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Abstract— Fault Detection and Classification plays a vital role in maintaining the reliability and stability of microgrids, especially as they
incorporate renewable energy sources and become more decentralized. Microgrids face a wide variety of faults, such as short circuits,
line-to-ground faults, and other disturbances, which can negatively affect system performance. Traditional fault detection methods have
primarily focused on False Data Injection and cyber-attacks, emphasizing vulnerabilities in communication infrastructure. However, this
study addresses current faults within the electrical network, focusing on system stability and real-time fault detection in the absence of
communication-related errors. In this work, machine learning techniques are employed to enhance fault classification accuracy. Partial
Least Squares is used for feature selection to extract relevant statistical features from real-time current data collected from various
microgrid components. By optimizing these features and applying them to machine learning models, the approach overcomes the limitations
of conventional fault detection methods. The results show a significant improvement in fault classification performance, with up to 10%
higher accuracy compared to traditional methods. Additionally, the use of data from neighboring microgrid components boosts the model’s
robustness, adaptability, and performance under varying operational conditions, contributing to a more resilient microgrid. This research
introduces an innovative approach to fault detection in microgrids by combining machine learning and feature optimization, offering a more
accurate, reliable, and efficient solution to ensure continuous energy supply and improve system stability under different fault scenarios.
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1. INTRODUCTION

The increasing penetration of distributed energy resources
(DERs) into microgrids has necessitated advanced fault detection
techniques to maintain stability and reliability. Traditional
fault detection methods often struggle with dynamic microgrid
conditions, leading to research into artificial intelligence (AI)-based
solutions. Recent studies have explored machine learning and deep
learning methods to enhance fault detection accuracy and response
time.
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1.1. Research motivation
A fault detection method using Hilbert-Huang Transform (HHT)

combined with machine learning techniques was proposed for
microgrid fault classification [1]. Deep learning techniques have
been utilized to design a relay capable of online fault detection,
classification, and location estimation in grid-connected microgrids
[2]. Similarly, a machine learning-based technique has been
introduced for detecting and localizing faults in low-voltage DC
microgrids [3]. A comprehensive review of machine learning
methods for fault diagnosis in AC microgrids highlights their
effectiveness in real-time fault identification [4]. A reinforcement
learning-based approach has been applied to improve voltage and
frequency stability in microgrids with wind turbine integration. Its
adaptive nature enhances system resilience, which can also support
fault detection by mitigating instability-related anomalies [5].

1.2. Literature review
In recent years, fault detection methods in microgrids have

been significantly enhanced through the application of artificial
intelligence and machine learning techniques. These methods
include deep neural networks, support vector machines (SVMs), and
discrete wavelet transform-based approaches for fault identification
and classification. The integration of data-mining techniques and
signal processing has further improved accuracy and reduced fault
detection time in dynamic operational environments.

A protection scheme for low-voltage AC microgrids has been
designed using machine learning [6], while an optimization-based
fault recovery method has been proposed to enhance smart grid
efficiency [7]. Additionally, an intelligent data-mining strategy has
been introduced for microgrid fault detection and classification
[8]. AI-based classification methods for fault detection have been
explored, including the use of artificial intelligence techniques
for microgrid fault classification [9]. Discrete wavelet transform
combined with deep neural networks has been applied for fault
detection in hybrid multi-area grid-connected microgrids [10]. AI-
based methodologies have also been examined for fault detection
in hybrid shipboard microgrids [11]. Moreover, a 1D convolutional
graph convolutional network model has been proposed for fault
detection in distributed energy systems [12]. Ensemble-based
learning methods have been investigated for fault classification,
such as boosting ensemble methods with the Hilbert-Huang
Transform for fault detection in microgrids [13]. A combination
of data-driven anomaly detection and physics-based techniques
has been utilized to improve cyberattack resilience in smart grids
[14]. Furthermore, a bilayered fault detection scheme employing
weighted k-nearest neighbor (kNN) and decision tree models
has been presented [15]. Deep learning approaches have been
integrated for fault classification, including an efficient machine
learning model for microgrid protection [16]. Various machine
learning-based fault detection techniques have been reviewed and
compared in terms of effectiveness [17]. Secure authentication in
smart grid communications has been studied, with implications
for fault detection [18]. Additionally, an intelligent fault detection
system for microgrids has been developed [19]. Long short-term
memory (LSTM) networks have also been leveraged for microgrid
fault detection and classification [20]. Signal processing techniques
have been explored to enhance fault classification, including the
use of variational mode decomposition (VMD) for fault detection
in DC microgrids [21]. A differential protection scheme has also
been utilized for DC microgrid fault detection and classification
[22].

Building upon these foundations, our study introduces a
novel adaptive fault detection and classification method that
integrates deep learning and fuzzy logic to enhance accuracy
under dynamic microgrid conditions. To further align with the
latest advancements, additional studies have been incorporated
into this review. A supervised machine learning-based fault
detection method for microgrids uses SVMs, achieving 99.75%

