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The class of generalized Berwald metrics contains the
class of Berwald metrics as a special case. Let F =
ad(s), s = B/a, be a generalized Berwald («, 3)-metric
on manifold M. We show that F' has vanishing S-
curvature S = 0 and is of relatively isotropic Landsberg
curvature L + ¢F'C = 0 if and only if B = 0, where
¢ = ¢(x) is a scalar function on M.

1. INTRODUCTION

A Finsler metric F' on a C*° manifold M is called a generalized Berwald metric if there

exists a covariant derivative V on M such that the parallel translations induced by V preserve
the Finsler function F' [11][14]. In this case, (M, F) is called a generalized Berwald manifold.

If V is also torsion-free, then F' reduces to a Berwald metric. Also, one can define a Berwald

metric during the spray coefficients. Let (M, F') be a Finsler manifold. The Finsler metric

F on M induced a spray
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which determines the geodesics, where G* = G%(z,y) are called the spray coefficients of G.
A Finsler metric F is called a Berwald metric if G* = %F;k (z)y?y* are quadratic in y € T, M
for any x € M. The Berwald curvature B of Finsler metrics is an important non-Riemannian
quantity constructed by L. Berwald. Then, every Berwald metric is a trivially generalized
Berwald metric. The main interesting point about the class of generalized Berwald manifolds
lies in the fact that these manifolds may have a rich isometry group [9][10]. For the recent
progress about the class of generalized Berwald manifolds, see [11], [16] and [14].

Beside the Berwald curvature, there is another interesting non-Riemannian quantity that
is close to the Berwald curvature, namely, S-curvature. The S-curvature S is constructed
by Shen for given comparison theorems on Finsler manifolds [8]. An interesting problem in
Finsler geometry is to study and characterize Finsler metrics of vanishing S-curvature. It is
known that some of Randers metrics are of vanishing S-curvature [7][13]. This is one of our
motivations to consider Finsler metrics with vanishing S-curvature. Shen proved that every
Berwald metric satisfies S = 0 [8].

There are two basic tensors on Finsler manifolds: fundamental metric tensor g, and the
Cartan torsion C,, which are second and third order derivatives of %Ff at y € T,Moy,
respectively. It is easy to see that every Finsler metric with vanishing Cartan torsion is a
Riemannian metric. The rate of change of C along Finslerian geodesics is called Landsberg
curvature L,. A Finsler metric with vanishing Landsberg curvature is called a Landsberg
metric. In [15], Vincze et al. studied generalized Berwald surface with vanishing Landsberg

curvature and proved the following.

Theorem 1.1. ([15]) Every connected generalized Berwald surface is a Landsberg surface

if and only if it is a Berwald surface.

It is obvious that L/C can be regarded as the relative rate of change of Cartan torsion
C along Finslerian geodesics. Then F' is said to be relatively isotropic Landsberg metric if
L + ¢cFC = 0, where ¢ = ¢(z) is a scalar function on M. If ¢ = 0, then F' reduces to a
Landsberg metric. In order to find some Finsler metrics of relatively isotropic Landsberg
curvature, one can consider the class of (a, §)-metrics. An («, §)-metric is a Finsler metric
on M defined by F' := a¢(s), where s = f/a, ¢ = ¢(s) is a C* function on the (—bg, by) with
certain regularity, o = \/CW is a positive-definite Riemannian metric and 3 = b;(z)y’
is a 1-form on M. The simplest («, 3)-metrics are the Randers metrics F' = o+ which were
discovered by G. Randers when he studied 4-dimensional general relativity. In [14], Vincze
proved that a Randers metric F' = a + (8 is a generalized Berwald metric if and only if dual
vector field B! is of constant Riemannian length. In [11], Tayebi-Barzegari showed that an
(a, B)-metric satisfying the so-called sign property is a generalized Berwald metric if and only
if 8% is of constant Riemannian length. Then, Vincze showed that an (o, f)-metric satisfying
#'(0) # 0 is a generalized Berwald metric if and only if 8¢ is of constant Riemannian length
[16]. In this paper, we study the class of generalized Berwald («, 3)-metrics with relatively
isotropic Landsberg curvature and vanishing S-curvature. We find that such metrics must

be Berwaldian. More precisely, we prove the following.

