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ABSTRACT
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1. INTRODUCTION

Fuzzy Set Theory, first introduced by Zadeh in 1965 [18], has significantly contributed

to the understanding and modeling of uncertainty and vagueness in various fields of math-

ematics, engineering, and the social sciences. Fuzzy sets allow for partial membership of

elements in a set, thus offering a more flexible approach than classical sets in representing

imprecise information. Over the years, fuzzy logic has found numerous applications in fields

such as decision-making, control systems, artificial intelligence, and optimization, making it

a cornerstone of modern computational theories.
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The concept of Fuzzy Metric Spaces, developed by Michálek and Kramosil [4], provided

a generalization of traditional metric spaces, where the distances between points are repre-

sented by fuzzy values rather than crisp values. This extension was crucial in dealing with

problems where precise measurements or exact distances are not feasible. Further refinements

and applications of fuzzy metrics were made by George and Veeramani [5], who developed

more advanced models and methods for fuzzy metrics, such as the concept of fuzzy control

and fuzzy continuity.

In recent years, the theory of Pentagonal Controlled Intuitionistic Fuzzy Metric Spaces

(PCIFMS) has emerged as a promising framework for addressing more complex and so-

phisticated systems of uncertainty. The work of several researchers has contributed to the

development of PCIFMS, which combines elements of both intuitionistic fuzzy sets and pen-

tagonal control mechanisms. These spaces allow for the representation of a higher degree of

uncertainty by considering not only the degree of membership and non-membership of ele-

ments but also an additional control mechanism that adjusts for more complex relationships.

The motivation behind introducing Pentagonal Controlled Intuitionistic Fuzzy Metric

Spaces is to deal with problems where conventional fuzzy metric spaces are insufficient,

particularly in scenarios where additional control variables are essential for accurate model-

ing. The current paper builds upon the existing foundation of fuzzy set theory, fuzzy met-

ric spaces, and intuitionistic fuzzy sets to propose new fixed-point theorems for Pentagonal

Controlled Intuitionistic Fuzzy Metric Spaces. These theorems have potential applications in

diverse areas, such as optimization, decision-making, and control systems, where uncertainty

and control parameters play a significant role.

Through this work, we aim to extend the fixed-point theory in fuzzy metric spaces, high-

lighting its applicability in real-world scenarios where traditional approaches may fall short.

In particular, the results presented here provide new insights into the existence and unique-

ness of fixed points under pentagonal control mechanisms, contributing to both theoretical

advancements and practical applications.

2. PRELIMINARIES

This section provides the necessary definitions and preliminary results required for under-

standing the main contributions of this paper.

Definition 1. A binary operation ∗ : [0, 1]×[0, 1] → [0, 1] is a continuous t-norm if it satisfies

the following conditions:

(1) ∗ is commutative and associative;

(2) ∗ is continuous;

(3) a ∗ 1 = a for all a ∈ [0, 1];

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Definition 2. A binary operation ⋄ : [0, 1] × [0, 1] → [0, 1] is a continuous t-conorm if it

satisfies the following conditions:

(1) ⋄ is commutative and associative;

(2) ⋄ is continuous;

(3) a ⋄ 0 = a for all a ∈ [0, 1];

(4) a ⋄ b ≤ c ⋄ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].
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Definition 3. A three-tuple (X,M, ∗) is said to be a Fuzzy Metric Space if X is an arbitrary

set, ∗ is a continuous t-norm, and M is a fuzzy set on X2 × [0,∞) satisfying the following

conditions for all x, y, z ∈ X and t, s > 0:

(1) (Fm-1) M(x, y, 0) = 0;

(2) (Fm-2) M(x, y, t) = 1 for all t > 0 if and only if x = y;

(3) (Fm-3) M(x, y, t) = M(y, x, t);

(4) (Fm-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);

(5) (Fm-5) M(x, y, ·) : [0,∞) → [0, 1] is left continuous;

(6) (Fm-6) limt→∞M(x, y, t) = 1.

Example 1. Let (X, d) be a metric space, (a ∗ b) = min{a, b}, and

M(x, y, t) =
t

t+ d(x, y)
for all x, y ∈ X and t > 0.

Then (X,M, ∗) is a fuzzy metric space, often referred to as the standard fuzzy metric space

induced by (X, d).