accuracy. In contrast to this fault classification approach, our
study addresses adaptive islanding detection and system stability
in microgrids [23]. A machine learning-based fault detection
method for DC microgrids uses compressed sensing and LSTM for
fast fault localization. While this focuses on fault detection, our
study emphasizes adaptive islanding detection in AC microgrids
using deep learning and fuzzy logic [24]. A study compares
machine learning techniques for detecting dynamic and transient
disturbances, with an ensemble method achieving 99.3% accuracy.
Unlike this disturbance classification approach, our research focuses
on islanding detection and system stability [25]. A deep learning-
based fault detection system for DER-integrated microgrids uses
an LSTM-autoencoder model, achieving 9 ms response time. Our
study, in contrast, focuses on dynamic islanding detection to
enhance microgrid stability [26]. A CST and VMD-based fault
detection method extracts features for deep learning classification
of faults. Our approach, however, is centered on islanding detection,
improving microgrid resilience under dynamic conditions [27].
A hybrid ANFIS-SVM model enhances fault detection in AC
microgrids, with rapid execution times and high accuracy. In
contrast, our work develops adaptive islanding detection techniques
to improve stability and efficiency under grid uncertainties [28].
By integrating these additional perspectives, our research aims to
address existing gaps and provide a more comprehensive, adaptive
fault detection framework for microgrid applications.

1.3. Gap challenge

The increasing penetration of distributed energy resources
(DERs) in microgrids has introduced significant challenges in
ensuring reliable fault detection and system resilience. Traditional
islanding detection and fault classification techniques rely on
heuristic methods, threshold-based techniques, or conventional
machine learning models that often fail to generalize across
different operational conditions. These methods are particularly
limited in handling complex, unbalanced, and dynamically changing
microgrid environments, where faults exhibit diverse characteristics
influenced by variations in load conditions, renewable energy
fluctuations, and system topology. One of the critical gaps in
existing research is the lack of adaptive and data-driven fault
detection frameworks that can effectively distinguish between
normal and faulty operating states while maintaining high accuracy
and real-time efficiency. Previous studies have explored artificial
intelligence (AI)-based approaches, such as artificial neural
networks (ANNs) and fuzzy logic controllers, yet many suffer
from scalability issues, high computational costs, and sensitivity
to noise in the input data. Furthermore, current models do
not sufficiently leverage feature selection techniques to enhance
classification performance, leading to redundant computations
and suboptimal decision-making. Another key challenge is the
absence of comprehensive benchmark datasets that include a wide
variety of fault types, severity levels, and operational scenarios.
Existing datasets are often limited in their diversity, reducing the
generalizability of trained models when deployed in real-world
microgrid applications. To address this, our study develops a
detailed simulation model based on the IEEE 13-Node Test
Feeder, generating a high-fidelity dataset with multiple fault
scenarios, transition resistances, and stochastic fault occurrence
times. To bridge these gaps, we propose a novel fault detection
framework integrating a Multilayer Perceptron (MLP) with an
optimized feature selection process. Our approach enhances
fault classification accuracy, reduces computational overhead, and
improves real-time response capabilities. The proposed method
is evaluated against existing techniques, demonstrating superior
performance across key metrics, including accuracy, execution
time, and fault detection rate. By addressing the existing research
limitations, our work contributes to advancing intelligent fault
detection in microgrids, enhancing system resilience, and ensuring
stable operation under diverse conditions.
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1.4. Novelty and main contributions
This study introduces an advanced adaptive fault detection

framework for microgrids, tackling critical gaps in existing
islanding detection and fault classification techniques. The main
contributions of our research are:

1) Adaptive Fault Detection with Enhanced Feature Selection:
We propose a Multilayer Perceptron (MLP)-based
classification model that integrates an optimized feature
selection process. This approach significantly improves fault
detection accuracy and efficiency compared to traditional
heuristic and threshold-based methods.

2) Extensive Fault Scenario Dataset: Utilizing the IEEE 13-Node
Test Feeder, we generate a diverse dataset encompassing
multiple fault types, transition resistances, spatial fault
locations, and stochastic occurrence times. This ensures the
robustness and generalizability of our model across various
microgrid conditions.

3) High-Performance Fault Classification: Our method achieves
a fault detection accuracy of 95%, surpassing conventional
techniques. Additionally, it demonstrates faster execution
time and superior fault detection rates, making it suitable for
real-time microgrid applications.

4) Feature Importance Analysis for Model Optimization: We
conduct a detailed analysis of key statistical features,
including Max, Peak, Variance, and entropy, to enhance
fault classification efficiency. By leveraging the most relevant
features, our model achieves high accuracy while minimizing
computational complexity.

5) Comparative Evaluation with Alternative Methods: We
benchmark our approach against existing machine learning
and spectral analysis methods, highlighting its advantages in
terms of accuracy, computational efficiency, and robustness
under varying microgrid conditions.

A) Limitations and future work
Despite its advantages, our approach has certain limitations.

The reliance on simulation-generated data may not fully capture
real-world microgrid complexities, necessitating validation with
experimental or real-time data. Additionally, while our model
performs well, further optimization is required to enhance
computational efficiency for edge-device deployment. Future
research will focus on integrating reinforcement learning for
improved adaptability and expanding the dataset with real-world
fault cases to enhance practical applicability.

1.5. Paper organization
The remainder of this paper is structured as follows: Section

2 presents the theoretical framework of microgrid modeling,
covering fault classification, data acquisition, feature extraction,
and the optimization of classification performance. Section 3
provides the results and discussion, including the experimental
setup, performance evaluation, and a comparative analysis of the
proposed approach against existing methods. Finally, Section 4
concludes the study by summarizing key findings, discussing
limitations, and suggesting future research directions.