Theorem 1.2. Let F = ad(s), s = 5/, be a generalized Berwald (o, B)-metric on manifold
M such that ¢'(0) # 0. Then F has vanishing S-curvature S = 0 and is of relatively isotropic
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Landsberg curvature, namely L/C is isotropic,
(1.1) L+ ¢(z)FC =0,

where ¢ = c¢(x) is a scalar function on M if and only if B = 0.

Theorem 1.2 can be considered as a local extension of Theorem 1.1. Also, by using

Theorem 1.2, one can conclude the following.

Corollary 1.3. Let F = a¢(s), s = 8/a, be a non-Randers type generalized Berwald (., 3)-
metric on manifold M of dimension n > 3 such that ¢'(0) # 0. Then F has vanishing
E-curvature EE = 0 and is of relatively isotropic Landsberg curvature L + ¢(z)FC = 0 if and

only if B =0, where ¢ = c(x) is a scalar function on M.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a

“‘

Finsler tensor field are denoted by “ | ” and “, ” respectively [5].

2. PRELIMINARY

A Finsler metric on a manifold M is a nonnegative function £’ on T'M having the following
properties
(a) Fis C* on TMy:=TM \ {0};
(b) F(A\y) = AF(y),VA>0, ye€TM;
(c) for each y € T,;M, the following quadratic form g, on T, M is positive definite,
, u,v € T, M.

s,t=0

1
gy (u,v) := 5 F2(y+su+tv)}

Then the pair (M, F') is called a Finsler manifold.

At each point € M, F, := F|r,u is an Euclidean norm if and only if g, is independent of
y € T Mp. To measure the non-Euclidean feature of F, define C,, : T, M x T, M x T, M — R
by

1d
Cy(u,v,w) := %

The family C := {C,} e, is called the Cartan torsion.

[gy+tw(u, v)} ‘ , u,v,w € T, M.

Given a Finsler manifold (M, F'), then a global vector field G is induced by F on T' My,
which in a standard coordinate (z?,y") for T My is given by

0 i 0
Ot - 2G (x’y)@’

where G*(z,y) are local functions on T'Mj satisfying G'(x, \y) = A\2G%(x,y), A > 0. G is

called the associated spray to (M, F'). The projection of an integral curve of G is called a

G:yi

geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates
(c'(t)) satisfy
¢ +2G'(¢) =0.
Using the spray of F, one can define By : T, M x T, M x T, M — T, M by By(u,v,w) =
Bijkl(y)ujvkwla/axﬂx, where
foated
VL Oyi dyk oyl

%
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B is called the Berwald curvature.

Define the mean of Berwald curvature by E, : T, M x T, M — R, where

Ey(u,v) := %Zgij(y)gy (By(u,v,ai),aj>.
=1

The family E = {Ey } 7, is called the mean Berwald curvature or E-curvature of F. In a
local coordinates, Ey,(u,v) := E;;(y)u'v?, where

1

maij -

A Finsler metric F' is called a weakly Berwald metric if E = 0.

Let U(t) be a vector field along a curve ¢(t). The canonical covariant derivative DU (t) is
defined by

dU’ . OG! 0
DéUt::{ )+ UI(t .'t}—.c.
0= { G0+ V05D } 510
U(t) is said to be parallel along c if Dy)U(t) = 0.
To measure the changes of the Cartan torsion C along geodesics, we define L, : T, M x
T, M x ToM — R by
d
(SO GONAOREO)] [
where ¢(t) is a geodesic and U (t), V (t), W (t) are parallel vector fields along ¢(¢) with ¢(0) =
y,U(0) = u,V(0) = v, W(0) = w. The family L := {Ly},era\ {0} is called the Landsberg
curvature. A Finsler metric is called a Landsberg metric if L = 0. An important fact is that

Ly,(u,v,w) :=

if F'is Berwaldian, then it is Landsbergian. L/C is regarded as the relative rate of change of
C along Finslerian geodesics. Then F' is said to be isotropic Landsberg metric if L = ¢F'C,

where ¢ = ¢(z) is a scalar function on M.

For a Finsler metric F' on an n-dimensional manifold M, the Busemann-Hausdorff volume
form dVy = op(z)dz! - - - dz™ is defined by

_ VolB"(1)
Vol{(yi) eRn F(yi%u) < 1}.

