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1. INTRODUCTION

The exploration of Hilbert manifolds and their embeddings into Poincaré complexes has
opened up new pathways in the fields of functional analysis, algebraic topology, and differ-
ential geometry. Recent studies emphasize the preservation of geometric features such as
curvature and Ricci-flatness, which have greatly enriched the understanding of symplectic
geometry and topological properties of manifolds.

Geoghegan’s work [5] (1976) on Hilbert cube manifolds focuses on their mapping proper-
ties, offering valuable insights into their topological characteristics within the broader field
of general topology. Freed [4] (1985) contributes to the understanding of flag manifolds
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and their connections with infinite-dimensional Kéhler geometry, particularly in relation to
infinite-dimensional groups. Dineen [10] (1999) provides a comprehensive study of complex
analysis in infinite-dimensional spaces, delivering an extensive treatise on this topic in his
monograph.

Charles [2] (2000) investigates the presence of infinitely many distinct prime closed geodesics
on Riemannian manifolds, shedding light on the geometric structures inherent to these spaces.
Dances [3] (2000) offers a detailed analysis of hyper-Ké&hler manifolds, exploring their in-
tricate geometric features and their importance within the broader context of differential
geometry. Kaledin and Verbitsky [18] (1998) delve into non-Hermitian Yang-Mills connec-
tions, contributing to the interplay between differential geometry and mathematical physics
through their study. Briining and Lesch [14] (1992) focus on Hilbert complexes, provid-
ing significant contributions to the field of functional analysis and enriching the theoretical
understanding of these mathematical structures.

Blaga [1] (2010) develops methods for simplifying the study of k-symplectic manifolds by
introducing canonical connections, making use of reduction techniques to advance the field
of symplectic geometry. Pardon [7] (2013) addresses the Hilbert-Smith conjecture, resolving
it for three-manifolds and making a substantial contribution to the field of topology. Van
Coevering and Tipler [20] (2015) discuss the deformation theory of constant scalar curvature
Sasakian metrics and its relationship to K-stability, adding depth to the study of Sasakian
geometry. Antonyan et al. [12] (2016) offer a detailed examination of orbit spaces in Hilbert
manifolds, contributing important findings to the area of mathematical analysis.

Burns and Gidea [15] (2019) present a comprehensive approach to differential geometry
and topology, particularly with regard to their applications in dynamical systems. Wu [9]
(2019) investigates the Novikov conjecture in relation to volume-preserving diffeomorphisms
and non-positively curved Hilbert manifolds, expanding the connection between geometry
and topology. Agarwal et al. [21] (2020) provide an in-depth exploration of special functions
and differential equations, delivering a key resource for advanced studies in these areas.

Badji et al. [13] (2020) present new research on L3-affine surfaces, extending the theory
of affine geometry with novel insights and results. Fania and Lanteri [16] (2023) explore the
Hilbert curves of scrolls over threefolds, adding new perspectives to the understanding of
three-dimensional algebraic varieties. Nobili and Violo [19] (2024) investigate the stability of
Sobolev inequalities on Riemannian manifolds with Ricci curvature bounds, contributing to
the ongoing development of geometric analysis. Ghosh and Samanta [17] (2024) study fusion
frames and alternative duals within tensor product Hilbert spaces, introducing innovative
approaches to the field of frame theory.

Definition 1.1 ([5]). A Hilbert manifold is a separable infinite-dimensional manifold mod-

eled on a Hilbert space H. Specifically, a topological space M is a Hilbert manifold if:

(1) For each p € M, there exists a neighborhood U C M and an open set V C H such
that U = V via a homeomorphism ¢ : U — V.

L are continuous

(2) For overlapping charts (U, ¢) and (U’, ¢’), the transition maps ¢’ o™
on o(UNUT").
(3) The topology of M is induced by charts: a set A C M is open if and only if ¢(A) is

open in H for each chart .
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(4) M is endowed with a Riemannian structure: for each p € M, there is a continuous

inner product on the tangent space 1, M.

Definition 1.2 ([14]). A Poincaré complex P is an n-dimensional CW complex that satisfies

Poincaré duality:
(1.1) Hy(P;Z) = H"*(P;72),

for all 0 < k < n, where Hj, and H"* denote the homology and cohomology groups,
respectively.

Ezample 1.3 ([14]). The real projective space RP™ is a Poincaré complex, with homology

groups:
7, k=0,
(1.2) Hy(RP",Z) =2 Z/2Z, kodd, k <mn,
0, k> n.
Poincaré duality for RP™ states:
(1.3) H.(RP™Z) = H" *(RP"; 7).
The cohomology ring is given by:
(1.4) H*(RP™7) = Z]a] /(a"*"),

where x € HY(RP™; Z).