Definition 4. A 5-tuple (X,M,N, ∗, ⋄) is said to be an Intuitionistic Fuzzy Metric Space if

X is an arbitrary set, ∗ is a continuous t-norm, ⋄ is a continuous t-conorm, and M,N are

fuzzy sets on X2 × [0,∞) satisfying the following conditions for all x, y, z ∈ X and t, s > 0:

(1) (IFm-1) M(x, y, t) +N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0;

(2) (IFm-2) M(x, y, 0) = 0 for all x, y ∈ X;

(3) (IFm-3) M(x, y, t) = 1 for all x, y ∈ X and t > 0 if and only if x = y;

(4) (IFm-4) M(x, y, t) = M(y, x, t) for all x, y ∈ X and t > 0;

(5) (IFm-5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0;

(6) (IFm-6) M(x, y, ·) : [0,∞) → [0, 1] is left continuous for all x, y ∈ X;

(7) (IFm-7) limt→∞M(x, y, t) = 1;

(8) (IFm-8) N(x, y, 0) = 1 for all x, y ∈ X;

(9) (IFm-9) N(x, y, t) = 0 for all x, y ∈ X and t > 0 if and only if x = y;

(10) (IFm-10) N(x, y, t) = N(y, x, t) for all x, y ∈ X and t > 0;

(11) (IFm-11) N(x, y, t) ⋄N(y, z, s) ≥ N(x, z, t+ s) for all x, y, z ∈ X and s, t > 0;

(12) (IFm-12) N(x, y, ·) : [0,∞) → [0, 1] is right continuous for all x, y ∈ X;

(13) (IFm-13) limt→∞N(x, y, t) = 0 for all x, y ∈ X.

Then (M,N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and

N(x, y, t) denote the degree of nearness and degree of non-nearness between x and y with

respect to t, respectively.

Definition 5. Let (X,M,N, ∗, ⋄) be an intuitionistic fuzzy metric space. Then:

(1) A sequence {xn} in X is said to be a Cauchy sequence if, for all t > 0 and p > 0,

lim
t→∞

M(xn+p, xn, t) = 1, lim
t→∞

N(xn+p, xn, t) = 0.

(2) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for all t > 0,

lim
t→∞

M(x, y, t) = 1, lim
t→∞

N(x, y, t) = 0.
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Definition 6. LetX be a nonempty set. A 5-tuple (X,M,N, ∗, ⋄) is said to be an Intuitionis-

tic Fuzzy Triplet Control Metric space if X is an arbitrary set, ∗ is a continuous t-norm, ⋄ is a

continuous t-conorm,M andN are fuzzy sets onX×X×[0,∞), andA,B,C : X×X → [1,∞)

are non-comparable and fulfill the following axioms for all p, q, r, s ∈ X, p ̸= r, r ̸= s, s ̸= q,

and α, β, γ ≥ 0:

(1) (i) M(p, q, 0) = 0;

(2) (ii) M(p, q, α) = 1 implies p = q;

(3) (iii) M(p, q, α) = M(q, p, α);

(4) (iv) M(p, q, α+ β + γ) ≥ M(p, r, α/A(p, r)) ∗M(r, s, β/B(r, s)) ∗M(s, t, γ/C(s, q));

(5) (v) M(p, q, ·) : [0,∞) → [0, 1] is left continuous and limα→∞M(p, q, α) = 1;

(6) (vi) N(p, q, 0) = 1;

(7) (vii) N(p, q, α) = 0 implies p = q;

(8) (viii) N(p, q, α) = N(q, p, α);

(9) (ix) N(p, q, α+ β + γ) ≤ N(p, r, α/A(p, r)) ⋄N(r, s, β/B(r, s)) ⋄N(s, t, γ/C(s, q));

(10) (x) N(p, q, ·) : [0,∞) → [0, 1] is right continuous and limα→∞N(p, q, α) = 0.

3. Main Results

This section introduces the definition of Pentagonal Controlled Intuitionistic Fuzzy Metric

Space and presents new theorems with detailed proofs.

Definition 7. Let X be a nonempty set. A 5-tuple (X,M,N, ∗, ⋄) is said to be a Pentagonal

Controlled Intuitionistic Fuzzy Triplet Control Metric space if X is an arbitrary set, ∗ is a

continuous t-norm, ⋄ is a continuous t-conorm, M and N are fuzzy sets on X ×X × [0,∞),

and A,B,C,D,E : X ×X → [1,∞) are non-comparable and fulfill the following axioms for

all p, q, r, s ∈ X, p ̸= r, r ̸= s, s ̸= q, and α, β, γ, δ, ω ≥ 0:

(1) (i) M(p, q, 0) = 0;

(2) (ii) M(p, q, α) = 1 implies p = q;

(3) (iii) M(p, q, α) = M(q, p, α);

(4) (iv)M(z, d, α+β+γ+δ+ω) ≥ M(z, e, α/Q(z, e))∗M(e, f, β/W (e, f))∗M(f, g, γ/E(f, g))∗
M(g, ℓ, δ/R(g, κ)) ∗M(κ, d, ω/T (κ, d));

(5) (v) M(z, d, ·) : [0,∞) → [0, 1] is left continuous and limα→∞M(z, d, α) = 1;

(6) (vi) N(p, q, 0) = 1;

(7) (vii) N(p, q, α) = 0 implies p = q;

(8) (viii) N(p, q, α) = N(q, p, α);

(9) (ix)N(z, d, α+β+γ+δ+ω) ≤ N(z, e, α/Q(z, e))⋄N(e, f, β/W (e, f))⋄N(f, g, γ/E(f, g))⋄
N(g, ℓ, δ/R(g, κ)) ⋄N(κ, d, ω/T (κ, d));

(10) (x) N(z, d, ·) : [0,∞) → [0, 1] is left continuous and limα→∞N(z, d, α) = 0.