2. METHODOLOGY

MGs are small-scale power systems consisting of loads,
microgenerators, local energy storage, and an intelligent control
system, along with energy management software and protection
devices. These networks enable decentralized coordination of
distributed energy resources (DERs), reducing the need for
centralized control, and can function as either a net load or
net generator to the main grid. Faults in MGs are typically
classified into two categories: shunt faults, where insulation failure
causes a short circuit between conductors, and open circuit faults,
which interrupt the current flow. Shunt faults can be symmetrical
(involving all three phases or phases and ground) or unsymmetrical

(involving two or more phases or a phase and ground). Faults
may also occur simultaneously or evolve into other types. Fig. 1
provides a concise overview of MG architecture. These networks
can manage and coordinate DERs in a decentralized manner,
reducing the dependence on centralized control. As a result, they
function as either a net load or a net generator within the larger
grid.
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Fig. 1: Overview of microgrid architecture. Fig. 1. Overview of microgrid architecture.

MG faults can arise from various causes, such as equipment
failure, weather conditions, human error, or other factors. These
faults can lead to overcurrent flow, disturbances, and potential
equipment damage. Additionally, there are challenges in fault
classification, especially when MGs are interconnected with the
grid. The protection system must isolate the MG during grid faults
and minimize the impact on consumers during internal MG faults.
Key challenges include small fault currents due to high penetration
of inverter-interfaced DG systems, different operational modes,
topological changes, and the limited short-circuit current capacity
of power electronics converters. To address these challenges, a
data-driven approach combined with signal processing techniques,
such as Multi-Resolution Analysis (MRA), can detect faults with
minimal voltage or current changes, reducing reliance on large
fault currents. This work focuses on classifying shunt faults and
identifying the involved phases to minimize unnecessary islanding
of the MG.

2.1. Requirements for developing a fault classifier
The development of an effective fault classifier is crucial for

ensuring the reliable operation of electrical systems, particularly
in MGs. A fault classifier helps identify and categorize faults,
enabling timely and accurate responses to prevent further damage
and maintain system stability. This section discusses the key
requirements and considerations for developing a robust fault
classification system, focusing on challenges such as varying fault
conditions, diverse system configurations, and the need for accurate
fault detection.

The uploaded flowchart represents a fault detection and
classification system for microgrids, which consists of distinct
training and test phases. In the training phase, the process
begins with data preprocessing, where raw data collected from
the microgrid system is cleaned, normalized, and structured
to ensure consistency and accuracy in subsequent steps. Next,
during feature extraction, essential statistical and signal processing
features such as mean, standard deviation, skewness, kurtosis,
maximum, minimum, signal energy, power spectral density, and
wavelet coefficients are derived from the preprocessed data to
transform raw measurements into meaningful representations.

Following feature extraction, the process moves to feature
selection, where PLS is employed to identify the most relevant
features. PLS enhances efficiency and accuracy by performing
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latent variable analysis to uncover relationships between features
and fault types, reducing dimensionality, and ranking features
based on their contributions to classification. This optimization
ensures that only the most impactful features are used, minimizing
computational complexity. Once the features are selected, the
Multi-Layer Perceptron (MLP) neural network is trained using the
optimized feature set. The MLP, a type of neural network capable
of learning complex patterns, is optimized through backpropagation
to classify fault types effectively.

 

In the test phase, the system begins with data preprocessing, ensuring the test data is consistent 

with the training data. After preprocessing, the same feature extraction techniques are applied to 

derive relevant statistical and wavelet-based features from the test data. The trained MLP model 

from the training phase is then used to classify faults by analyzing these features. Finally, during 

fault classification, the system identifies the type and location of faults, such as symmetrical or 

asymmetrical shunt faults, ensuring timely and accurate responses. 

This integrated process, combining PLS-based feature selection with MLP classification, 

demonstrates a robust approach for addressing the challenges of fault detection and classification 

in microgrids. It leverages signal processing and ML to handle the dynamic and complex nature 

of microgrid systems effectively, ensuring high accuracy and efficiency. 

Figure 3 presents the flowchart of the proposed fault classification methodology implemented in 

this study. The process begins with data acquisition from the microgrid, followed by a data 

preprocessing stage to ensure quality and consistency. Relevant features are then selected to 

enhance the performance and reduce the complexity of the model. The selected features are used 

to train a multilayer perceptron (MLP) classifier, which learns to identify and distinguish 

between various fault types. Once trained, the MLP model is deployed for real-time fault 
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Fig. 2. Stages of developing the fault classification approach.

In the test phase, the system begins with data preprocessing,
ensuring the test data is consistent with the training data. After
preprocessing, the same feature extraction techniques are applied
to derive relevant statistical and wavelet-based features from the
test data. The trained MLP model from the training phase is then
used to classify faults by analyzing these features. Finally, during
fault classification, the system identifies the type and location of
faults, such as symmetrical or asymmetrical shunt faults, ensuring
timely and accurate responses.

This integrated process, combining PLS-based feature selection
with MLP classification, demonstrates a robust approach for
addressing the challenges of fault detection and classification in
microgrids. It leverages signal processing and ML to handle the
dynamic and complex nature of microgrid systems effectively,
ensuring high accuracy and efficiency.

Fig. 3 presents the flowchart of the proposed fault classification
methodology implemented in this study. The process begins
with data acquisition from the microgrid, followed by a data
preprocessing stage to ensure quality and consistency. Relevant
features are then selected to enhance the performance and reduce
the complexity of the model. The selected features are used to train
a multilayer perceptron (MLP) classifier, which learns to identify
and distinguish between various fault types. Once trained, the
MLP model is deployed for real-time fault classification within the
microgrid system. This structured approach ensures efficient and
accurate detection of faults, contributing to the overall reliability
and stability of the system.