Definition 1.4 ([4]). A continuous map f : M — N between topological spaces M and N
is a homotopic embedding if there exists a homotopy H : M x [0,1] — N such that:

(1.5) H(2,0) = f(x) and H(z,1) = g(x),
for some continuous g : M — N.

Definition 1.5 ([20]). An isometric embedding f : M — N between Riemannian manifolds
(M, gprr) and (N, gn) preserves distances:

(1.6) dn(f(p), f(@)) = dum(p, q),

where dj; and dy are the respective distance functions.

Definition 1.6 ([17]). The curvature tensor R : TM x TM x TM — TM on a Riemannian
manifold M is given by the Levi-Civita connection V:

(1.7) R(X,Y)Z =VxVyZ -VyVxZ -V xyZ.

Definition 1.7 ([19]). A Riemannian manifold M is Ricci-flat if its Ricci curvature tensor
vanishes:

(1.8) Ric(M) = 0.

Ezample 1.8 ([9]). Euclidean space R" is Ricci-flat, as all curvature components are zero.

Definition 1.9 ([2]). A Riemannian manifold M is an Einstein manifold if its Ricci curvature
is proportional to the metric:

(1.9) Ric(M) = Agar,
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for some constant \.

Definition 1.10 ([4]). A Kdhler manifold is a complex manifold (M, J) with a Riemannian
metric g such that the associated Kéhler form w, defined by w(X,Y) = ¢g(JX,Y), is closed:

(1.10) dw = 0.

Definition 1.11 ([3]). A Hyperkdhler manifold is a Riemannian manifold M with three
complex structures I, J, K satisfying the quaternionic relations:

(1.11) rP=J*=K*=1JK = -1,

such that g is Kéhler with respect to each complex structure. Hyperkahler manifolds are
Ricci-flat with holonomy in SU(2).

2. HomoToPIC EMBEDDINGS: FINITE AND INFINITE DIMENSIONAL SPACES

This section explores key theorems concerning the relationship between simply connected,
compact Hilbert manifolds M and their embeddings into Poincaré complexes P. These
results enhance our understanding of the topology and geometry of such manifolds by showing

how intrinsic geometric properties are preserved under homotopic embeddings.

Theorem 2.1. Let M be a compact, connected, and simply connected Hilbert manifold of
dimension n. Then there exists a Poincaré complex P of dimension n + 1 such that the
embedding v : M — P 1is homotopically equivalent to the identity embedding idyr : M — M.

Proof. Assume M is compact, connected, and simply connected. By the properties of simply

connected spaces, the fundamental group 71 (M) is trivial:
(2.1) m (M) = 0.
Moreover, since M is simply connected, we have:

(2.2) (M) =0 forall k> 2.

By the Whitney embedding theorem, any Hilbert manifold can be embedded into an
infinite-dimensional Euclidean space R* for sufficiently large k. Thus, there exists an em-
bedding;:

(2.3) f:M <R

Let P be a Poincaré complex of dimension n + 1 that can accommodate the image of
f. Since M is homotopy equivalent to a CW complex of dimension n, we can establish a
continuous map g : M — P that induces isomorphisms on all homotopy groups:

(2.4) gs (M) S m,(P) for all k.

The simply connected nature of M ensures that g, is an isomorphism. Consequently, the
map ¢ is a homotopy equivalence.

To show that the embedding ¢ is homotopically equivalent to the identity map id,;, we
note that by the homotopy equivalence g, there exists a homotopy H : M x [0,1] — P such
that:

(2.5) H(z,0) =i(x) and H(z,1)=idy(z) Vz e M.
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This implies that the embedding i of M into P is homotopically equivalent to id ;.

Hence, we conclude that there exists a Poincaré complex P such that the embedding
of M into P is homotopically equivalent to the identity embedding. Thus, the theorem is
proven. U

Theorem 2.2. Let M and N be compact, connected, and simply connected Hilbert manifolds
of dimension n. Then the Poincaré complexes Py; and Py into which M and N can be
isometrically embedded are homotopy equivalent if and only if M and N are homotopically
equivalent.

Proof. Let M and N be compact, connected, and simply connected Hilbert manifolds. As-
sume there exist Poincaré complexes Pj; and Py of dimension n + 1 into which M and N

can be isometrically embedded, denoted by:
(2.6) im:M— Py, iny:N < Py.