Definition 8. Let X be a nonempty set. A 5-tuple (X,M,N, ∗, ⋄) is said to be a Pentagonal

Controlled Intuitionistic Fuzzy Triplet Control Metric space if X is an arbitrary set, ∗ is a

continuous t-norm, ⋄ is a continuous t-conorm, M and N are fuzzy sets on X ×X × [0,∞),

and {zn} is a sequence in X. Then {zn} is named to be:

(1) (i) convergent if there exists z ∈ X such that

lim
n→∞

M(zn, z, α) = 1 and lim
n→∞

N(zn, z, α) = 0 for all α > 0;
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(2) (ii) Cauchy if and only if for each ω > 0, α > 0, there exists n0 ∈ N such that

M(zn, zm, α) ≥ 1− ω and N(zn, zm, α) ≤ ω for all n,m ≥ n0.

If every Cauchy sequence is convergent in X, then (X,M,N, ∗, ⋄) is said to be a Pentagonal

Controlled Intuitionistic Fuzzy Triplet Control Metric space.

3. RESULT

Theorem 1. Let (X,M,N, ∗, ⋄) be a complete Pentagonal Controlled Intuitionistic Fuzzy

Metric Space, and A,B,C,D,E : X ×X → [1,∞) such that

lim
β→∞

M(x, a, β) = 1 and lim
β→∞

N(x, a, β) = 0, for all β > 0, x, a ∈ X.

Let U : X → X be a mapping satisfying

M(Ux,Ua, αβ) ≥ M(x, a, β), and N(Ux,Ua, αβ) ≤ N(x, a, β), for all β > 0, x, a ∈ X.

Furthermore, if for x0 ∈ X and m, p ∈ {1, 2, 3, . . . }, it holds b(xm, xm+p) < 1/q where

xm = Umx0, then U has a unique fixed point.

Proof. Let (X,M,N, ∗, ⋄) be a complete Pentagonal Controlled Intuitionistic Fuzzy Metric

Space. We are given that U : X → X is a mapping such that for all β > 0 and for all

x, a ∈ X, the following conditions hold:

M(Ux,Ua, αβ) ≥ M(x, a, β) and N(Ux,Ua, αβ) ≤ N(x, a, β).

We are also given that:

lim
β→∞

M(x, a, β) = 1 and lim
β→∞

N(x, a, β) = 0 for allx, a ∈ X.

Furthermore, suppose x0 ∈ X and m, p ∈ {1, 2, 3, . . . } such that b(xm, xm+p) <
1
q where

xm = Umx0. We aim to show that U has a unique fixed point.

Step 1: Convergence of the sequence

Define the sequence {xm} by xm = Umx0. Since we are given that b(xm, xm+p) <
1
q , this

implies that the sequence {xm} is Cauchy with respect to the metric b.

Since (X,M,N, ∗, ⋄) is a complete Pentagonal Controlled Intuitionistic Fuzzy Metric

Space, the Cauchy sequence {xm} must converge to some point x∗ ∈ X. Thus, we have:

lim
m→∞

xm = x∗.

Step 2: Show x∗ is a fixed point

Next, we show that x∗ is a fixed point of U . Since xm = Umx0, we take the limit of both

sides as m → ∞:

Ux∗ = lim
m→∞

Uxm = lim
m→∞

xm+1 = x∗.

Thus, x∗ is a fixed point of U .

Step 3: Uniqueness of the fixed point

To prove the uniqueness of the fixed point, suppose there exist two fixed points x∗ and y∗

such that Ux∗ = x∗ and Uy∗ = y∗. Then, we have:
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b(x∗, y∗) = b(Ux∗, Uy∗) ≤ αb(x∗, y∗) for some constantα < 1.

This inequality implies that b(x∗, y∗) is strictly contracted with each iteration of U . There-

fore, the distance between x∗ and y∗ must shrink with each application of U , and by the

properties of a contraction mapping, we conclude that x∗ = y∗.

Hence, the fixed point is unique.

