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Abstract. In this paper, we study projectively flat and conharmonically flat

three-dimensional f -Kenmotsu manifolds with respect to quater-symmetric

metric connection. Also, we consider η-Ricci solitons of a three-dimensional

f -Kenmotsu manifold with respect to quater-symmetric metric connection. Fi-

nally, we have cited an example which verifies one of our main Theorems.
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1. Introduction

The quarter-symmetric linear connections in a differential manifold was in-

troduced by S. Golab [14]. A linear connection
s

∇ on an n-dimensional Rie-

mannian manifold is called a quarter-symmetric connection(QSMC) [14] if its

torsion tensor Γ of the connection
s

∇ defined by

Γ(I1, I2) =
s

∇I1I2 −
s

∇I2I1 − [I1, I2],
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satisfies

Γ(I1, I2) = η(I2)ωI1 − η(I1)ωI2, (1.1)

where η is a 1 form and ω is a (1,1) tensor field. The quarter-symmetric

connection is called a semi-symmetric connection [12] if ωI1 = I1. A quarter-

symmetric connection
s

∇ satisfies the condition

(
s

∇I1g)(I2, I3) = 0, (1.2)

for all I1, I2, I3 ∈ χ(M), where χ(M) is the Lie algebra of vector fields of

the manifold M, then
s

∇ is said to be a QSMC, otherwise it is said to be a

quarter-symmetric non-metric connection. In [2, 4, 19, 20, 26], the properties

of Riemannian manifolds with QSMC have been studied by many authors.

Let M be a Riemannian manifold of dimension (2n + 1). If the value of

projective curvature tensor is defined by [1, 13, 27]

P (I1, I2)I3 =
a

R(I1, I2)I3 −
1

2n
{
a

S(I2, I3)I1 −
a

S(I1, I3)I2},

reduced to zero, thenM is said to be locally projectively flat and the converse

is also true, where I1, I2, I3 ∈ χ(M),
a

R is the curvature tensor and
a

S is the

Ricci tensor with respect to the Levi-Civita connection, respectively.

A rank-four tensor H on Riemannian manifold M of dimension (2n+ 1) is

given by

H(I1, I2)I3 =
a

R(I1, I2)I3 −
1

2n− 1
{
a

S(I2, I3)I1 −
a

S(I1, I3)I2

+ g(I2, I3)QI1 − g(I1, I3)QI2},

where
a

R,
a

S and Q represents the Riemannian curvature tensor, Ricci tensor

and Ricci operator respectively. A manifold M on which H vanishes at every

point is called conharmonically flat manifold.

A Ricci soliton is a natural generalization of Einstein metric. If there is

a smooth vector field V on a Riemannian manifold (M, g) that satisfies the

following condition [15, 28], the manifold is known as a Ricci soliton

£Vg + 2
a

S + 2λg = 0,

where £V stands for the Lie derivative operator along the vector field V and
a

S

is a Ricci tensor of M. According to λ < 0, λ = 0, or λ > 0, respectively, the

Ricci soliton is considered to be shrinking, steady and expanding [8]. Several

authors have studied Ricci solitons, such as [3, 7, 10, 11, 16, 23].

If there is a smooth vector field V such that the Ricci tensor satisfies the

following equation, then the Riemannian manifold (M, g) is known as a η-Ricci

soliton

£Vg + 2
a

S + 2λg + 2µη ⊗ η = 0, (1.3)
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where
a

S is the Ricci tensor associated to g, η is an one form, λ and µ are real

constants. In this connection we mention the works of Blaga [5, 6]. Motivated

by the above studies we study f -Kenmotsu manifolds admitting QSMC.

The present paper, after the introduction, we give some required preliminar-

ies about f -Kenmotsu manifolds and study quater-symmetric connection on

f -Kenmotsu manifolds in Section 2. In Section 3, we consider projectively flat

f -Kenmotsu manifolds of dimension 3 with respect to QSMC. Section 4 is de-

voted to study conharmonically flat three-dimensional f -Kenmotsu manifolds

with respect to QSMC. In Section 5, we study η-Ricci solitons on f -Kenmotsu

manifolds of dimension 3 admitting QSMC. Finally, we give an example of 3-

dimensional f -Kenmotsu manifolds admitting QSMC which admits an η-Ricci

soliton.

