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Abstract. In this paper, we looked at the basic properties of the Berwald

and Douglas spaces of a Finsler space with a deformed Berwald-Matsumoto

metric. We also examined the conditions that make the Finsler space, with the

deformed Berwald-Matsumoto metric, a Berwald and Douglas space.
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1. Introduction

P. Finsler was the first to present the slope of a mountain for measuring

time, although he considered it was a typical model of the Finsler metric (as

noted in his letter [13] to Matsumoto). Matsumoto [13] went on to work on the

problem in 1989 and introduced the idea of the slope metric, which is defined

as

L =
α2

vα− wβ
,
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where α2 = aij(x)yiyj is a Riemannian metric, β = bi(x)yi is a 1-form on

n-dimensional manifold Mn, and w and v are the non-zero constants. In 1990,

Aikou and coauthors [1] examined the aforementioned measure in depth and

dubbed it the Matsumoto metric. They achieved interesting findings for this

metric in comparison to the Finsler metric. For more progress, see [7] and [15].

Berwald [5] established the Finsler metric in 1929. It is defined on the unit

ball Bn(1) and includes all straight line segments. Its geodesics have constant

flag curvature K = 0 and take the form of

L =
{
√

1− |x|2|y|2 + 〈x, y〉2 + 〈x, y〉}2

{1− |x|2}2
√

1− |x|2|y|2 + 〈x, y〉2
. (1.1)

From a modern perspective, Berwald’s metric corresponds to a unique sort of

Finsler metric called Berwald type metric, which is defined as

L =
(α+ β)2

α
.

See [16]. The authors of the papers provided highly important results in the

field of Finsler geometry.

In 2018, Chaubey and Tripathi [6] merged the Berwald and Matsumoto

metrics, naming it the Berwald-Matsumoto metric. They investigated the fun-

damental characteristics of Finsler space and numerous hypersurfaces using

this essential metric. In this study, we combine the Berwald and Matsumoto

metrics to produce a new metric known as the deformed Berwald-Matsumoto

metric. We also investigate the conditions under which the Finsler space Fn

with Berwald-Matsumoto metric is both a Berwald space and a Douglas space.

2. Preliminaries

Here we investigate an n-dimensional Finsler space Fn = (Mn, L(α, β)), that

is, a pair consisting of an n-dimensional differentiable manifold Mn equipped

with a fundamental function L as a particular Finsler space with the metric

L(α, β) =
(α+ β)2

α
+

α2

α− β
, (2.1)

i.e., the deformed Berwald-Matsumoto metric [6] is the combination of Berwald

and Matsumoto metrics, and the Finsler space Fn with this metric is called

the Berwald-Matsumoto Finsler space.

The geodesics of a Finsler space Fn = (Mn, L) are provided by the system

of differential equations that include the function

Gi(x, y) =
1

4
gij(yr∂̇j∂rL

2 − ∂jL2).
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The corresponding Riemannian space for an (α, β)-metric L(α, β) is Rn =

(Mn, α) with Fn = {Mn, L(α, β)} [10, 2]. (; ) represents the covariant differ-

entiation with regard to the Levi-Civita connection γijk(x) of Rn. We write

(aij) = (aij)
−1 and use the following symbols:

rij =
1

2
(bi;j + bj;i), sij =

1

2
(bi;j − bj;i), rij = airrrj , s

i
j = airsrj , rj = brr

r
j ,

sj = brs
r
j , b

i = airbr, b
2 = arsbrbs.

On the basis of [11], if β2Lα +αγ2Lαα 6= 0, where γ2 = b2α2−β2, therefore

the function Gi(x, y) of Fn with an (α, β)-metric is expressed in the form

2Gi = γi00 + 2Bi, (2.2)

Bi = α
Lβ
Lα

si0 +

{
βLβ
αL

yi − αLαα
Lα

(
1

α
yi − α

β
bi
)}

C∗,

where

Lα =
∂L

∂α
, Lβ =

∂L

∂β
, Lαα =

∂2L

∂α∂α
.

The subscript ’0’ indicates a contraction by yi, and we put

C∗ =
αβ(r00Lα − 2s0αLβ)

2(αγ2Lαα + β2Lα)
. (2.3)

For clarity, we will represent the homogeneous polynomials in (yi) of degree

r as hp(r). For example, γi00 is hp(2).