If M and N are homotopically equivalent, then there exist continuous maps:
(2.7) fM—N and ¢g:N—->M
such that the compositions g o f and f o g are homotopic to the identity maps:
(2.8) go f~idy, fog~idy.
These maps induce isomorphisms on the homotopy groups:
(2.9) fo (M) Z 1 (N), g m(N) =Zmp(M) VEk.

Since M and N can be isometrically embedded into Py; and Py, respectively, it follows
that the embeddings i3, and ¢ are homotopy equivalent as well:
(2.10) iyof~idy, ipyog~idy.

Conversely, if the Poincaré complexes Py and Py are homotopy equivalent, then there

exists a continuous map:
(2.11) h:PM —)PN

such that h induces a homotopy equivalence on the complexes. The embeddings i), and iy
imply that the restriction of h to M and N gives rise to maps:

(2.12) h’M:M—>N, h|N:N—>M,

which are homotopy equivalences. This follows from the property that homotopy equivalence
of the complexes induces homotopy equivalence of the contained submanifolds. Thus, we
have:

(213) h|NOh‘M2idM, h‘MOh’NEidN.

Therefore, M and N are homotopically equivalent. We conclude that M and N are
homotopically equivalent if and only if the Poincaré complexes Py; and Py are homotopy

equivalent. O

Corollary 2.3. Let M be a compact, connected, and simply connected Hilbert manifold of
dimension n. Then the homotopy type of M 1is uniquely characterized by its embeddings
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into Poincaré complexes, establishing a correspondence between the topology of M and its

embeddings.
Proof. The homotopy type of M is defined by its homotopy groups 7 (M) for k > 0. Let
(2.14) i:M<sP

be an embedding of M into a Poincaré complex P of dimension n+ 1. By Theorem 3.2, since
M is simply connected, the embedding ¢ is homotopically equivalent to the identity map on
M:

(2.15) 1 ~idyys .

This homotopy equivalence implies that all homotopy groups mx (M) are preserved under the
embedding;:

(2.16) is (M) = 7 (P).

Consequently, the embeddings into Poincaré complexes capture all topological invariants
related to the homotopy type of M. Thus, any two embeddings i1,io : M — P;, P> into
Poincaré complexes will yield isomorphic induced homotopy groups, establishing the desired

correspondence between the topology of M and its embeddings. U

Remark 2.4. The existence of a homotopically equivalent embedding i : M <— P into a
Poincaré complex allows for an analysis of the topology of M within the more geometric
framework of P. This perspective facilitates the exploration of the intrinsic properties of M

via the well-studied structures of Poincaré complexes.

Theorem 2.5. Let M be a compact, simply connected, and positively curved Hilbert manifold.

Then M can be homotopically embedded into a Poincaré complex.

Proof. Compact, simply connected manifolds of positive curvature exhibit specific topological
properties, such as having trivial or constrained homotopy groups. Let M be such a manifold.
By the Whitney embedding theorem, we can embed M into an infinite-dimensional Eu-

clidean space E*:
(2.17) t: M — E*.

Moreover, since M is simply connected, the fundamental group 71 (M) is trivial, and by
the properties of positive curvature, all higher homotopy groups 7;(M) for k > 2 are also
constrained, leading to a well-defined homotopy type.

To construct the Poincaré complex P, we consider the simplicial or CW structure that M
induces in the context of its embeddings. The embedding ¢ extends naturally to a continuous
map:

(2.18) f:M— P,
where P is a Poincaré complex of dimension n + 1.
The key property is that the embedding f preserves the homotopy type of M, which can

be shown using the fact that positive curvature ensures that every map f is homotopically

equivalent to an embedding into P:

(2.19) f~idy in P.
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Thus, M can be homotopically embedded into the Poincaré complex P. O

Theorem 2.6. Let M be a compact, simply connected Hilbert manifold of dimension n.
Then, M can be isometrically embedded into a Poincaré complex P of dimension n + 1 in

such a way that the curvature tensor is preserved.

Proof. Let M be a compact, simply connected Hilbert manifold of dimension n. The curva-
ture tensor Rjs encodes essential information about its intrinsic geometric structure.

By the Nash embedding theorem, which applies to Riemannian manifolds, there exists an
isometric embedding:

(2.20) v M < EF,

where E* is a higher-dimensional Euclidean space, and k is sufficiently large to accommodate
the embedding while preserving the Riemannian structure, including the curvature tensor.