2. Preliminaries

Let M be a 3-dimensional manifold. If the (1, 1) tensor field ω, the vector

field ξ, the 1-form η and Riemannian matric g satisfies the conditions

ω2I1 = −I1 + η(I1)ξ, η(ξ) = 1, ωξ = 0, ηω = 0, (2.1)

g(ωI1, ωI2) = g(I1, I2)− η(I1)η(I2), (2.2)

g(I1, ωI2) = −g(ωI1, I2), g(I1, ξ) = η(I1), (2.3)

for all vector fields I1, I2 ∈ χ(M); then we say (ω, ξ, η, g), is a contact met-

ric structure and (M, ω, ξ, η, g), is known as a contact metric manifold. The

fundamental 2-form Φ of the manifold is defined by

Φ(I1, I2) = g(I1, ωI2), (2.4)

for all vector fields I1, I2 ∈ χ(M). An almost contact metric manifold is normal

if [ω, ω](I1, I2) + 2dη(I1, I2)ξ = 0. If the condition [21]

(
a

∇I1ω)I2 = f{g(ωI1, I2)ξ − η(I2)ωI1}, (2.5)

where f ∈ C∞(M) such that df ∧ η = 0 and
a

∇ is Levi-Civita connection on

M, satisfied by M, then the almost contact metric manifold M is called f -

Kenmotsu manifold. If f = α=constant 6= 0, then the manifold is known as

α-Kenmotsu manifold [17]. If f = 1, then it is a Kenmotsu manifold [18]. If

f=0, then the manifold is called cosymplectic manifold [17]. If f2 + f ′ 6= 0

and f ′ = ξ(f), then f -Kenmotsu manifold is said to be regular. Above relation

(2.5) gives us
a

∇I1ξ = f{I1 − η(I1)ξ}. (2.6)

Then using (2.6), we get

(
a

∇I1η)I2 = f
(
g(I1, I2)− η(I1)η(I2)

)
. (2.7)
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If dimM ≥ 5, then the condition df ∧ η = 0 holds. If dimM = 3, then this

does not hold in general [22]. In a 3-dimensional f -Kenmotsu manifold M,

(M, ω, ξ, η, g), satisfies the following relations [22]

a

R(I1, I2)I3 = (
r

2
+ 2f2 + 2f ′)

{
g(I2, I3)I1 − g(I1, I3)I2

}
− (

r

2
+ 3f2 + 3f ′)

{
g(I2, I3)η(I1)ξ − g(I1, I3)η(I2)ξ

+ η(I2)η(I3)I1 − η(I1)η(I3)I2
}
, (2.8)

a

S(I1, I2) = (
r

2
+ f2 + f ′)g(I1, I2)− (

r

2
+ 3f2 + 3f ′)η(I1)η(I2), (2.9)

QI1 = (
r

2
+ f2 + f ′)I1 − (

r

2
+ 3f2 + 3f ′)η(I1)ξ, (2.10)

a

R(I1, I2)ξ = −(f2 + f ′)
{
η(I2)I1 − η(I1)I2

}
, (2.11)

a

R(ξ, I1)I2 = −(f2 + f ′)
{
g(I1, I2)ξ − η(I2)I1

}
, (2.12)

η(
a

R(I1, I2)I3) = −(f2 + f ′)
{
g(I2, I3)η(I1)− g(I1, I3)η(I2)

}
, (2.13)

where
a

R denotes the curvature tensor,
a

S is the Ricci tensor of type (0, 2) and

r is the scalar curvature of the manifold M.

