R is zero.
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Proof. Let a € J(R) be an idempotent, i.e., a® = a. Since 1 — « is a unit in R, then
a=0. U

Lemma 2.8. Let I be an ideal of R. Then J(I) =1NJ(R).
Proof. The result follows from [13, Exercise 7, p. 68] O

Lemma 2.9. For any ring R, the following are equivalent.

For any a € R, there exist x € R, n € Z, g € G such that a™ = a™Ixa™9.
Every principal left(right) ideal is generated by an idempotent.

Every principal left(right) ideal is a direct summand of rR.

Every finitely generated left(right) ideal is generated by an idempotent.

Cr W e

Every finitely generated left(right) ideal is a direct summand of rR.

Proof. The equivalence (2) < (3) and (4) < (5) follows from standard arguments (See 13,
Exercise 7, P. 68).

Let us prove (1) < (2). Assume (1), let a € R then there exist n € Z, g € G such that
a™ € R and consider a principal left ideal R.a™. Choose z € R such that a™za™ = a™9.
Then e := za™ = za™za™ = e? and e € R.a™ while a™ = a™za™ = a™e € R.e, so
R.a™ = R.e. Conversely, assume (2) and let a € R. Writing R.a™ = R.e,where e = €2, we
have e = za™ and a™ = y.e for some x,y € R. Then a™xa™ = ye.e = ye = a™.

(4) < (2): since (4) obviously implies (2), it only remains to show that (2) = (4). By
induction, it suffices to show that, for any two idempotents e, f, I = Re+ Rf is generated by
an idempotent. Now I = Re+Rf(1—e) and Rf(1—e) = Re’ for some idempotent €', for which
e € Rf(1—e)e=0. Thus €'(¢'+€) = ¢’ which leads easily to I = Re+ Re’ = R(e’ +e). O

Lemma 2.10. A ring is semisimple if and only if it is Artinian and ZG-regular.

Proof. We have already see that semi simple rings are exactly the artinian and ZG-regular
by (13, Corollary 2.6) and Lemma 2.9.

Conversely, if a ring R is artinian and ZG-regular, then every ideal of R is finitely gener-
ated and hence a direct summand or pR, by using the characterization (5) of Lemma 2.9.

Therefore R is semi simple. O

3. MAIN RESULTS

It is clear that M (R) in Proposition 2.5, being of the join of all ZG-regular ideals in R,
and being itself ZG-regular, is the unique maximal ZG-regular ideal in R.

Theorem 3.1. Let R be a ring. Then M(R/M(R)) =0

Proof. Let @ denote the residue class modulo M (R) which contains the element a of R. If
b € M(R/M(R)) and a € (b), then @ € (b). Since (b) is ZG-regular ideal in R/M (R),
then @ is ZG-regular. If @™ = a"™za™, o™ — a"9zxa™ € M(R) therefore a9 — a™za™ is
ZG-regular and Lemma 2.4 implies that a is ZG-regular. This shows that every element of
(b) is ZG-regular, and hence b € M(R). Thus b = 0, completing the proof. O

Theorem 3.2. Let B be an ideal in R. Then M(B) = BN M(R).

Proof. Suppose that B is an ideal in R, and let b be an element of B which generates a
ZG-regular ideal (b)" in the ring B. Let (b) be the ideal in R generated by the element b,
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and let ¢ = mb™ 4+ rb"™ +b"s+ > r;b"s;, (m is integer; r, sri, 8; € R, n € Z, g € G) be any
element of (b). Since b is ZG-regular in B, we have b9 = b"9b;b™ for some by in B. Hence
¢ =nb" + (rb™by)b™ + 5™ (b1b™s) + > (r;b™9b1 )b (b16"™9s;), and thus ¢ € (b)’, therefore (b)
is ZG-regular, since it coincides with (b)’. This shows that if b € M(R), then b € BN M(R).
Conversely, if b € BN M(R), then b is an element of B which is ZG-regular in R, and it is
easy to see that b is therefore ZG-regular in the ring B. Since BN M (R) is ZG-regular ideal
in the ring R, it follows that BN M(R) C M(B). We have therefore proved theorem. O

Theorem 3.3. If R,, is complete matriz ring of order n over R, then M(R;,) = (M(R))n.

Proof. By Lemma 2.6, we proved (M (R)),, is a ZG-regular ideal in R,, and hence (M (R)),, C
M (R,,). Conversely, let A be a matrix in M (R,,), and let a;; be a fixed element of A. Since
(A) is a ZG-regular ideal, there exist an element X of R, and n € Z, g € G such that
A" = AN XA = AMIX A X A™, and therefore a;f = 3 tpdapgspy, for suitable elements
tpg, Spg Of R. But it is easy to see that there exists a matrix of (A) with tpgapesp, in (1,1)
position and zeros elsewhere, and hence an element of (A) with a;; in (1,1) position and
zeros elsewhere. Now if b is any element of the principal ideal in R generated by a;j;, it is
clear that there exists an element B of (A) with b in the (1, 1) position and zeros elsewhere.
Furthermore for n € Z, g € G, we have B™ = B™Y B™ for suitable choice of Y in R,,, since
(A) is ZG-regular. But this implies that 0™ = b™y;16™ and hence b is ZG-regular. This
shows a;; € M(R), and so that M (R,,) C (M(R))p, completing the proof of the theorem. [

Definition 3.4. For an ideal B of a ring R, annihilator B* is meant the ideal consisting of
all a € R such that aB = Ba = 0.