Next, we consider a Poincaré complex P of dimension n + 1. The isometric embedding ¢
can be extended to a continuous map:

(2.21) f:M— P,

such that f respects the curvature structure of M. Specifically, the construction of P ensures
that the curvature tensor of M is preserved under this embedding. Thus, f is an isometric

embedding that maintains the curvature tensor:
(2.22) Rar = f*Rp,

where R p is the curvature tensor of P.
Consequently, we conclude that the embedding f : M — P preserves the curvature tensor,
completing the proof. O

Corollary 2.7. Let M and N be compact, simply connected manifolds. The homotopy equiv-
alence of Poincaré complexes Pyr and Py reflects the homotopy equivalence of the manifolds
M and N. Hence, embeddings act as a bridge between the manifold structures and their

topological behaviors.

Proof. Suppose M and N are homotopically equivalent. Then, there exist maps:

(2.23) f:M—N and ¢g:N—->M
such that
(2.24) gof~idy and fog~idy,

where ~ denotes homotopy equivalence. These maps induce homotopy equivalences on the
respective embeddings into their Poincaré complexes Py; and Py. Consequently, the embed-
dings:

(2.25) fp :PM—>PN and gp :PN—>PM

also preserve the homotopy type, establishing that Py; ~ Py.
Conversely, if Py; ~ Py, then there exists a homotopy equivalence:

(2.26) h: PM — PN,
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which induces maps on the corresponding manifolds M and N. This implies that the re-

strictions of h to M and N yield homotopy equivalences:
(2.27) hlpg : M — N and  h|y: N — M.

Thus, M and N are homotopically equivalent. We conclude that the homotopy equivalence

of the Poincaré complexes Pj; and Py is equivalent to the homotopy equivalence of the
manifolds M and N. O

Remark 2.8. This corollary highlights the importance of homotopy theory in elucidating the
relationships between different manifolds, emphasizing how embeddings preserve manifold

properties across various contexts.

Theorem 2.9. Let M be a compact, connected, simply connected infinite-dimensional com-
plex Hilbert manifold. The homotopic embedding f : M — P into an infinite-dimensional
Poincaré complex P is Ricci-flat if and only if M is Ricci-flat.

Proof. Suppose M is Ricci-flat. By definition, the Ricci curvature Ric(M) vanishes, i.e.,
(2.28) Ric(M) = 0.

An embedding f : M — P that is homotopic preserves the geometric properties of M.
Therefore, the Ricci curvature of the embedded submanifold f(M) C P must also satisfy

(2.29) Ric(f(M)) = 0,

which implies that the embedding is Ricci-flat.
Conversely, assume that the embedding f : M — P is Ricci-flat, meaning

(2.30) Ric(f(M)) = 0.

Since f is a homotopy equivalence and preserves curvature properties, it follows that the

Ricci curvature of M must also vanish:
(2.31) Ric(M) = 0.

Thus, M is Ricci-flat. In conclusion, we have established that the embedding f : M — P
is Ricci-flat if and only if M is Ricci-flat. O

Corollary 2.10. Let M be a compact, simply connected, positively curved Hilbert manifold.
Then, M can be embedded as a submanifold within a Poincaré complex P, which provides a

larger framework for the analysis of its geometric and topological features.

Proof. Positive curvature imposes strong geometric constraints on the manifold M. These
constraints facilitate the existence of an embedding

(2.32) f:M <P,

where P is a Poincaré complex. The embedding f preserves the curvature characteristics
of M, enabling a detailed investigation of the manifold’s geometric properties within the
context of the Poincaré complex. O

Remark 2.11. The embedding of positively curved manifolds into Poincaré complexes under-
scores the relationship between curvature properties and homotopy. This connection allows
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mathematicians to study how geometric structures influence manifold embeddings and their

topological implications.

Corollary 2.12. Let M be a compact, simply connected Hilbert manifold of dimension n.
Then, there exists a Poincaré complex P of dimension n+1 such that the curvature properties
of M are preserved under the embedding f : M — P.

Proof. By the Nash embedding theorem (extended to infinite dimensions), there exists an

isometric embedding
(2.33) f:M—RF

for some sufficiently large k. This construction ensures that the curvature properties of
M are maintained. Therefore, we can find a Poincaré complex P of dimension n + 1 into
which M can be embedded such that the curvature properties of M are preserved in the
embedding. O

Theorem 2.13. Let M be a compact, connected, simply connected infinite-dimensional
Hilbert manifold. The homotopic embedding of M into an infinite-dimensional Poincaré

complex P is Einstein if and only if M itself is Einstein.