2.2. Feature extraction
In the context of data analysis and fault detection, feature

extraction plays a crucial role in transforming raw data into
meaningful information that can be utilized for classification or
regression tasks. Various statistical and mathematical features are
computed from the data to capture its characteristics, such as
central tendency, dispersion, and distribution shape. These features
can provide valuable insights into the underlying behavior of the
system, especially in complex environments like microgrids.

Table 1 presents a comprehensive set of features commonly used
for data analysis, along with their corresponding mathematical
formulations. These features include statistical measures like mean,
variance, and skewness, as well as specialized factors like peak,
impulse, and waveform factors. Additionally, higher-order moments
such as kurtosis and entropy are included to assess the complexity
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and randomness of the data. The extraction of these features
is essential for accurately modeling and analyzing the system’s
behavior.

The following is a detailed description of various features used
in data analysis, along with their corresponding mathematical
relations. These features are essential for feature extraction in
simulating and analyzing data, particularly in applications such as
fault detection and classification in microgrids.

2.3. Feature selection
Feature selection is a crucial step for improving the accuracy

and efficiency of predictive models, especially in high-dimensional
datasets. In this study, PLS is used to identify the most relevant
features from the extracted data. PLS combines feature reduction
with predictive modeling, making it effective when features are
highly correlated or when the number of features exceeds the
number of samples, which is common in microgrid fault detection
systems.

The PLS-based feature selection process involves several
steps. First, Latent Variable Analysis identifies latent variables
that maximize the covariance between features and fault types.
Then, Dimensionality Reduction projects the data into a lower-
dimensional space, retaining only the most relevant features.
Feature Ranking ranks features based on their contribution to the
latent variables, and the top features are selected for model training.
Finally, Optimization determines the optimal number of latent
variables, balancing computational efficiency and classification
accuracy.

The core concept of PLS revolves around maximizing the
covariance between the extracted features X and the target output
Y. This is achieved by finding latent variables T and U that
represent projections of X and Y, respectively. The relationships
can be expressed mathematically as follows [29]:

A) Latent variable models

X = TPT + E (20)

Y = UQT + F (21)

where:
- X is the matrix of features,
- Y is the matrix of targets (fault types),
- T and are the latent variables,
- P and are loading matrices,
- E and are residuals.
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Table 1. Statistical and signal feature extraction metrics.

Feature name Equation
Max

Max = max(xi) (1)
Min

Min = min(xi) (2)
Peak

Peak = Max−Min (3)
Mean

µ =
1

N

N∑
i=1

xi (4)

Average Absolute Value (Arv)

Arv =
1

N

N∑
i=1

|xi| (5)

Variance (Var)

Var =
1

N

N∑
i=1

(xi − µ)2 (6)

Standard Deviation (Std)

σ =
√

Var (7)
Root Mean Square (RMS)

RMS =

√√√√ 1

N

N∑
i=1

x2i (8)

Kurtosis

Kurtosis =
1

N

N∑
i=1

(
xi − µ
σ

)4

(9)

Skewness

Skewness =
1

N

N∑
i=1

(
xi − µ
σ

)3

(10)

WaveformF (Waveform Factor)

WaveformF =
µ

RMS
(11)

PeakF (Peak Factor)

PeakF =
Peak

RMS
(12)

ImpulseF (Impulse Factor)

ImpulseF =
Peak

Arv
(13)

ClearanceF (Clearance Factor)

ClearanceF =
Peak(

1
N

N∑
i=1

√
|xi|
)2

(14)

Entropy

Energytotal =

N∑
i=1

x2i (15)

Fourth Cumulant

κ4 =
1

N

N∑
i=1

(xi − µ)4 (16)

Fifth Cumulant

κ5 =
1

N

N∑
i=1

(xi − µ)5 (17)

Sixth Cumulant

κ6 =
1

N

N∑
i=1

(xi − µ)6 (18)

Seventh Cumulant

κ7 =
1

N

N∑
i=1

(xi − µ)7 (19)

B) Maximization of covariance
PLS seeks to maximize the covariance between T and U:

Cov(T,U) =
1

N

N∑
i=1

TiU (22)

where N is the number of samples.
C) Dimensionality reduction

By projecting data into the latent variable space, dimensionality
is reduced, identifying features that strongly correlate with target
Y [30]:

X∗ = XW (23)

where W is the matrix of weights used to map features onto the
latent variable space. Through this process, PLS effectively reduces
feature space while retaining essential information necessary for
fault classification in microgrids. After selecting the most relevant
features using the PLS-based feature selection process, fault
classification in MGs is performed using the Multilayer Perceptron
(MLP) model. The goal is to classify the system state as either
attack or non-attack (normal operation). The MLP model structure
for this binary classification task is as follows:

• Input layer
The input layer consists of neurons corresponding to the
number of features selected in the feature selection phase
(e.g., voltage, current, temperature). No activation function is
used at this stage; the selected features are directly passed to
the hidden layer.

• Hidden layer(s)
The model includes one or more hidden layers with a variable
number of neurons. These layers enable the network to learn
complex patterns between the selected features and the fault
(attack or non-attack) status. The activation function used in
the hidden layers is ReLU (Rectified Linear Unit), which
introduces non-linearity and allows the model to capture
more complex relationships.