The relation between QSMC
s

∇ and the Levi-Civita connection
a

∇ is given

by [25]
s

∇I1I2 =
a

∇I1I2 − η(I1)ωI2, (2.14)

for all vector fields I1 and I2 on M. Let
s

R be the curvature tensor of an

f -Kenmotsu manifold with respect to quarter-symmetric connection
s

∇. Then
s

R is given by
s

R(I1, I2)I3 =
s

∇I1
s

∇I2I3 −
s

∇I2
s

∇I1I3 −
s

∇[I1,I2]I3. (2.15)

In view of (2.14), above equation takes the form [25]

s

R(I1, I2)I3 =
a

R(I1, I2)I3 + f{η(I2)ωI1 − η(I1)ωI2}η(I3)

+ f{g(ωI2, I3)η(I1)− g(ωI1, I3)η(I2)}ξ, (2.16)

where
s

R and
a

R are the curvature tensor with respect to
s

∇ and
a

∇ respectively.

From equation (2.16) it follows that

s

S(I1, I2) =
a

S(I1, I2) + fg(ωI1, I2), (2.17)

where
s

S and
a

S are the Ricci tensor of the connections
s

∇ and
a

∇ respectively.

Contracting (2.17), we get

r̃ = r, (2.18)

where r̃ and r are the scalar curvature of the connections
s

∇ and
a

∇ respectively.
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We obtain from above [25]

s

R(I1, I2)ξ =
a

R(I1, I2)ξ + f{η(I2)ωI1 − η(I1)ωI2}, (2.19)

s

S(I1, ξ) =
a

S(I1, ξ), (2.20)

Q̃I1 = QI1. (2.21)

An f -Kenmotsu manifold is said to be a generalized η-Einstein manifold if

its Ricci tensor
a

S of type (0,2) satisfies [27]

a

S(I1, I2) = l1g(I1, I2) + l2η(I1)η(I2) + l3g(ωI1, I2),

where l1, l2 and l3 are the scalar functions on M. If l3 = 0, then the manifold

reduces to an η-Einstein manifold.

3. Projectively Flat f-Kenmotsu Manifolds of Dimensional 3 with

QSMC

we study projectively flat f -Kenmotsu manifolds of dimension 3 with respect

to QSMC. In a 3-dimensional f -Kenmotsu manifold, the projective curvature

tensor with respect to QSMC is given by

P̃(I1, I2)I3 =
s

R(I1, I2)I3 −
1

2

{ s
S(I2, I3)I1 −

s

S(I1, I3)I2
}
. (3.1)

If P̃=0, then the manifold M is called projectively flat manifold with respect

to QSMC.

LetM be a projectively flat manifold admitting quarter-symmetric connec-

tion. From (3.1), we have

s

R(I1, I2)I3 =
1

2

{ s
S(I2, I3)I1 −

s

S(I1, I3)I2
}
. (3.2)

Taking the inner product with W in (3.2), we have

g(
s

R(I1, I2)I3,W ) =
1

2

{ s
S(I2, I3)g(I1,W )−

s

S(I1, I3)g(I2,W )
}
. (3.3)

Using (2.16) and (2.17) in (3.3), we get

g(R(I1, I2)I3,W ) + f
{
g(ωI1,W )η(I2)− g(ωI2,W )η(I1)

}
η(I3)

+ f
{
g(ωI2, I3)η(I1)− g(ωI1, I3)η(I2)

}
η(W )

=
1

2

{a
S(I2, I3)g(I1,W )−

a

S(I1, I3)g(I2,W )

+ f(g(ωI2, I3)g(I1,W )− g(ωI1, I3)g(I2,W ))
}
. (3.4)
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Putting W = ξ in (3.4), we get

−(f2 + f ′)
{
g(I2, I3)η(I1)− g(I1, I3)η(I2)

}
+ f

{
g(ωI2, I3)η(I1)

−g(ωI1, I3)η(I2)
}

=
1

2

{a
S(I2, I3)η(I1)−

a

S(I1, I3)η(I2)

+f(g(ωI2, I3)η(I1)− g(ωI1, I3)η(I2))
}
. (3.5)

Again putting I1 = ξ in (3.5), we get

a

S(I2, I3) = −2(f2 + f ′)g(I2, I3) + 4(f2 + f ′)η(I2)η(I3) + fg(ωI2, I3). (3.6)

Then M is a generalized η-Einstein manifold with respect to the Levi-Civita

connection.