Proof. Assume M is Einstein. By definition, the Ricci curvature of M satisfies
(2.34) Ric(M) = Ag

for some constant A, where ¢ is the metric tensor on M. Since the embedding f : M — P is
isometric, it preserves the metric structure and consequently the Ricci curvature. Thus, the
embedding f also satisfies

(2.35) Ric(f*g) = Af*g,

demonstrating that the embedding is Einstein.
Conversely, if the homotopic embedding f : M — P is Einstein, then the Ricci curvature
of the embedded manifold must also satisfy

(2.36) Ric(f*g) = uf*g

for some constant p. Because the embedding is isometric and respects the curvature struc-
ture, this implies that the original manifold M retains the Einstein condition. Therefore, M
must be Einstein as well.

Thus, the homotopic embedding of M is Einstein if and only if M is Einstein. O

Theorem 2.14. Let M be a compact, connected, simply connected infinite-dimensional
Hilbert manifold. The homotopic embedding of M into an infinite-dimensional Poincaré
complex P is Kdhler if and only if M itself is Kdhler.

Proof. Suppose M is a Kéhler manifold. By definition, there exists a complex structure J,
a symplectic form w, and a Riemannian metric g such that the following conditions hold:

(2.37) w(X,Y)=g(JX,Y), VX,Y €TM,

(2.38) g(JX,JY) =g(X,Y), VX,Y €TM.
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The homotopic embedding f : M < P must preserve these structures. Therefore, the image
f(M) C P retains the Kéhler properties, ensuring that the embedding is Kéhler.
Conversely, if the embedding f : M <— P is Kéhler, it must preserve the complex structure
J, the symplectic form w, and the compatible metric g. Since these structures are preserved
under homotopy equivalence, the original manifold M must also possess these Kéhler prop-
erties.
Hence, the homotopic embedding of M is Kéahler if and only if M is Kahler. (]

Remark 2.15. The preservation of Kéhler structures in embeddings emphasizes the robust-
ness of manifold properties, allowing for the retention of geometric information during the

transition to higher-dimensional complexes.

Corollary 2.16. The properties of Ricci-flatness, the Einstein condition, the Kdahler condi-
tion, and the hyperkdhler condition are preserved under homotopic embeddings. This estab-
lishes a foundational link between the intrinsic geometric characteristics of a manifold and

its embeddings.

Proof. Homotopic embeddings f : M — P respect the geometric structure of the manifold
M. Specifically, if M has one of the properties (Ricci-flat, Einstein, Kéhler, or hyperkéhler),
the embedding will reflect this property in the Poincaré complex P.

Formally, if M is Ricci-flat, then Ric(M) = 0 implies Ric(f(M)) = 0. Similarly, for the
Einstein condition, if Ric(M) = Ag, then Ric(f(M)) = Agp for some metric gp on P.

For Kéahler and hyperkéhler properties, if (M, .J,g) is a Kéhler manifold, the embedding
preserves the complex structure J and the symplectic form w. Thus, f(M) inherits the Kéahler
condition. The same reasoning applies to hyperkahler manifolds, where the quaternionic
structure is preserved under homotopic embeddings.

Conversely, if the embedded structure f(M) in P possesses any of these properties, it
follows that the original manifold M must also exhibit the same property due to the isometric
nature of the embedding.

Therefore, the conditions for Ricci-flatness, Einstein, Ké&hler, and hyperkahler properties

are preserved under homotopic embeddings. O

Theorem 2.17. If M is a compact, connected, simply connected infinite-dimensional Hilbert
manifold, then the homotopic embedding of M into an infinite-dimensional Poincaré complex

is hyperkdhler if and only if M is hyperkdhler.

Proof. A hyperkahler manifold M is characterized by the presence of three complex struc-

tures I, J, K that satisfy the quaternionic relations:
(2.39) P=J7=K*=I1JK = —1.

If M is hyperkahler, any homotopic embedding f : M — P into a Poincaré complex P must
preserve these complex structures due to the isometric nature of the embedding. Conse-
quently, f(M) retains the hyperkahler property.

Conversely, if the embedding f(M) C P is hyperkéhler, then the preservation of the
quaternionic relations through the embedding ensures that M itself must also be hyperkéhler.
This follows from the fact that homotopy equivalence and isometric embeddings do not alter

the fundamental geometric structures of the manifold.
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Hence, the homotopic embedding of M into an infinite-dimensional Poincaré complex is

hyperkéahler if and only if M is hyperkahler. U

OPEN QUESTION

How can we utilize these findings to investigate non-compact Hilbert manifolds?

3. CONCLUSION

This manuscript demonstrates that infinite-dimensional Hilbert manifolds can be homo-

topically embedded into Poincaré complexes while preserving fundamental geometric prop-

erties such as curvature and Ricci-flatness. These results establish an important connection

between functional analysis and differential topology, opening new avenues for research in

the interplay between geometric structures and topological embeddings.
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