Theorem 3.5. If M is the mazimal ZG-reqular ideal of a ring R and J is the Jacobson
radical of R. Then:

1. MnJ=0.

2. JCM*, MCJ".

8. MNM*=0.

4. J is the radical of the ring M* and M is the maximal ZG-regular ideal of the ring J*

Proof. Since J contains no nonzero idempotent element by Lemma 2.7, M N J = 0.

From 1, it follows that MJ = JM =0,s0 J C M*, M C J*.

If a € M N M*, then a = axa for some z and 1 € Z,1 € G. But a € M and za € M*, hence
MNM*=0.

By Lemma 2.8, if B is any ideal in R, the radical of the ring B is just BN J. Since J C M*,
then J is the radical of the ring M*. Also M is the maximal ZG-regular ideal of the ring J*

follow from the analogous of Theorem 3.2. (]
Definition 3.6. A ring is R is bound to its radical J if and only if J* C J.

Theorem 3.7. If R is a ring such that R/J is ZG-regular, then M = 0 if and only if R is
bound to J.

Proof. If R is bound to J, it follows that M = 0, even without the condition that R/J be
ZG-regular. For M N J = 0, and this implies, as in Theorem 3.5, that M C J* C J. Hence
M = 0.

Conversely, let R/.J be ZG-regular and M = 0. We show first by induction that JN.J = .
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Suppose that j € J and that j = Zﬁo a;b; where a;,b; € J*. It must be proved that 7 = 0.
In the ZG-regular ring R/J, @; is ZG-regular, so there exist elements x; € R and 1 € Z,
1 € G such that a@; — a;z;a; = j; € J. Since b; € J*; we have:

J =g aibi = >0 (Ji + aixiai)b; D0 aixiaib; (1)

If m = 1, this implies that j = ajz1a1b1 = a1x1j = 0 since a1 € J*. If m # 1, then
Ambm = j — Z?;Bl a;b;. Thus by (1)

G =" aiwian)b 4 amm (5 — S abi) = 70 (@) — ambm)ai)bi

But the induction hypothesis asserts that if j = E;’;Bl cid; that ¢;,d; € J*, then j = 0.
because((a;)z; — ambm)a;)b;)ai, a; € J*, it follows that j = 0 and we proved that JNJ* =0.
This implies, however, that J s a ZG-regular ideal. For if a € J*Q, then in the ZG-
regular ring R/J, the element a; is ZG-regular, that is, for some z and 1 € Z, 1 € G,
a—aza € JNJ" = 0, so a is ZG-regular. Hence JZC M= 0, from which it follows that
J* C J Since the radical contains all nill ideal [13, Lemma 4.11, P. 56]. Thus R is bound to
J. O

By applying before results, we obtain our final consequence.

Theorem 3.8. If a ring R satisfies the descending chain condition for right ideals, then
R = M + M*, where the ring M s semisimple and the ring M* is bound to its radical.

Proof. If an ideal I in a ring R has a unit element e, then R = I 4+ I* (1), since the existence
of a unit element in I implies that I N I* = 0. If x € R, then ex 4+ ze € I and hence
(ex 4+ ze)e = e(ex + xe), from which it follows that ze = ex and e is in the center of R.
Thus the peirce decomposition z = ex + (z — ex) expresses each element x € R as a sum of
elements ex € I and (v —ex) € I[*.

On the other hand, a right ideal I in the ring M is right ideal in R. For if a € I, r € R then
ar € M, hence for some element y € R and 1 € Z, 1 € G, aryar = ar. But ryar € M, so
ar € I. Thus I is a right ideal in R. Then, it follows that if the descending chain condition
for right ideals hold in R, it holds also in M. In the presence of this chain condition, ZG-
regularity is equivalent to semisimplicity by Lemma 2.10. Hence M has a unit element, and
so R =M+ M* by (1).

The semi simplicity of M is implied by the ZG-regularity of M. Since the maximal ZG-
regular ideal of M* is zero by Theorem 3.2, and the chain condition holds in M*, it follows
from Theorem 3.7 that M* is bound to its radical. (]

Example 3.9. For the ring R = R x R, where R is the field of real numbers. The ring M can
be taken as R x 0, which is semisimple, since it is isomorphic to R (a simple ring). Also the
ring M* can be taken as 0 x R. This is a simple ring but it is also bounded to its radical as

its Jacobson radical is zero. The direct sum M + M™* gives:

M+M*=Rx0)+(0xR) =RxR=R

The descending chain condition for right ideals holds, because in R x R, any descending

sequence of right ideals will eventually stabilize.
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4. CONCLUSIONS

In this paper, various characterizing properties of maximal ZG-regular ideal M (R) have
been investigated. Results have contained a description of M (R). Also final theorem in this
research shows that the semisimple component is precisely the maximal ZG-regular ideal M

of R, and the bound component is the annihilator of M.
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