Now, using (3.6) in (2.17), we have

s

S(I2, I3) = −2(f2 + f ′)g(I2, I3) + 4(f2 + f ′)η(I2)η(I3) + 2fg(ωI2, I3). (3.7)

ThusM is a generalized η-Einstein manifold with respect to quarter-symmetric

connection.

Therefore we can state the following:

Theorem 3.1. Consider M as a regular f -Kenmotsu manifold of dimension

3 that admits QSMC. If M is projectively flat in relation to QSMC, then M
becomes an η-Einstein manifold concerning the Levi-Civita connection.

4. Conharmonically Flat f-Kenmotsu Manifolds of Dimension 3 with

QSMC

Now, we study conharmonicall flat 3-dimensional f -Kenmotsu manifolds

with respect to QSMC. In a f -Kenmotsu manifold of dimension 3, the conhar-

monically curvature tensor admitting QSMC is given by

H̃(I1, I2)I3 =
s

R(I1, I2)I3 −
{ s
S(I2, I3)I1 −

s

S(I1, I3)I2

+ g(I2, I3)Q̃I1 − g(I1, I3)Q̃I2
}
. (4.1)

If H̃=0, then the manifold M is called conharmonically flat with respect to

QSMC.

Let M be a conharmonically flat manifold with respect to QSMC. From

(4.2), we get

s

R(I1, I2)I3 =
s

S(I2, I3)I1 −
s

S(I1, I3)I2
+ g(I2, I3)Q̃I1 − g(I1, I3)Q̃I2. (4.2)
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Using (2.14), (2.17) and (2.21) in (4.2), we get
a

R(I1, I2)I3 + f{η(I2)ωI1 − η(I1)ωI2}η(I3)

+ f{g(ωI2, I3)η(I1)− g(ωI1, I3)η(I2)}ξ

=
a

S(I2, I3)I1 −
a

S(I1, I3)I2

+ f{g(ωI2, I3)I1 − g(ωI1, I3)I2 + g(I2, I3)ωI1 − g(I1, I3)ωI2}

+ (
r

2
+ f2 + f ′){g(I2, I3)I1 − g(I1, I3)I2}

− (
r

2
+ 3f2 + 3f ′){g(I2, I3)η(I1) + g(I1, I3)η(I2)}ξ. (4.3)

Putting I1 = ξ in (4.3) and using (2.8) and (2.9), we obtain
a

S(I2, I3)ξ = (f2 + f ′)g(I2, I3)ξ +
r

2
η(I3)I2

− (
r

2
+ 3f2 + 3f ′)η(I2)η(I3)ξ. (4.4)

Taking the inner product with ξ in (4.3), we have
a

S(I2, I3) = (f2 + f ′)g(I2, I3)− 3(f2 + f ′)η(I2)η(I3). (4.5)

Thus M is an η-Einstein manifold with respect to the Levi-Civita connection.

Therefore we can state the following:

Theorem 4.1. Consider M as a regular f -Kenmotsu manifold of dimension

3 that admits QSMC. If M is conharmonically flat in relation to QSMC, then

M becomes an η-Einstein manifold concerning the Levi-Civita connection.

5. η-Ricci Soliton on f-Kenmotsu Manifolds of Dmension 3 with

QSMC

Let (g, ξ, λ, µ) be an η-Ricci soliton on a three-dimensional f -Kenmotsu

manifold with respect to QSMC. Then we have

(£̃ξg)(I2, I3) + 2
s

S(I2, I3) + 2λg(I2, I3) + 2µη(I2)η(I3) = 0, (5.1)

where £̃ξ is the Lie derivative along the vector field ξ onM and
s

S is the Ricci

curvature tensor field with respect to QSMC
s

∇, and λ and µ are real constants.