Based on (2.2), the Berwald connection BΓ = (Gijk, G
i
j , 0) of Fn with an (α, β)-

metric is defined as

Gij = ∂̇jG
i = γi0j +Bij ,

Gijk = ∂̇kG
i
j = γijk +Bijk,

where we placed

Bij = ∂̇jB
i, Bijk = ∂̇kB

i
j .

Bi(x, y) is known as the difference vector [11]. According to [11], Bijk is defined

as

LαB
t
jiy

jyt + αLβ(Btjibt − bj;i)yj = 0, (2.4)

where yk = aiky
i.

A Finsler space Fn with an (α, β)-metric is a Douglas space, if and only if

Bij = Biyj − Bjyi is hp(3). Several authors [14, 3] examined the features of

this space in depth. Based on (2.2), Bij is written as follows:

Bij = α
Lβ
Lα

(si0y
j − sj0yi) +

α2Lαα
βLα

(biyj − bjyi)C∗. (2.5)
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Lemma 2.1. [4]. If α2 ≡ 0(modβ), that is, α2 contains β as a factor, then the

dimension equals to two and b2 vanishes. In this scenario, δ = di(x)yi, where

α2 = βδ and dib
i = 2.

3. The condition for Fn to be a Berwald space

In this section, we discover the conditions under which a Finsler space Fn

with a deformed Berwald-Matsumoto metric becomes a Berwald space. In a

n-dimensional Finsler space Fn with deformed Berwald-Matsumoto metric, we

obtain the following results:

Lα =
(α− 2β)α3 + (α+ β)(α− β)3

(α− β)2α2
, (3.1)

Lβ =
α3 + 2(α+ β)(α− β)2

(α− β)2α
,

Lαα =
2β2

{
α3 + (α− β)3

}
(α− β)3α3

,

Lββ =
2
{
α3 + (α− β)3

}
(α− β)3α

.

By substituting (3.1) into (2.4), we obtain{
(2α4 − β4)Btjiy

jyt + 2α2β(β2 − α2)(Btjibt − bj;i)yj
}

(3.2)

+α
{

2β(β2 − 2α2)Btjiy
jyt + α2(3α2 − 2β2)(Btjibt − bj;i)yj

}
= 0.

Assume Fn is a Berwald space, where Gijk = Gijk(x). Then, Btji = Btji(x). α

is irrational in (yi), therefore from (3.2) we obtain

(2α4 − β4)Btjiy
jyt + 2α2β(β2 − α2)(Btjibt − bj;i)yj = 0

and

2β(β2 − 2α2)Btjiy
jyt + α2(3α2 − 2β2)(Btjibt − bj;i)yj = 0,

which may be expressed as a matrix of homogeneous linear equations,

AX = 0 (2α4 − β4) 2α2β(β2 − α2)

2β(β2 − 2α2) α2(3α2 − 2β2)

  Btjiy
jyt

(Btjibt − bj;i)yj

 = 0.

Let,

A =

 (2α4 − β4) 2α2β(β2 − α2)

2β(β2 − 2α2) α2(3α2 − 2β2)

,
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where

|A| = 6α8 + 9α4β4 − 12α6β2 − 2α2β6 6= 0,

This suggests

Btjiy
jyt = 0 and (Btjibt − bj;i)yj = 0,

which show

Btjiath +Bthiatj = 0 and (Btjibt − bj;i)yj = 0.

The former gives Btji = 0 by the renowned Christoffel procedure yields bj;i = 0.

Therefore, rij = 0 and sij = 0. However, if bj;i = 0, then Btji = 0 are uniquely

determined from (3.2). So, we have

Theorem 3.1. The Finsler space Fn with deformed Berwald-Matsumoto met-

ric is a Berwald space if and only if bj;i = 0, and then the Berwald connection

is essentially Riemannian (γijk, γ
i
0j , 0).

Theorem 3.2. The Finsler space Fn with deformed Berwald-Matsumoto met-

ric is a Berwald space if and only if rij = 0 and sij = 0.