• Output layer
The output layer [31] consists of a single neuron that
represents the binary classification result (attack or non-
attack). The activation function for this output neuron is
Sigmoid, which outputs a probability value between 0 and
1. If the output is closer to 1, the system is classified as
under attack; if closer to 0, the system is considered to be in
normal operation (non-attack).

This MLP architecture enables accurate classification of attack
versus non-attack situations by learning the intricate relationships
between the selected features and the system’s operational state.

2.4. Application of deep learning for fault classification
In this study, a Multilayer Perceptron (MLP) network model is

employed as a deep learning-based approach for fault classification
in microgrids. The MLP model is one of the most widely
used deep learning methods for solving problems that require
the identification of complex patterns in data. This method
is particularly effective for binary classification tasks, such as
detecting faults or normal conditions in energy distribution systems.
This subsection provides a detailed description of the procedure
followed for fault classification using deep learning.

A) Data preprocessing
The first step in applying deep learning methods is data

preprocessing. Raw data from the microgrid system are collected
and then cleaned and normalized to ensure accuracy and
consistency. Proper data preprocessing enhances the quality of
the input data fed into the model, which is crucial for reliable
predictions. Ensuring high-quality data inputs is vital for achieving
optimal performance in deep learning models.

B) Feature extraction
Feature extraction from raw data is a critical step in the

classification process. In this phase, various statistical features,
such as mean, variance, skewness, standard deviation, and wavelet
coefficients, are extracted from the system data. These features
serve as representative inputs that characterize the system’s
behavior, and they are used to train the deep learning model.
Extracted features enable the model to identify complex, nonlinear
patterns in the data, which are essential for accurate fault
classification [32].
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C) Feature selection using PLS
For feature selection, Partial Least Squares (PLS) analysis is

employed to identify the most relevant features for classification.
PLS is particularly useful in systems with high-dimensional data
and correlated features. This technique identifies the features that
have the highest correlation with the fault types, reducing the
dimensionality of the data while maintaining critical information.
By applying PLS, the model’s accuracy is improved, and
computational complexity is reduced [33].

D) MLP model training
After feature selection, the Multilayer Perceptron (MLP) model

is used for classification. The MLP network consists of multiple
hidden layers capable of learning complex relationships within the
data. Rectified Linear Unit (ReLU) activation functions are used
for the hidden layers to enable the network to learn nonlinear
dependencies in the data. The output layer consists of a single
neuron, and the Sigmoid activation function is applied to produce
a probability value between 0 and 1. If the output is close to 1,
the system is classified as experiencing a fault; if it is close to 0,
the system is considered to be in a normal state [34].

E) Model evaluation
To evaluate the performance of the trained model, test data

are used. These test data contain similar features to the training
data but are unseen during the training phase. After preprocessing
and feature extraction, the MLP model is evaluated based on
metrics such as accuracy, recall, precision, and F1-score. These
metrics provide insights into how well the model can classify
faults and normal conditions, thus demonstrating its reliability in
fault detection within microgrids [35].

The proposed deep learning-based method using MLP has proven
to be an effective tool for fault classification in microgrid systems.
By leveraging the power of neural networks, this approach can
enhance the accuracy and efficiency of fault detection, ultimately
improving the operational reliability of microgrids.

3. SIMULATION RESULTS AND DISCUSSIONS

The simulation model for the microgrid system was developed
in the MATLAB/Simulink environment, based on a modified 4.16
kV, three-phase, unbalanced IEEE-13 node model. In this system,
the photovoltaic (PV) generation unit is connected to bus via a
step-up transformer, allowing the PV source to be integrated into
the grid. Additionally, bus 632 is connected to a three-phase 4.16
kV voltage source, with the distributed generator (DG) being the
PV generation module.

The dataset for this study was created using simulation
experiments in MATLAB/Simulink to replicate the operational
conditions of a microgrid with high accuracy. The simulation was
set to run for 5 seconds, allowing for detailed modeling of various
fault scenarios. A total of 11 distinct fault types were simulated,
representing a wide range of possible failure modes commonly
encountered in microgrids. To capture different fault severities,
three transition resistances were considered, affecting the fault
current magnitude and detection complexity. To ensure spatial
diversity and represent the impact of faults across different areas
of the microgrid, nine fault locations were selected. Additionally,
to introduce randomness and mimic real-world unpredictability,
ten random fault occurrence times were incorporated, improving
the model’s generalization to unexpected fault events.

The IEEE 13 Node Test Feeder model (Fig. 4) was used
as the simulation framework, providing a realistic and widely
accepted benchmark for distribution networks. This comprehensive
dataset, with diverse fault scenarios and dynamic parameters,
is essential for developing and validating robust fault detection
and classification algorithms for microgrid applications. It ensures
reliable performance under varying operating conditions, enhancing
microgrid resilience and fault management strategies.

The accuracy of the fault detection model is assessed using a
confusion matrix, which compares predicted fault classifications

 

Fig. 4: The IEEE 13 Node Test Feeder model [24] 

The accuracy of the fault detection model is assessed using a confusion matrix, which compares 

predicted fault classifications against actual classifications. This matrix allows for the calculation 

of several key performance metrics: 

3.1. Key Metrics 

3.1.1. Accuracy   

   Accuracy measures the ratio of correctly classified instances to the total number of instances in 

the dataset. It provides a general idea of how well the model performs. 
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Fig. 4. The IEEE 13 Node Test Feeder model [24].

against actual classifications. This matrix allows for the calculation
of several key performance metrics:

3.1. Key metrics

A) Accuracy
Accuracy measures the ratio of correctly classified instances to

the total number of instances in the dataset. It provides a general
idea of how well the model performs.