Using (2.14) and (2.17), we get

2
s

S(I2, I3) = −g(
s

∇I2ξ, I3)− g(I2,
s

∇I3ξ)− 2λg(I2, I3)− 2µη(I2)η(I3)

= −2f{g(I2, I3)− η(I2)η(I3)} − 2λg(I2, I3)− 2µη(I2)η(I3).

(5.2)

So, from (5.2) we have

S(I2, I3) = −(f + λ)g(I2, I3) + (f − µ)η(I2)η(I3)− 2fg(ωI2, I3). (5.3)
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Thus, we have:

Theorem 5.1. Consider M as a regular f -Kenmotsu manifold of dimen-

sion 3 that admits QSMC. If (g, ξ, λ, µ) represents an η-Ricci soliton on a

3-dimensional f -Kenmotsu manifold with QSMC, then M becomes a general-

ized η-Einstein manifold that supports a Levi-Civita connection.

Putting I3 = ξ in (5.3) and using (2.9), we get

λ+ µ = 2(f2 + f ′). (5.4)

Hence we can state the following:

Theorem 5.2. Consider M as a regular f -Kenmotsu manifold of dimen-

sion 3 that admits QSMC. If (g, ξ, λ, µ) represents an η-Ricci soliton on a

3-dimensional f -Kenmotsu manifold with QSMC, then the η-Ricci soliton on

M is expanding, steady or shrinking according as µ < 2(f2+f ′), µ = 2(f2+f ′)

or µ > 2(f2 + f ′).

Let V be pointwise colinear with ξ i.e., V = bξ, where b is a function on

f -Kenmotsu manifold with respect to QSMC. Then

£V g(I1, I2) + 2
s

S(I1, I2) + 2λg(I1, I2) + 2µη(I1)η(I2) = 0,

implies

g(
s

∇I1bξ, I2)+g(
s

∇I2bξ, I1)+2
s

S(I1, I2)+2λg(I1, I2)+2µη(I1)η(I2) = 0, (5.5)

or

bg(
s

∇I1ξ, I2) + (I1b)η(I2) + bg(
s

∇I2ξ, I1) + (I2b)η(I1)

+ 2
s

S(I1, I2) + 2λg(I1, I2) + 2µη(I1)η(I2) = 0. (5.6)

Using (2.14), we get

2bf [g(I1, I2)− η(I1)η(I2)] + (I1b)η(I2) + (I2b)η(I1)

+ 2
a

S(I1, I2) + 2fg(ωI1, I2) + 2λg(I1, I2) + 2µη(I1)η(I2) = 0. (5.7)

In (5.7) replacing I2 by ξ, it follows that

(I1b) + (ξb)η(I1) + 2(λ+ µ− 2(f2 + f ′))η(I1) = 0. (5.8)

Again putting I1 = ξ in (5.8), we obtain

(ξb) = 2(f2 + f ′)− λ− µ. (5.9)

Putting this value in (5.8), we get

(I1b) = [2(f2 + f ′)− λ− µ]η(I1), (5.10)

or

db = [2(f2 + f ′)− λ− µ]η. (5.11)
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Applying d on (5.11), we get

[2(f2 + f ′)− λ− µ]dη = 0.

Since dη 6= 0, we have

2(f2 + f ′)− λ− µ = 0. (5.12)

Using (5.12) in (5.11) yields b is a constant. Therefore from (5.7) it follows

that
a

S(I1, I2) = −(bf + λ)g(I1, I2) + (bf − µ)η(I1)η(I2)− fg(ωI1, I2),

which implies that M is a generalized η-Einstein manifold with respect to the

Levi-Civita connection.

Thus, we can state the following theorem:

Theorem 5.3. Consider M as a regular f -Kenmotsu manifold of dimen-

sion 3 that admits QSMC. If (g, ξ, λ, µ) represents an η-Ricci soliton on a 3-

dimensional f -Kenmotsu manifold admitting QSMC and V is positive collinear

with ξ, thenM is a generalized η-Einstein manifold that supports a Levi-Civita

connection.