4. The condition for Fn to be a Douglas space

In this section, we will investigate the condition that a Finsler space Fn

with deformed Berwald-Matsumoto metric is a Douglas space. Substituting

(3.1) into (2.5), we get

{4α9 + 8b2α9 − 20α8β − 28b2α8β + 24α7β2 + 36b2α7β2 + 20α6β3 (4.1)

−20b2α6β3 − 62α5β4 − 8b2α5β4 + 48α4β5 + 18b2α4β5 + 4α3β6

−10b2α3β6 − 26α2β7 + 2b2α2β7 + 15αβ8 − 3β9}Bij

−α2{6α8 + 12b2α8 − 22α7β − 26b2α7β + 8α6β2 + 22b2α6β2

+40α5β3 + 2b2α5β3 − 55α4β4 − 20b2α4β4 + 11α3β5 + 16b2α3β5

+28α2β6 − 24αβ7 − 4b2α2β6 + 6β8}(si0yj − s
j
0y
i)

−α2{r00(4α7 − 14α6β + 18α5β2 − 10α4β3 − 4α3β4

+9α2β5 − 5αβ6 + β7)− 2s0α
2(6α6 − 13α5β + 11α4β2

+α3β3 − 10α2β4 + 8αβ5 − 2β6)}(biyj − bjyi) = 0.

It is noteworthy given that β2Lα + αγ2Lαα 6= 0.

Assume that Fn is a Douglas space, where Bij are hp(3). We can separate

(4.1) into rational and irrational terms of yi since α is irrational in (yi); we

have

{−20α8β − 28b2α8β + 20α6β3 − 20b2α6β3 + 48α4β5 + 18b2α4β5 (4.2)

−26α2β7 + 2b2α2β7 − 3β9}Bij − α2{6α8 + 12b2α8 + 8α6β2
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+22b2α6β2 − 55α4β4 − 20b2α4β4 + 28α2β6 − 4b2α2β6 + 6β8}

(si0y
j − sj0yi)− α2{r00(−14α6β − 10α4β3 + 9α2β5 + β7)

−2s0α
2(6α6 + 11α4β2 − 10α2β4 − 2β6)}(biyj − bjyi)

+α[{4α8 + 8b2α8 + 24α6β2 + 36b2α6β2 − 62α4β4 − 8b2α4β4

+4α2β6 − 10b2α2β6 + 15β8}Bij − α2{−22α6β − 26b2α6β

+40α4β3 + 2b2α4β3 + 11α2β5 + 16b2α2β5 − 24β7}(si0yj − s
j
0y
i)

−α2{r00(4α6 + 18α4β2 − 4α2β4 − 5β6)− 2s0α
2(−13α4β

+α2β3 + 8β5)}(biyj − bjyi) = 0.

Thus, equation (4.2) is split into two equations as follows:

β{−20α8 − 28b2α8 + 20α6β2 − 20b2α6β2 + 48α4β4 + 18b2α4β4 (4.3)

−26α2β6 + 2b2α2β6 − 3β8}Bij − α2{6α8 + 12b2α8 + 8α6β2

+22b2α6β2 − 55α4β4 − 20b2α4β4 + 28α2β6 − 4b2α2β6 + 6β8}

(si0y
j − sj0yi)− α2{r00β(−14α6 − 10α4β2 + 9α2β4 + β6)

−2s0α
2(6α6 + 11α4β2 − 10α2β4 − 2β6)}(biyj − bjyi) = 0

and

{4α8 + 8b2α8 + 24α6β2 + 36b2α6β2 − 62α4β4 − 8b2α4β4 (4.4)

+4α2β6 − 10b2α2β6 + 15β8}Bij − α2β{−22α6 − 26b2α6

+40α4β2 + 2b2α4β2 + 11α2β4 + 16b2α2β4 − 24β6}(si0yj − s
j
0y
i)

−α2{r00(4α6 + 18α4β2 − 4α2β4 − 5β6)− 2s0α
2β(−13α4

+α2β2 + 8β4)}(biyj − bjyi) = 0.