1. 4. RESULT

1.1. Theorem 2. Let (X,M,N, ∗, ⋄) be a complete Pentagonal Controlled Intuitionistic

Fuzzy Metric Space, and let A,B,C,D,E : X ×X → [0,∞) satisfy the following conditions:

lim
β→∞

M(x, a, β) = 1 and lim
β→∞

N(x, a, β) = 0, for allx, a ∈ X,β > 0.

Let U : X → X be a mapping such that for all β > 0 and for all x, a ∈ X, we have:

M(Ux,Ua, αβ) ≥ M(x, a, β) and N(Ux,Ua, αβ) ≤ N(x, a, β).

Furthermore, suppose that there exists a constant α ∈ (0, 1) such that for all x, y ∈ X, we

have:

b(Ux,Uy) ≤ αb(x, y).

Then, the mapping U has a unique fixed point.

Proof. Let (X,M,N, ∗, ⋄) be a complete Pentagonal Controlled Intuitionistic Fuzzy Metric

Space. We are given the mapping U : X → X such that for all β > 0 and for all x, a ∈ X,

the following inequalities hold:

M(Ux,Ua, αβ) ≥ M(x, a, β) and N(Ux,Ua, αβ) ≤ N(x, a, β).

Additionally, we are given that U satisfies the contraction condition:

b(Ux,Uy) ≤ αb(x, y), for allx, y ∈ X and α ∈ (0, 1).

Step 1: Show that U is a contraction

The given inequality b(Ux,Uy) ≤ αb(x, y) with α ∈ (0, 1) indicates that U is a contraction

mapping. This property implies that for any two points x, y ∈ X, the distance between Ux

and Uy is strictly smaller than the distance between x and y. Since α < 1, this guarantees

that repeated applications of U will eventually bring any two points closer together.

Step 2: Use the Banach Fixed-Point Theorem

Since U is a contraction mapping on the complete metric space X, the Banach Fixed-Point

Theorem (also known as the Contraction Mapping Theorem) guarantees that U has a unique

fixed point. The theorem states that any contraction mapping on a complete metric space

has exactly one fixed point.

Let x∗ ∈ X be the fixed point of U , i.e., Ux∗ = x∗.

Step 3: Uniqueness of the Fixed Point

Suppose that there exist two distinct fixed points, say x∗ and y∗, such that Ux∗ = x∗ and

Uy∗ = y∗. Then, by the contraction property of U , we have:
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b(Ux∗, Uy∗) ≤ αb(x∗, y∗) but Ux∗ = x∗ and Uy∗ = y∗,

which gives:

b(x∗, y∗) ≤ αb(x∗, y∗).

Since α ∈ (0, 1), this inequality implies that b(x∗, y∗) = 0, which in turn implies that

x∗ = y∗. Therefore, the fixed point is unique.

2. 6. RESULT

2.1. Theorem 4. Let (X,M,N, ∗, ⋄) be a complete Pentagonal Controlled Intuitionistic

Fuzzy Metric Space. Let A,B,C,D,E : X ×X → [0,∞) satisfy the following conditions:

lim
β→∞

M(x, a, β) = 1 and lim
β→∞

N(x, a, β) = 0, for allx, a ∈ X, β > 0.

Let U : X → X be a mapping such that for all β > 0, x, a ∈ X, the following inequalities

hold:

M(Ux,Ua, αβ) ≥ M(x, a, β), N(Ux,Ua, αβ) ≤ N(x, a, β).

Furthermore, suppose there exists a constant α ∈ (0, 1) such that for all x, y ∈ X, we

have:

b(Ux,Uy) ≤ αb(x, y), whereα < 1.

Assume that U satisfies the condition that for some constant C > 0, the following holds

for all x, y ∈ X:

b(Ux,Uy) ≤ C · b(x, y) + λ · b(x, y)θ,

where 0 ≤ λ < 1 and 0 ≤ θ < 1.

Then, the mapping U has a unique fixed point.

Proof. We are given that (X,M,N, ∗, ⋄) is a complete Pentagonal Controlled Intuitionistic

Fuzzy Metric Space, and that the mapping U : X → X satisfies the following conditions:

1. For all β > 0, x, a ∈ X, the following inequalities hold:

M(Ux,Ua, αβ) ≥ M(x, a, β), N(Ux,Ua, αβ) ≤ N(x, a, β).

2. There exists a constant α ∈ (0, 1) such that for all x, y ∈ X:

b(Ux,Uy) ≤ αb(x, y),

which implies that U is a contraction mapping.

3. The mapping U satisfies an additional condition, given by:

b(Ux,Uy) ≤ C · b(x, y) + λ · b(x, y)θ,

where C is a constant, and λ and θ are constants such that 0 ≤ λ < 1 and 0 ≤ θ < 1.

We aim to show that U has a unique fixed point in X.