6. Example

We consider the three-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0},
where (x, y, z) are the standard coordinates inR3 [24]. Let J1,J2,J3 be linearly

independent vector fields at each point of M, given by

J1 = ey
∂

∂x
, J2 = ey

∂

∂z
, J3 =

∂

∂y
.

Let g be the Riemannian metric such that

g(J1,J3) = g(J2,J3) = g(J1,J2) = 0, g(J1,J1) = g(J2,J2) = g(J3,J3) = 1.

Let η be the 1-form defined by

η(I3) := g(I3,J3), ∀I3 ∈ χ(M).

Let ω be the (1,1) tensor field defined by

ω(J1) = −J2, ω(J2) = J1, ω(J3) = 0.

Then using the linearity of ω and g we have

η(J3) = 1, ω2I3 = −I3 + η(I3)J3,

g(ωI3, ωW ) = g(I3,W )− η(I3)η(W ),

for any I3,W ∈ χ(M). Thus for J3 = ξ, (ω, ξ, η, g) defines an almost contact

metric structure on M. Now, by direct computations we obtain

[J1,J2] = 0, [J2,J3] = −J2, [J1,J3] = −J1.
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In [24] the authors obtained the expression as follows:

a

∇J1J3 = −J1,
a

∇J1J2 = 0,
a

∇J1J1 = J3,
a

∇J2
J3 = −J2,

a

∇J2
J2 = J3,

a

∇J2
J1 = 0,

a

∇J3J3 = 0,
a

∇J3J2 = 0,
a

∇J3J1 = 0.

From above we see that the manifold M satisfies the condition
a

∇I1ξ = f{I1 − η(I1)ξ}, for ξ = J3,

where f = −1. Hence the manifold is a f -Kenmotsu manifold. Also f2+f ′ 6= 0.

Hence M is a regular f -Kenmotsu manifold.

Now using above relations in (2.14) we have

s

∇J1
J3 = −J1,

s

∇J1
J2 = 0,

s

∇J1
J1 = J3,

s

∇J2J3 = −J2,
s

∇J2J2 = J3,
s

∇J2J1 = 0,
s

∇J3
J3 = 0,

s

∇J3
J2 = −J1,

s

∇J3
J1 = J2.

We known that
s

R(I1, I2)I3 =
s

∇I1
s

∇I2I3 −
s

∇I2
s

∇I1I3 −
s

∇[I1,I2]I3.

With the help of the above results, it gives us:

s

R(J1,J2)J3 = 0,
s

R(J2,J3)J3 = −J1 − J2,
s

R(J1,J3)J3 = J2 − J1,
s

R(J1,J2)J2 = −J1,
s

R(J2,J3)J2 = J3,
s

R(J1,J3)J2 = −J3,
s

R(J1,J2)J1 = −J2,
s

R(J2,J3)J1 = J3,
s

R(J1,J3)J1 = J3.

From the above expressions the components of the Ricci tensor with respect to

QSMC as follows:

s

S(J1,J1) =
s

S(J2,J2) =
s

S(J3,J3) = −2.

Therefore for I1 = a1J1 + a2J2 + a3J3 and I2 = b1J1 + b2J2 + b3J3, we have

(£̃ξg)(I1, I2) + 2
s

S(I1, I2) + 2λg(I1, I2) + 2µη(I1)η(I2) = (−6 + 2λ)a1b1

+ (−6 + 2λ)a2b2

+ (−4 + 2λ+ 2µ)a3b3.

(6.1)

From (6.1) it is clear that for λ = 3 and µ = −1

(£̃ξg)(I1, I2) + 2
s

S(I1, I2) + 2λg(I1, I2) + 2µη(I1)η(I2) = 0.

Therefore (M, g, ξ, λ, µ) is an η-Ricci soliton with respect to QSMC for λ = 3

and µ = −1. Also λ+ µ = 2 = 2(f2 + f ′), which verifies the Theorem 5.1.
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