Accuracy =
TP + TN

TP + TN + FP + FN
(24)

where:
- TP= True Positives (correctly predicted faults)
- TN= True Negatives (correctly predicted non-faults)
- FP= False Positives (incorrectly predicted faults)
- FN= False Negatives (missed faults)
B) Execution time

Execution time measures how quickly a model processes and
outputs results. It is essential for real-time applications that require
fast response times. A shorter execution time enhances the system’s
efficiency.

C) Fault detection rate
Fault detection rate measures the effectiveness of the model in

identifying errors or anomalies. It is critical for preventing system
failures and ensuring smooth operation. A higher detection rate
improves the model’s reliability in fault-prone environments.

D) Loss function
The loss function quantifies the model’s prediction error during

training and evaluation. A lower loss value signifies better
optimization and fewer mistakes. Minimizing the loss is crucial
for achieving accurate model predictions.

Fig. 5 highlights the variance explained by each feature, with
the most significant features listed at the top. These key features
include Max, Peak, Variance, RMS (Root Mean Square), Kurtosis,
Waveform Factor (WaveformF), and entropy, as they contribute
the most variance. These features are crucial for fault detection in
microgrids, as they capture critical patterns in the signal data that
are indicative of faults. By focusing on these features, the model
can better differentiate between fault and non-fault conditions,
improving the overall performance of the fault detection system.
The superior performance of the proposed method is primarily
attributed to its optimized feature selection process and the use of
a well-structured MLP architecture. The feature selection step, as
illustrated in Fig. 5, ensures that the most relevant features such
as Kurtosis, RMS, and entropy are emphasized in the classification
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Fig. 5: Feature importance and variance contribution for fault detection in microgrids. 

Table2 presents the architecture of the Multilayer Perceptron (MLP) model used for classifying 

network traffic into "Attack" and "Non-Attack" categories. This MLP structure is designed to 

process input data, learn complex patterns, and make accurate classifications. 

Table2: MLP architecture for attack vs. non-attack classification. 

Layer Number of Neurons Activation Function Purpose 

Input Layer 
Number of features 

(10) 
None 

Receives raw input features 

(e.g., signal strength, packet 

data) 

Hidden Layer 1 64 ReLU 
Learns complex patterns and 

behaviors from the data 

Hidden Layer 2 32 ReLU 

Further abstraction and 

pattern learning to detect 

anomalies 

Output Layer 
2 (Attack or Non-

Attack) 

Softmax (multi-class) or 

Sigmoid (binary) 

Classifies the input as attack 

or non-attack 

The comparison between the three methods—Proposed Method (MLP + Feature Selection), 

Method [2], and Method [20] (GCS for Power Spectrum Sensing)—demonstrates distinct 

differences in their performance across key evaluation metrics, including accuracy, execution 

time, fault detection rate, and loss function. The Proposed Method outperforms both Method [2] 

and Method [20] in terms of accuracy, achieving a remarkable accuracy of 95% (Fig. 6). This is 

significantly higher than the 85% accuracy achieved by Method [2] and the 88% accuracy 

achieved by Method [20]. This indicates that the Proposed Method is more effective at correctly 

Fig. 5. Feature importance and variance contribution for fault detection in
microgrids.

process. This enhances the model’s ability to distinguish between
fault and non-fault conditions effectively.

Table 2 presents the architecture of the Multilayer Perceptron
(MLP) model used for classifying network traffic into "Attack"
and "Non-Attack" categories. This MLP structure is designed to
process input data, learn complex patterns, and make accurate
classifications.

The comparison between the three methods—proposed method
(MLP + Feature Selection), method [2], and method [20] (GCS
for Power Spectrum Sensing)—demonstrates distinct differences
in their performance across key evaluation metrics, including
accuracy, execution time, fault detection rate, and loss function.
The proposed method outperforms both method [2] and method
[20] in terms of accuracy, achieving a remarkable accuracy of
95% (Fig. 6). This is significantly higher than the 85% accuracy
achieved by method [2] and the 88% accuracy achieved by method
[20]. This indicates that the proposed method is more effective
at correctly identifying or classifying the data, making it more
suitable for applications where high accuracy is crucial.

identifying or classifying the data, making it more suitable for applications where high accuracy 

is crucial. 

 

Fig. 6: Comparison of Accuracy: Proposed Method vs. Method [2] and Method [20]. 

In terms of execution time, the Proposed Method is also the most efficient, requiring only 0.35 

seconds for execution (Fig6). This is faster than Method [2], which takes 0.45 seconds, and 

Method [20], which takes 0.55 seconds. The speed of the Proposed Method is particularly 

advantageous in real-time applications where processing speed is critical for timely decision-

making and system responses. Moreover, the reduced execution time (Fig. 7) is due to the 

lightweight design of the MLP model, which employs only two hidden layers with optimized 

neuron counts. Unlike Method [2] and Method [20], which utilize more complex processing 

techniques, the proposed approach benefits from a balance between model complexity and 

efficiency, making it suitable for real-time microgrid applications. 

Fig. 6. Comparison of accuracy: Proposed method vs. method [2] and
method [20].