Step 1: Establishing the Banach Fixed-Point Theorem for a Contraction Mapping
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First, observe that the second condition, b(Ux,Uy) ≤ αb(x, y) where α ∈ (0, 1), indicates

that U is indeed a contraction mapping on X. By the Banach Fixed-Point Theorem, any

contraction mapping on a complete metric space has a unique fixed point. Therefore, under

the assumption that U is a strict contraction (as suggested by the second condition), we

conclude that U has at least one fixed point, say x∗, such that Ux∗ = x∗.

Step 2: Understanding the Additional Condition on U

The third condition introduces an additional perturbation term to the contraction inequal-

ity:

b(Ux,Uy) ≤ C · b(x, y) + λ · b(x, y)θ.

This suggests that the mapping U behaves like a contraction for small distances (as b(x, y)

becomes small), but may exhibit a ”soft” non-linearity for larger distances due to the term

λ · b(x, y)θ.
We can now analyze this inequality. For x, y ∈ X, consider the function:

f(b(x, y)) = C · b(x, y) + λ · b(x, y)θ.

For sufficiently small b(x, y), we have λ · b(x, y)θ behaving as a small term, and thus

the mapping U still behaves like a contraction. This ensures that the sequence defined by

xm = Umx0 (for some initial point x0) will converge to a fixed point x∗ even in this case,

because the contraction component dominates at small distances, guaranteeing convergence.

Step 3: Convergence of the Sequence {xm}
To show convergence more rigorously, we define the sequence xm = Umx0, where m

represents the number of iterations of the mapping U starting from an arbitrary point x0.

We aim to show that this sequence converges to a fixed point.

Using the condition b(Ux,Uy) ≤ C · b(x, y) + λ · b(x, y)θ, we can express the distance

between successive terms in the sequence:

b(xm+1, xm) = b(Uxm, Uxm−1) ≤ C · b(xm, xm−1) + λ · b(xm, xm−1)
θ.

We can use the fact that b(xm, xm−1) decreases over time, as the contraction component

ensures that the sequence is getting closer with each iteration.

Step 4: Proving the Sequence is Cauchy

To show that the sequence {xm} is Cauchy, consider the sum of the distances between

successive terms:

∞∑
m=1

b(xm+1, xm).

Because of the contraction and the additional term involving b(xm, xm−1)
θ, the series

converges. Therefore, the sequence {xm} is Cauchy, and since (X,M,N, ∗, ⋄) is complete,

the sequence converges to a limit point x∗ ∈ X.

Step 5: Fixed Point of the Limit Point

Let x∗ = limm→∞ xm. Since U is continuous, we have:

Ux∗ = lim
m→∞

Uxm = lim
m→∞

xm+1 = x∗.
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Thus, x∗ is a fixed point of U . Step 6: Uniqueness of the Fixed Point

Finally, we show that the fixed point is unique. Suppose that x∗ and y∗ are two fixed

points of U . Then:

b(x∗, y∗) = b(Ux∗, Uy∗) ≤ C · b(x∗, y∗) + λ · b(x∗, y∗)θ.

Since λ < 1 and θ < 1, this implies that the distance between x∗ and y∗ must shrink with

each iteration, leading to b(x∗, y∗) = 0, and hence x∗ = y∗.

Thus, the fixed point is unique.

3. 7. SOLVED EXAMPLES

Example 1: Application of Theorem 1 (Existence of Fixed Point in Pentagonal

Controlled Intuitionistic Fuzzy Metric Space). Problem Statement: Consider a Pen-

tagonal Controlled Intuitionistic Fuzzy Metric Space (X,M,N, ∗, ⋄) where X = [0, 1] and

the fuzzy distance function M(x, y, β) and N(x, y, β) satisfy the following:

M(x, y, β) =
1

1 + β|x− y|
, N(x, y, β) =

1

1 + β2|x− y|
.

Let the mapping U : X → X be defined by U(x) = x
2 , and we need to verify if this

mapping has a fixed point.

Solution:

We need to verify that the mapping U satisfies the conditions of Theorem 1. The conditions

are:

1. Contraction Property: The mapping U(x) = x
2 is a contraction mapping. To verify

this, we check the distance between two points under the mapping:

b(Ux,Uy) =
∣∣∣x
2
− y

2

∣∣∣ = 1

2
|x− y|.

Since 1
2 < 1, the mapping is indeed a contraction with the contraction constant α = 1

2 .

2. Fixed Point: We now verify the existence of a fixed point. A fixed point x∗ satisfies:

U(x∗) = x∗ ⇒ x∗

2
= x∗ ⇒ x∗ = 0.

Therefore, the fixed point of the mapping U is x∗ = 0.

3. Uniqueness: Since U is a contraction mapping, by the Banach Fixed-Point Theorem,

the fixed point is unique.

Thus, the mapping U(x) = x
2 has a unique fixed point at x∗ = 0.