Eliminating Bij from (4.3) and (4.4), we get

A(si0y
j − sj0yi) +B(biyj − bjyi) = 0, (4.5)

where

A = −24α16 − 96b2α16 − 96b4α16 + 264α14β2 + 480b2α14β2 (4.6)

+120b4α14β2 − 840b2α12β4 − 1414b2α12β4 − 72b4α12β4 + 1206α10β6

+660b2α10β6 + 92b4α10β6 − 1036α8β8 − 2606b2α8β8 − 132b4α8β8

+1726α6β10 + 512b2α6β10 + 60b4α6β10 − 473α4β12 − 188b2α4β12

−8b4α4β12 + 147α2β14 + 24b2α2β14 − 18β16,
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B = α2
[
βr00{−24α12 + 96α10β2 − 32α8β4 + 4α6β6 + 12α4β8 − 14α2β10 + 3β12}

+2s0(24α14 + 48b2α14 − 72α12β2 − 60b2α12β2 + 132α10β4

+36b2α10β4 − 142α8β6 − 46b2α8β6 + 160α6β8 + 66b2α6β8

−148α4β10 − 30b2α4β10 + 53α2β12 + 4b2α2β12 − 6β14)
]
.

Transvection of (4.5) by biyj yields

As0 +B1(b2α2 − β2) = 0, (4.7)

where

B1 = βr00(−24α12 + 96α10β2 − 32α8β4 + 4α6β6 + 12α4β8

−14α2β10 + 3α12) + 2s0(24α14 + 48b2α14

−72α12β2 − 60b2α12β2 + 132α10β4 + 36b2α10β4

−142α8β6 − 46b2α8β6 + 160α6β8 + 66b2α6β8

−148α4β10 − 30b2α4β10 + 53α2β12 + 4b2α2β12 − 6β14).

The term of (4.7) which does not contain α2 is found in −3β15(r00 + 2βs0). As

a result, there exists hp(15) : V15 such that

β15(r00 + 2βs0) = α2V15. (4.8)

Then it would be wiser to divide our examination into three situations, as

follows:

(1) V15 = 0,

(2) V15 6= 0, α2 6≡ 0 (modβ),

(3) V15 6= 0, α2 ≡ 0 (modβ).

Case (1):

For V15 = 0: from (4.8), r00 = −2βs0, that is, rij = − (bisj + bjsi). Using

r00 = −2βs0 in (4.7), we obtain

s0{A+ 2B
′

1(b2α2 − β2)} = 0, (4.9)

where

B
′

1 = 24α14 + 48b2α14 − 48α12β2 − 60b2α12β2 + 36α10β4 + 36b2α10β4 (4.10)

−110α8β6 − 46b2α8β6 + 156α6β8 + 66b2α6β8 − 160α4β10

−30b2α4β10 + 67α2β12 + 4b2α2β12 − 9β14.

If A+ 2B
′

1(b2α2 − β2) = 0 in (4.9), then we obtain

A+ 2B
′

1(b2α2 − β2) = α2A1
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where

A1 = −24α14 − 48b2α14 + 216α12β2 + 288b2α12β2 − 744α10β4 − 1222b2α10β4

+1134α8β6 + 368b2α8β6 − 816α6β8 − 2202b2α6β8 + 1414α4β10

+60b2α4β10 − 153α2β12 + 6b2α2β12 + 13β14 − 2b2β14.

then the expression A1 = 0 is an expression that does not contain α2 is (13−
2b2)β14. Therefore, there exixts hp(12) : V12 such that

(13− 2b2)β14 = α2V12.

where we suppose b2 6= 13/2. Hence we have V12 = 0. This leads to a contra-

diction. Therefore

A+ 2B
′

1(b2α2 − β2) 6= 0.

As a result of (4.9), s0 = 0 yields r00 = 0. Substituting s0 = 0 and r00 = 0 in

(4.5). We have,

A(si0y
j − sj0yi) = 0. (4.11)

If A = 0, we have from (4.6)

A = −24α16 − 96b2α16 − 96b4α16 + 264α14β2 + 480b2α14β2 (4.12)

+120b4α14β2 − 840b2α12β4 − 1414b2α12β4 − 72b4α12β4 + 1206α10β6

+660b2α10β6 + 92b4α10β6 − 1036α8β8 − 2606b2α8β8 − 132b4α8β8

+1726α6β10 + 512b2α6β10 + 60b4α6β10 − 473α4β12 − 188b2α4β12

−8b4α4β12 + 147α2β14 + 24b2α2β14 − 18β8 = 0.

The term of (4.12) that seems not to include α2 is −18β16. Thus, there exists

hp(14) : V14 such that −18β16 = α2V14. This equation yields V14 = 0. This

leads to a contradiction. Therefore A 6= 0, Thus we have from (4.11)

si0y
j − sj0yi = 0. (4.13)

Transvection (4.13) by yj yields

si0 = 0.