In terms of execution time, the proposed method is also the
most efficient, requiring only 0.35 seconds for execution (Fig. 6).
This is faster than method [2], which takes 0.45 seconds, and
method [20], which takes 0.55 seconds. The speed of the proposed
method is particularly advantageous in real-time applications where
processing speed is critical for timely decision-making and system
responses. Moreover, the reduced execution time (Fig. 7) is due
to the lightweight design of the MLP model, which employs only
two hidden layers with optimized neuron counts. Unlike method

[2] and method [20], which utilize more complex processing
techniques, the proposed approach benefits from a balance between
model complexity and efficiency, making it suitable for real-time
microgrid applications.

 

Fig. 7: Execution Time Comparison: Proposed Method vs. Method [2] and Method [20]. 

The fault detection rate is another important metric, and here too, the Proposed Method excels, 

achieving a fault detection rate of 98% (Fig. 8). This is significantly higher than the 90% 

detection rate of Method [2] and the 92% detection rate of Method [20]. The higher fault 

detection rate of the Proposed Method suggests that it is better equipped to detect anomalies or 

failures, which is essential in systems where identifying faults promptly can prevent system 

failures or other critical issues. The fault detection rate is calculated using the following Eq.  (25): 

 

 

where: 

• ( )True Positives TP : refers to the number of correctly identified faults 

• ( )   False Negatives FN : refers to the number of faults that were missed by the model 
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Fig. 7. Execution time comparison: Proposed method vs. method [2] and
method [20].

The fault detection rate is another important metric, and here
too, the proposed method excels, achieving a fault detection rate of
98% (Fig. 8). This is significantly higher than the 90% detection
rate of method [2] and the 92% detection rate of method [20].
The higher fault detection rate of the proposed method suggests
that it is better equipped to detect anomalies or failures, which is
essential in systems where identifying faults promptly can prevent
system failures or other critical issues. The fault detection rate is
calculated using the following Eq. (25):

True Positives (TP )
True Positives (TP )+False Negatives (FN)

=

Fault Detection Rate (FDR)

(25)

where:
- True Positives(TP ): refers to the number of correctly

identified faults
- False Negatives (FN): refers to the number of faults that

were missed by the model

 

Fig. 8: Fault Detection Rate Comparison: Proposed Method vs. Method [2] and Method [20]. 

Finally, the loss function comparison reveals that the Proposed Method has the lowest loss value 

at 0.02, indicating that it is more effective at minimizing errors during training and evaluation 

(Fig. 10). In contrast, Method [2] has a loss value of 0.08, and Method [20] has a loss value of 

0.10, suggesting that these methods are less optimized in terms of error minimization. 

To quantify the error during model training and evaluation, the loss function was calculated 

based on the type of learning objective. In this study, two primary loss functions were 

considered: 

 

1) Mean Squared Error (MSE): If the task involves regression, the MSE is computed as 

follows: 

 

where 
iy  represents the actual value, ˆ

iy  denotes the predicted value, and N is the total number of 

samples. 

 

2)  Cross-entropy loss: For classification tasks, the loss is determined using the cross-

entropy function: 
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Fig. 8. Fault detection rate comparison: Proposed method vs. method [2]
and method [20].

Finally, the loss function comparison reveals that the proposed
method has the lowest loss value at 0.02, indicating that it is more
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Table 2. MLP architecture for attack vs. non-attack classification.

Layer Number of neurons Activation function Purpose
Input Layer 10 (Number of features) None Receives raw input features (e.g.,

signal strength, packet data)
Hidden Layer 1 64 ReLU Learns complex patterns and

behaviors from the data
Hidden Layer 2 32 ReLU Further abstraction and pattern

learning to detect anomalies
Output Layer 2 (Attack or Non-Attack) Softmax (multi-class) or Sigmoid (binary) Classifies the input as attack or

non-attack

effective at minimizing errors during training and evaluation (Fig.
10). In contrast, method [2] has a loss value of 0.08, and method
[20] has a loss value of 0.10, suggesting that these methods are
less optimized in terms of error minimization.

To quantify the error during model training and evaluation, the
loss function was calculated based on the type of learning objective.
In this study, two primary loss functions were considered:

1) Mean Squared Error (MSE): If the task involves regression,
the MSE is computed as follows:

L =
1

N

N∑
i=1

(yi − ŷi)
2 (26)

where yi represents the actual value, ŷi denotes the predicted
value, and N is the total number of samples.

2) Cross-entropy loss: For classification tasks, the loss is
determined using the cross-entropy function:

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c) (27)

where:
- C is the total number of classes.
- yi,c is a binary indicator that equals 1 if sample i belongs to

class c, otherwise, it is 0.
- ŷi,c represents the predicted probability for class c.

 

where: 

• C is the total number of classes. 

• 
,i cy  is a binary indicator that equals 1 if sample i belongs to class c, otherwise, it is 0. 

• 
,

ˆ
i cy  represents the predicted probability for class c. 

 

Fig. 9: Variation of cross-entropy loss under different compression ratios: Proposed Method vs. Method 

[2] and Method [20]. 

Explanation of the Chart 

Fig. 9 demonstrates the variation of cross-entropy loss under different compression ratios: 

• Proposed Method consistently shows lower cross-entropy loss, indicating better 

preservation of classification accuracy even under aggressive compression. 

• At a compression ratio of 0.1, the proposed method has a loss of 0.038, while Method [2] 

and Method [20] exhibit 0.045 and 0.050, respectively. 
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Fig. 9. Variation of cross-entropy loss under different compression ratios:
Proposed method vs. method [2] and method [20].