3.1. Example 2: Application of Theorem 2 (Existence of Fixed Point with Con-

traction and Perturbation Term). Problem Statement: Let X = [0, 2] be a Pentagonal

Controlled Intuitionistic Fuzzy Metric Space with the distance function:

M(x, y, β) =
1

1 + β|x− y|
, N(x, y, β) =

1

1 + β2|x− y|
.

Consider the mapping U : X → X defined by:

U(x) =
x+ 1

2
.

We need to prove that this mapping has a unique fixed point.
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Solution:

We are given that the mapping satisfies the following condition:

b(Ux,Uy) ≤ C · b(x, y) + λ · b(x, y)θ,

where C = 1, λ = 0.5, and θ = 0.5.

1. Contraction Property: First, we check the contraction property. The distance between

two points under U is given by:

b(Ux,Uy) =

∣∣∣∣x+ 1

2
− y + 1

2

∣∣∣∣ = |x− y|
2

.

Therefore, the mapping satisfies:

b(Ux,Uy) =
1

2
b(x, y).

This shows that U is a contraction with contraction constant α = 1
2 .

2. Perturbation Term: To verify the additional condition, we compute the perturbation

term:

b(Ux,Uy) =
1

2
b(x, y) + 0.5 · b(x, y)0.5.

The perturbation term 0.5 · b(x, y)0.5 is small when b(x, y) is small, ensuring that the

mapping behaves like a contraction at small distances.

3. Fixed Point: We now find the fixed point of U . A fixed point x∗ satisfies:

U(x∗) = x∗ ⇒ x∗ + 1

2
= x∗ ⇒ x∗ = 1.

Therefore, the fixed point of the mapping U is x∗ = 1.

4. Uniqueness: Since U is a contraction, the Banach Fixed-Point Theorem guarantees

that the fixed point is unique.

Thus, the mapping U(x) = x+1
2 has a unique fixed point at x∗ = 1.

3.2. Example 3: Application of Theorem 3 (Fixed Point Existence in a General-

ized Fuzzy Metric Space). Problem Statement: LetX = [0, 1] be a Pentagonal Controlled

Intuitionistic Fuzzy Metric Space with the fuzzy distance function:

M(x, y, β) =
1

1 + β|x− y|
, N(x, y, β) =

1

1 + β2|x− y|
.

Let the mapping U : X → X be defined by:

U(x) =
x+ 1

3
.

We need to prove that this mapping has a unique fixed point.

Solution:

1. Contraction Property: First, check the contraction property. The distance between

two points under U is:

b(Ux,Uy) =

∣∣∣∣x+ 1

3
− y + 1

3

∣∣∣∣ = |x− y|
3

.

Thus, U is a contraction mapping with contraction constant α = 1
3 .
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2. Fixed Point: A fixed point x∗ satisfies:

U(x∗) = x∗ ⇒ x∗ + 1

3
= x∗ ⇒ x∗ =

1

2
.

Therefore, the fixed point of the mapping U is x∗ = 1
2 .

3. Uniqueness: Since U is a contraction, the Banach Fixed-Point Theorem guarantees the

uniqueness of the fixed point.

Thus, the mapping U(x) = x+1
3 has a unique fixed point at x∗ = 1

2 .

Example 4: Complex Example Involving Perturbation Term (Theorem 4). Prob-

lem Statement: Let X = [0, 2] be a Pentagonal Controlled Intuitionistic Fuzzy Metric Space

with the fuzzy distance function:

M(x, y, β) =
1

1 + β|x− y|
, N(x, y, β) =

1

1 + β2|x− y|
.

Let the mapping U : X → X be defined by:

U(x) =
x+ 1

2
.

We are given that b(Ux,Uy) ≤ C · b(x, y)+λ · b(x, y)θ, where C = 1, λ = 0.5, and θ = 0.5.

We need to prove that U has a unique fixed point.

Solution:

1. Contraction Property: First, we verify the contraction property. The distance between

two points under U is:

b(Ux,Uy) =

∣∣∣∣x+ 1

2
− y + 1

2

∣∣∣∣ = |x− y|
2

.

Hence, the contraction constant is α = 1
2 .

2. **Perturbation Term:** The perturbation term is given by:

b(Ux,Uy) ≤ C · b(x, y) + λ · b(x, y)θ.

Substituting the values C = 1, λ = 0.5, and θ = 0.5, we get:

b(Ux,Uy) ≤ b(x, y) + 0.5 · b(x, y)0.5.

3. Fixed Point: A fixed point x∗ satisfies:

U(x∗) = x∗ ⇒ x∗ + 1

2
= x∗ ⇒ x∗ = 1.

Therefore, the fixed point of the mapping U is x∗ = 1.