Finally, rij = sij = 0, implying bi;j = 0.

Case (2):

In case of V15 6= 0;α2 6≡ 0(modβ): In this situation, (4.8) proves that there

exists a function h = h(x) obtaining

r00 + 2βs0 = h(x)α2. (4.14)
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Substituting (4.14) into (4.7),

s0

{
− 24α14 − 48b2α14 + 216α12β2 + 288b2α12β2 − 744α10β4 − 1222b2α10β4

+1134α8β6 + 368b2α8β6 − 816α6β8 − 2202b2α6β8 + 1414α4β10 + 60b2α4β10

−153α2β12 + 6b2α2β12 + 13β14 − 2b2β14
}

+hβ(b2α2 − β2)
{
− 24α12 + 96α10β2 − 32α8β6 + 4α6β6 + 12α4β8 − 14α2β10

+3β12
}

= 0.

The term of (4.15) that seems to not include α2 is {(13 − 2b2)s0 − 3hβ}β14.

Hence there exists hp(13) : V13 such that {(13 − 2b2)s0 − 3hβ}β14 = α2V13.

α2 6≡ 0(modβ) implies that V13 = 0. Therefore, we have,{
(13− 2b2)s0 − 3hβ

}
β14 = 0.

which indicates

s0 =
3h(x)

(13− 2b2)
β. (4.15)

From (4.16), we get si =
3h(x)bi

(13− 2b2)
. Transvecting by bi yields h(x)b2 = 0.

Hence h(x) = 0. Substituting h(x) = 0 into (4.14) and (4.16) yields s0 = 0

and r00 = 0. Therefore (4.5) simplifies to A(si0y
j − sj0yi) = 0. Since A 6= 0, we

get si0y
j − sj0yi = 0. Transvection of this equation by yj yields si0 = 0. Finally,

rij = sij = 0 are concluded, that is, bi;j = 0.

Case (3):

In case of V15 6= 0;α2 ≡ 0(modβ): In this case, lemma (2.2) indicates that

n = 2, b2 = 0 and α2 = βδ, where δ = di(x)yi. From (4.8) we have

β14(r00 + 2βs0) = δV15, which must be reduced to

r00 + 2βs0 = δV,

where V = Vi(x)yi. Using (4.16) we obtain s0 =
3h(x)

13
β easily.

Transvection of r00 + 2βs0 = δV by bi yields

r00b
i = 2V yi. (4.16)

Again Transvection (4.17) by bi yields

r00b
2 = 2βV. (4.17)

V = 0 contradicts V = Vi(x)yi. It is conceivable when s0 = 0 and r00 = 0.

Substitute s0 = 0 and r00 = 0 in (4.5), we have A(si0y
j − sj0yi) = 0. Because

A 6= 0, we get si0y
j − sj0yi = 0. Transvection this equation by yj yields si0 = 0.

Thus rij = sij = 0, implying that bi;j = 0.
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Conversely if bi;j = 0, then we get Bij = 0 from (4.1). Hence, Fn is a Douglas

space. Consequently, we have

Theorem 4.1. An n-dimensional Finsler space Fn with deformed Berwald-

Matsumoto metric is a Douglas space, if and only if

(1) α2 6≡ 0(modβ): bj;i = 0.

(2) α2 ≡ 0(modβ): n = 2, b2 = 0 and bj;i = 0, where α2 = βδ, δ = di(x)yi

and h = h(x).

Based on Theorems 3.1 and 4.1, we have the following.

Theorem 4.2. If an n-dimensional Finsler space Fn with deformed Berwald-

Matsumoto metric is a Douglas space, then Fn is also a Berwald space.

5. Conclusion

In this study, we analyzed the Finsler space with the Berwald-Matsumoto

metric and established the circumstances under which the Finsler space Fn will

be a Berwald and Douglas space. The requirements are presented in theorems

(3.1), (3.2), (4.1), and (4.2), respectively. This is an essential combination of

two exceptional (α, β)-metrics; therefore, in future work, we examine additional

significant Finsler features such as reducibility, main scalars in two and three

dimensions, Landsberg space, etc., using this metric.
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