3) Explanation of the chart: Fig. 9 demonstrates the variation
of cross-entropy loss under different compression ratios:

• Proposed method consistently shows lower cross-entropy loss,
indicating better preservation of classification accuracy even
under aggressive compression.

• At a compression ratio of 0.1, the proposed method has a
loss of 0.038, while method [2] and method [20] exhibit
0.045 and 0.050, respectively.

• As the compression increases (i.e., ratio goes up), all methods
show a rising trend in loss, but the gap remains significant.

• As the compression increases (i.e., ratio goes up), all methods show a rising trend in loss, 

but the gap remains significant. 

• At 0.5, losses reach 0.051 (Proposed), 0.060 (Method [2]), and 0.065 (Method [20]), 

reaffirming the resilience of the proposed method in compression scenarios. 

 

 

These loss functions play a crucial role in optimizing the model by minimizing prediction errors 

and enhancing classification accuracy, thereby improving the overall reliability of fault detection 

in microgrid applications. 

This loss value was obtained using the cross-entropy loss function, which is widely used for 

classification tasks as it measures the divergence between the predicted and actual class 

probabilities. The lower loss value of the Proposed Method suggests that it successfully learns 

discriminative features while avoiding overfitting, ensuring better generalization to unseen fault 

conditions. 

    A key factor contributing to this improvement is the integration of feature selection, which 

reduces irrelevant inputs and enhances the model’s learning efficiency. Moreover, Fig. 10 shows 

that the loss function of the Proposed Method converges more rapidly compared to the baseline 

methods, demonstrating stable training behavior and improved optimization, indicating less 

optimal feature extraction and training dynamics.  

 

 

Fig. 10: Loss Function Comparison: Proposed Method vs. Method [2] and Method [20]. 

Overall, the results highlight the superior performance of the Proposed Method in all critical 

aspects: it offers the highest accuracy, the shortest execution time, the best fault detection rate, 

Fig. 10. Loss function comparison: Proposed method vs. method [2] and
method [20].

• At 0.5, losses reach 0.051 (Proposed), 0.060 (method [2]),
and 0.065 (method [20]), reaffirming the resilience of the
proposed method in compression scenarios.

These loss functions play a crucial role in optimizing the
model by minimizing prediction errors and enhancing classification
accuracy, thereby improving the overall reliability of fault detection
in microgrid applications.

This loss value was obtained using the cross-entropy loss
function, which is widely used for classification tasks as it
measures the divergence between the predicted and actual class
probabilities. The lower loss value of the proposed method
suggests that it successfully learns discriminative features while
avoiding overfitting, ensuring better generalization to unseen fault
conditions.

A key factor contributing to this improvement is the integration
of feature selection, which reduces irrelevant inputs and enhances
the model’s learning efficiency. Moreover, Fig. 10 shows that the
loss function of the proposed method converges more rapidly
compared to the baseline methods, demonstrating stable training
behavior and improved optimization, indicating less optimal feature
extraction and training dynamics.

Overall, the results highlight the superior performance of the
proposed method in all critical aspects: it offers the highest
accuracy, the shortest execution time, the best fault detection rate,
and the lowest loss value. While method [2] and method [20]
offer competitive results, they do not match the proposed method
in terms of overall effectiveness, making the proposed method the
preferred choice for applications requiring high accuracy, efficient
processing, and robust fault detection.
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4. CONCLUSION

In this paper, we explored the crucial role of feature
extraction and selection in improving the performance of machine
learning (ML) models for fault detection and classification in
microgrids, particularly in distinguishing attack versus non-attack
scenarios for network security. The proposed approach leveraged
a comprehensive feature extraction process, incorporating both
statistical and domain-specific features such as maximum, mean,
variance, and kurtosis to enhance classification accuracy. To further
optimize the feature set, we employed Partial Least Squares
(PLS) regression, which effectively identified the most significant
features while eliminating redundancies, reducing computational
complexity, and improving model efficiency. The experimental
results validated the effectiveness of our approach, demonstrating
a significant improvement in accuracy and fault detection rates
compared to traditional methods. Specifically, the proposed MLP
model with optimized feature selection achieved an accuracy of
95%, a fault detection rate of 98%, and an execution time of 0.35
seconds, whereas alternative methods achieved accuracy levels
of 85% and 88%, fault detection rates of 90% and 92%, and
execution times of 0.45s and 0.55s, respectively. Moreover, the
proposed method exhibited a lower loss function value (0.02),
indicating superior optimization and model generalization. These
findings highlight the importance of robust feature selection and
deep learning-based classification in ensuring higher fault detection
reliability, fewer false positives, and improved computational
performance, all of which are critical for real-time microgrid
security. In real-world microgrid applications, where response time
is crucial, a faster and more accurate detection system significantly
enhances operational stability and reduces downtime caused by
cyber or physical faults.

As future work, this approach could be extended to highly
dynamic and noisy environments, where adaptive feature selection
mechanisms and more advanced neural network architectures
could further enhance detection accuracy and system robustness.
One promising direction is integrating reinforcement learning-
based feature selection to dynamically adjust feature importance
based on changing system conditions. Additionally, hybrid deep
learning models, such as CNN-LSTM combinations, can improve
classification performance by capturing both spatial and temporal
fault patterns. Exploring the robustness of the proposed method
against adversarial attacks is another critical aspect, ensuring its
reliability in real-world microgrid applications. Finally, large-scale
validation on diverse datasets, including real-world microgrid
systems, will further enhance the generalization and practical
applicability of the approach.
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