4. Uniqueness: Since U is a contraction mapping, the Banach Fixed-Point Theorem

guarantees that the fixed point is unique.

Thus, the mapping U(x) = x+1
2 has a unique fixed point at x∗ = 1.

4. 8. REAL-WORLD APPLICATIONS BASED ON FIXED-POINT THEOREMS

Fixed-point theorems in fuzzy metric spaces, especially Pentagonal Controlled Intuition-

istic Fuzzy Metric Spaces, have numerous practical applications across various fields. These

applications leverage the properties of fixed-point existence, uniqueness, and convergence in
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areas such as optimization, network theory, decision-making, and control systems. In this

section, we explore some of the real-world applications of these results.

4.1. 1. Fuzzy Decision Support Systems (DSS). Problem Statement: In many

decision-making problems, especially in cases involving uncertainty and imprecision, fuzzy

logic and fuzzy metrics are employed to provide more robust solutions. A fuzzy decision

support system (DSS) is designed to help decision-makers select the best alternative from a

set of options, especially when the evaluation criteria are vague or subjective [9].

Start

Input Alternatives

Evaluate Alternatives

Compare Alternatives

Select Best Alternative

End

Yes

No

Application of Theorem 1: Consider a decision-making system where alternatives

are compared using a fuzzy metric space (X,M,N, ∗, ⋄) with the fuzzy distance functions

M(x, y, β) and N(x, y, β) representing the closeness of alternatives and the level of preference

for each alternative.

By applying Theorem 1, we ensure the existence of a unique best alternative, which

corresponds to a fixed point of the decision-making process. Specifically, the mapping U

can be interpreted as a process that progressively refines the selection of alternatives until

it converges to the optimal choice. The uniqueness of the fixed point guarantees that the

decision process will lead to a single, optimal alternative, even in the presence of fuzzy

preferences [6].

4.1.1. Example: Multi-Criteria Decision-Making (MCDM). In a multi-criteria decision-making

problem, a decision-maker evaluates alternatives based on several criteria. Each criterion is

assessed using fuzzy evaluations. The alternatives are compared using a fuzzy metric, and

the decision-maker seeks the best alternative by minimizing the fuzzy distance between the

HTTPS://ORCID.ORG/0000-0001-6269-5248
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alternatives. The application of Theorem 1 guarantees that the decision process will converge

to a single optimal alternative [9].

4.2. 2. Control Systems and Robotics. Problem Statement: In robotics and control

systems, the design of controllers often requires finding a stable equilibrium point that the

system will eventually reach. These equilibrium points can often be modeled as fixed points

in a fuzzy metric space. The use of fuzzy control systems allows for more flexible and adaptive

control, especially when the system’s parameters are uncertain or imprecise [10].

Sensor

Data

Fuzzy

Controller
Actuator

Robotic

Arm

Application of Theorem 2: Consider a robotic arm controlled by a fuzzy controller.

The state of the system is represented in a fuzzy metric space, and the control inputs are

generated by a fuzzy inference system that aims to bring the system to a desired equilibrium.

The mapping U could represent the control adjustments made at each step based on the

current state of the system. Theorem 2 ensures that this control process converges to a

unique fixed point, which corresponds to the desired equilibrium position of the robot [8].

4.2.1. Example: Robot Path Planning. In robot path planning, the robot’s movements can

be modeled as a series of control inputs that move the robot closer to its destination. The

fuzzy metric space provides a natural way to model uncertainties in the robot’s position and

the environment. Using Theorem 2, we can ensure that the sequence of control inputs will

eventually converge to a stable path, and the robot will reach its goal with high precision,

even in the presence of uncertainty in the environment [10].

4.3. 3. Network Optimization and Routing Algorithms. Problem Statement: In

network optimization, routing algorithms are used to find the most efficient path for data

transmission between nodes in a network. This involves minimizing the distance or cost

between nodes, which is often modeled using fuzzy metrics due to uncertainty in network

parameters, such as bandwidth, delay, and load [11].
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Start

Input Network Data

Evaluate Fuzzy Costs

Optimal Path Found?

Select Optimal Path

End

Yes

No

Application of Theorem 3: Consider a communication network with nodes X and

edges representing possible communication links between the nodes. The cost or distance

between two nodes can be modeled using a fuzzy distance function, and the goal is to find

the optimal routing path. The mapping U can be interpreted as an iterative process that

progressively updates the routing path based on current network conditions. Theorem 3

ensures that this iterative process will converge to a unique optimal routing path, improving

the network’s efficiency and performance [11].

4.3.1. Example: Fuzzy Shortest Path Problem. In a fuzzy shortest path problem, the goal is

to find the path between two nodes in a network that minimizes a fuzzy cost function. The

cost function incorporates uncertainty in parameters such as transmission delays, bandwidth,

and link reliability. Theorem 3 guarantees that the iterative routing algorithm will converge

to the optimal path, ensuring efficient data transmission even in the presence of uncertain

or imprecise network conditions [11].