In general, the local scalar function op(z) can not be expressed in terms of elementary

O’F(x) .

functions, even F' is locally expressed by elementary functions.
Let G*(z,y) denote the geodesic coefficients of F in the same local coordinate system. The
S-curvature is defined by

S(y) = C{;j; (z,y) — o' 8axi {ln ap(a;)}

where y = ¢ 82,- | € T, M. Tt is proved that S = 0 if F' is a Berwald metric [7]. There are

many non-Berwald metrics satisfying S = 0 [1].
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Given a Riemannian metric «, a 1-form £ on a manifold M, and a C* function ¢ = ¢(s)

on [—by, b], where b, := sup,c,s ||8]|z, one can define a function on T'M by

p

F = a¢(s), 5=

If ¢ and b, satisfy (2.1) and (2.2) below, then F' is a Finsler metric on M. Finsler metrics in
this form are called (v, §)-metrics. Randers metrics are special («, 5)-metrics.

Now we consider (a, 3)-metrics. Let o = /a;;y'y? be a Riemannian metric and g = by’

a 1-form on a manifod M. Let

18]l = \/aid (2)bi ()b ().
For a C™ function ¢ = ¢(s) on [—by, b,|, where b, = sup,cys |3z, define

F:=a¢(s), s= é

«

By a direct computation, we obtain
9ij = paij + pobibj — p1(bicj + bjai) + spraiay,
where q; 1= aijyj/a, and
p = ¢(¢ - 5¢/)>

poi= 60 + 916,

p1:=s(d" + ¢'¢)) — ¢¢'.
By further computation, one obtains

n n—2
det (gig) = "+ (6 — s6/)" 2 [(6 — s6) + (18]2 ~ ))6"] det (as).

Using the continuity, one can easily show that

Lemma 2.1. Let b, > 0. F = a¢(8/«a) is a Finsler metric on M for any pair {a, 8} with
supgenr 18]z < bo if and only if ¢ = ¢(s) satisfies the following conditions:

(2.1) ¢(s) >0, (Is] < bo)
(2.2) $(s) = s¢'(s) + (b — s%)¢"(s) > 0, (Isl <0< bo).
Let
1 1 j i, i
rij 1= 5 (i +bjia), - sig = 5 (big = ), rio =gy’ oo = rigy'y’, vy = by,
Si0 +— Sijyj, Sj = bisij, Sij = aimsmj, Sio = Sijyj, To ‘= ijj, S0 - — Sjyj.

Suppose that G = G*(z,y) and G* = G*(x,y) denote the coefficients of F' and « respectively

in the same coordinate system. By definition, we obtain the following identity

(2.3) G' =G + Py + Q,
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where
P = a'® |:’I”00 — QQQSO]

Q' = aQsiO + v [7“00 — 2Qa30} b,

_ ¢
R
o _ _ 00 —s(es"+¢9)
26((¢ — s¢/) + (b2 — 2)¢")
\IJ _ 1 ¢//

2(¢ — s¢/) + (b2 — 529"
Clearly, if 8 is parallel with respect to o (135 = 0 and s;; = 0), then P = 0 and Q'=0. In
this case, G = G are quadratic in y, and F is a Berwald metric.

3. PROOF OF THEOREM 1.2

In this section, we will prove a generalized version of Theorem 1.2. Indeed, we study
generalized Berwald («, 8)-metric with relatively isotropic mean Landsberg curvature and

isotropic S-curvature. More precisely, we prove the following.

Theorem 3.1. Let F = a¢(s), s = B/a, be an non-Riemannian generalized Berwald (o, 3)-
metric on manifold M such that ¢ # c1v/1+ cas? + c3s and ¢'(0) # 0 for any constant
c1 >0, co, c3. Then F' has isotropic S-curvature S = (n+ 1)\F and is of relatively isotropic

mean Landsberg curvature, namely J/I is isotropic,
(3.1) J+c(z)FI =0,

where A = \(x) and ¢ = ¢(x) are scalar functions on M if and only if B = 0.

To prove Theorem 1.2, we need the following key lemma.

Lemma 3.2. ([16]) An (o, 8)-metric satisfying ¢'(0) # 0 is a generalized Berwald manifold
if and only if 5 has constant length with respect to «.

A Finsler metric I’ on an n-dimensional manifold M is called of isotropic S-curvature, if
S = (n+ 1)cF, where ¢ = ¢(x) is a scalar function on M. In [4], Cheng-Shen characterized
(a, B)-metrics with isotropic S-curvature on a manifold M of dimension n > 3. Soon, they
found that their result holds for the class of («, 8)-metrics with constant length one-forms,
only. In [12], we give a new characterization of the class of generalized Berwald metrics with

vanishing S-curvature and prove the following.

