
تعداد نشریات | 26 |
تعداد شمارهها | 390 |
تعداد مقالات | 3,402 |
تعداد مشاهده مقاله | 5,238,259 |
تعداد دریافت فایل اصل مقاله | 3,579,498 |
Gamma variant of (p, q) -Bernstein type novel operators | ||
Journal of Hyperstructures | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 25 اسفند 1403 اصل مقاله (1.62 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2025.15717.1040 | ||
نویسنده | ||
Narendra Kumar Kurre* | ||
Department of Mathematics, Government Bilasa college Bilaspur Chhattisgarh India | ||
چکیده | ||
In this paper, we are concerned with a new modification of the well-known (p;q)-Bernstein novel type operators with the gamma integral functions. The direct results demonstrate several aspects of approximations. Such as the rate of convergence theorem using Peetre's K-functional and Korovkin's theorem, which also validates the well-known Voronovskaja's theorem and the convergence theorem for Lipschitz continuous functions. | ||
کلیدواژهها | ||
Bernstein operators؛ (p؛ q) Bernstein operators؛ Rate of convergence؛ Voronovskja theorem | ||
مراجع | ||
[1] R. Bala and V. Mishra, Generalized (k, t)-Narayana Sequence, Journal of Indonesian Mathematical Society, 30 (2024), 121-138. [2] V.A. Baskakov, An instance of a seuqence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk SSSR RUS ENG Journals, 113 (1957), 249-251. [3] S.N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Communication of the Kharkov Mathematical Society, 13 (1912), 1-2. [4] B.F. Vajargah and A. Nouraldin, A new hybrid method for data analysis when a significant percentage of data is missing, Journal of Hyperstructures, 13 (2024), 297-304. [5] Q.B. Cai, B. Cekim, K. Kanat and M. Sofyalioglu, Some approximation results for the new modification of Bernstein beta operators, AIMS Mathematics, 7 (2022), 1831-1844. [6] N. Deo, M. Noor and M.A. Siddiqui, On approximation by a class of new Bernstein type operators, Applied Mathematics and Computation,201 (2008), 604-612. [7] D.J. Bhatt, R.K. Jana and V.N. Mishra, On a new class of Bernstein type operators based on beta function, Khayyam Journal of Mathematics, 6 (2020), 1-15. [8] Z. Ditzian, Direct estimate for Bernstein polynomials , Journal of Approximation Theorey,79 (1994), 165-166. [9] J.L. Durrmeyer, Une formule d’inversion de la transfarmee de Laplace: Applications la theorie des moments, Faculte des Sciences de I university de Paris, 38 (1967). [10] Z. Finta, Remark on Voronovkaja theorem for q Bernstein operators, Universitatea Babes-Bolyai, 56 (2011), 335-339. [11] Z. Finta, A pproximation properties of (p, q)-Bernstein type operators, Acta Universitatis Sapientiae, Mathematica, 8 (2016), 222-232. [12] V. Gupta, Some approximation properties on q - Durrmeyer operators, Applied Mathematics and Computation, 197 (2008), 172-178. [13] V. Gupta, A.J.L. Moreno and J.M.L. Palacios, Simultaneous approximation of the Bernstein- Durrmeyer operators, Applied Mathematics and Computation 213 (2009), 112-120. [14] A. Holhas, A Voronovkaja type theorem for the first derivative of positive linear operator, Results in Mathematics, 74 (2009), 1-13. [15] P. Agrawal, S.Araci and A.Kajla. (2019). A kantorovich variant of a generalized Bernstein operators, Journal of Mathematics and Computer Science, 19, 86-96. [16] S.M. Kang, Some approximation properties of (p, q) Bernstein operators , Journal of Inequalities and Applications, 169 (2016), 1-10. [17] G. Mirakayan, Approximation des fonction continues au moyan polynomes de la forme, Doklady Akaldemii Nauk,31 (1941), 201-205. [18] K.J. Ansari, A. Khan and Mursaleen On (p, q) analogue of Bernstein operators, Applied Mathematics and Computation, 266 (2015), 874-882. [19] G.M. Phillips, Bernstein polynomials based on the (q)-integers, Annals of Numerical Mathematics, 4 (1997), 511-518. [20] H. Sharma, On Durrmeyer type generalization of (p, q)-Bernstein operators, Arabian Journal of Mathematics, 5 (2016), 239-248. [21] K. Kanat and L.T. Su, Approximation by bivariate Bernstein-Kantorovich-Stancu operators that reproduce exponential functions, Journal of Inequalities and Applications, 6 (2024), 1-13. | ||
آمار تعداد مشاهده مقاله: 52 تعداد دریافت فایل اصل مقاله: 43 |