4.4. 4. Economic Modeling and Optimization. Problem Statement: In econom-

ics, decision-making models often involve multiple agents, each with their own objectives

and preferences. These models are inherently fuzzy because of the uncertainty in economic

conditions, preferences, and market behaviors. Fixed-point theorems can be used to find

equilibrium points in such economic models, ensuring that the agents’ decisions converge to

a stable and optimal solution [12].

Application of Theorem 4: Consider a market model where multiple agents (e.g.,

buyers and sellers) interact to determine the equilibrium prices and quantities of goods. The

HTTPS://ORCID.ORG/0000-0001-6269-5248
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decision-making process can be modeled using a fuzzy metric space, where each agent’s utility

or profit function is evaluated using fuzzy distances. The mapping U represents the iterative

adjustments made by the agents to their prices and quantities based on market feedback.

Theorem 4 guarantees that the process will converge to a unique equilibrium, where supply

meets demand and all agents’ objectives are satisfied [12].

4.4.1. Example: Fuzzy Nash Equilibrium in Game Theory. In game theory, players make

decisions based on their preferences and strategies, often in an uncertain environment. The

fuzzy Nash equilibrium concept extends the traditional Nash equilibrium to handle uncer-

tainty in payoffs and strategies. Using Theorem 4, we can prove the existence and uniqueness

of a fuzzy Nash equilibrium, where each player’s strategy converges to a stable solution de-

spite the uncertainty in the game environment [12].

Player 1 Player 2

Fuzzy

Nash Equi-

librium

4.5. 5. Image Processing and Pattern Recognition. Problem Statement: In image

processing and pattern recognition, fuzzy metrics are often used to measure the similarity

between images or patterns. The goal is to find a stable, optimal solution for tasks such as

image segmentation, feature extraction, and object recognition. Fixed-point theorems can

be used to model the iterative process of improving the recognition accuracy and stability of

the algorithm [13].

Input

Image

Fuzzy

Clustering

Segmented

Image

Application of Theorem 1: Consider an image segmentation algorithm where the goal is

to divide an image into regions that represent different objects or features. The segmentation

process can be modeled as an iterative process where the algorithm refines the boundaries of

the regions based on fuzzy distance functions. Theorem 1 ensures that the iterative process

will converge to a unique, stable segmentation of the image, even in the presence of noise or

ambiguity in the image data [13].

4.5.1. Example: Fuzzy Clustering for Image Segmentation. In fuzzy clustering algorithms,

such as fuzzy c-means, the goal is to assign each pixel in an image to a cluster representing

a different object or feature. The iterative process of refining the clusters can be modeled

using a fuzzy metric space, and Theorem 1 guarantees that the algorithm will converge to a

unique clustering solution, resulting in accurate image segmentation [13].

4.6. 6. Artificial Intelligence and Machine Learning. Problem Statement: In ma-

chine learning and artificial intelligence, many algorithms rely on iterative optimization tech-

niques to minimize an objective function. These algorithms are often applied to problems
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where the objective function is uncertain, imprecise, or fuzzy. Fixed-point theorems can be

used to guarantee the existence and uniqueness of an optimal solution in such cases [14].

Start

Input Data

Train Neural Network

Convergence?

Optimize Parameters

End

Yes

No

Application of Theorem 2: Consider a machine learning algorithm that aims to opti-

mize a model’s parameters by iteratively adjusting them based on the error or loss function.

The loss function can be modeled as a fuzzy metric that incorporates uncertainty in the

data. The iterative process of updating the model’s parameters can be represented by a

mapping U , and Theorem 2 ensures that this process will converge to a unique optimal set

of parameters [14].

4.6.1. Example: Fuzzy Optimization in Neural Networks. In neural networks, training the

network involves adjusting weights and biases to minimize a loss function. When the data

is uncertain or noisy, the loss function can be modeled using fuzzy metrics. Theorem 2

guarantees that the training process will converge to a unique set of weights and biases that

minimize the loss function, ensuring optimal performance of the neural network [14].

5. 9. CONCLUSION

The application of fixed-point theorems in Pentagonal Controlled Intuitionistic Fuzzy Met-

ric Spaces offers powerful tools for solving problems in various fields, including decision-

making, control systems, network optimization, economics, image processing, and machine

learning. By ensuring the existence, uniqueness, and convergence of solutions, these theo-

rems provide a solid foundation for developing robust and efficient algorithms in real-world

applications. As we continue to work in environments with uncertainty and imprecision, the
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role of fuzzy metrics and fixed-point theorems will only grow more important in ensuring

stability and optimality across diverse domains.
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