Lemma 3.3. ([12]) Let F' = a¢(s), s = 5/, be a generalized Berwald («a, #)-metric on an
n-dimensional manifold M. Suppose that ¢/(0) # 0. Then S = 0 if and only if 3 is a Killing

form with constant length, namely

(3.2) Tij = 0, S5 = 0
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Remark 3.4. Let ¢ = ¢(s) be a positive C*° function on (—bg, bp). For a number b € [0, by),
let

(3.3) @ i= —(Q - sQ){nA +1+5Q} — (1~ (1 +5Q)Q",
where
(3.4) A:=1+3sQ+ (b —sH)Q.

By a direct computation, one can obtain a formula for the mean Cartan torsion of («, (3)-

metrics as follows

q) /
According to Deickes theorem, a Finsler metric is Riemannian if and only if I = 0. By (3.5),

an (a, f)-metric F' = a¢(s) is Riemannian if and only if & = 0.

In [3], Cheng consider regular (a,()-metrics with isotropic S-curvature and prove the
following.

Theorem 3.5. ([3]) A regular («, B)-metric F := a¢(f/a), of non-Randers type on an n-
dimensional manifold M is of isotropic S-curvature, S = (n+1)oF, if and only if B satisfies
rij =0 and s; = 0. In this case, S = 0, regardless of the choice of a particular ¢ = ¢(s).

Now, we are ready to consider generalized Berwald (c, 8)-metrics with isotropic S-curvature
and prove the following.

Lemma 3.6. Let F' = a¢(s) , s = 5/a, be an non-Riemannian generalized Berwald («, 3)-
metric on manifold M such that ¢ # c1v/1+ cas? + c3s for any constant ¢y > 0, co. Then
S=(n+1)AF and J =0 if and only if B =0, where A = \(x) is a scalar function on M.

Proof. According to the definition of generalized Berwald metrics, a generalized Berwald
(a, B)-metric F' = a¢(s) , s = B/a, is regular. Then, by Lemma 3.5, we have S = 0.
In [6], Li-Shen found the mean Landsberg curvature of an (a, §)-metric F = ag¢(s), s =

B/a, as follows

1 () ,
Ji= - AR — ) [Z +(n+1)(Q — sQ )] (ro + s0)h;
hi P P )
 203A(02 — $2) (Wl * SZ) (TOO - QO‘QSO) ~ 5asa2 | @Q(a7si — yiso)
(3.6) —aQ'sohi + a®Asip + a*(rig — 2aQs0) — (roo — QQQSO)yi] :
where
h; == ab; — sy;

and

/

Vb2 — 2

A3

Uy = /b2 — s2A3
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By (3.2) and (3.6) we have:

@ .
20

Considering (3.7) and the assumption J = 0, we obtain

(3.7) J; =

(3.8) Sij =0.

Since rj; = 0, then (3.8) tell us that § is parallel with respect to a and F is a Berwald
metric. U

Proof of Theorem 3.1: Let F = a¢(s), s = B/a, be an (a, §)-metric with relatively
isotropic mean Landsberg curvature. The following holds

(39) Jy + cFI = 0.
The following holds

, A
(3.10) Jib' = ~5.3 (roo — 2aQs0)¥1 + a(ro + so)Pa|.

where

Uy :=2(n+1)(Q —sQ) + 3%.

By assumption, F' has vanishing S-curvature. Then, (3.2) and (3.10) imply that
(3.11) biJ =0,
Considering (3.11) and multiplying (3.9) with b* gives us
(3.12) c(b*I,) = 0.
Let ¢ # 0, Vx € M. By (3.12), we get
VeI, = 0.
In this case, (3.5) implies that

P
mw —s¢/)(0%a® — %) = 0.
Considering (3.13), one can get ® = 0 or ¢ — s¢/ = 0. By (3.5) it follows that I = 0 and
then F' reduces to a Riemannian metric, which contradicts with the assumption. Thus, we
have ¢ = 0. Putting it in (3.9) yields J = 0. By Lemma 3.6, F is a Berwald metric. This
completes the proof. O

(3.13)

Proof of Corollary 1.3: Let F' = a¢(s), s = /a, be a non-Randers type («, §)-metric
on manifold M of dimension n > 3 such that ¢/(0) # 0. In [2], it is proved that F satisfies
E = 0 if and only if g is a killing 1-form with constant length with respect to a. By Theorem
1.2, we get the proof. O
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