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ABSTRACT

The class of generalized Berwald metrics contains the
class of Berwald metrics as a special case. Let F =
αϕ(s), s = β/α, be a generalized Berwald (α, β)-metric
on manifold M . We show that F has vanishing S-
curvature S = 0 and is of relatively isotropic Landsberg
curvature L + cFC = 0 if and only if B = 0, where
c = c(x) is a scalar function on M .
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1. Introduction

A Finsler metric F on a C∞ manifold M is called a generalized Berwald metric if there

exists a covariant derivative∇ onM such that the parallel translations induced by∇ preserve

the Finsler function F [11][14]. In this case, (M,F ) is called a generalized Berwald manifold.

If ∇ is also torsion-free, then F reduces to a Berwald metric. Also, one can define a Berwald

metric during the spray coefficients. Let (M,F ) be a Finsler manifold. The Finsler metric

F on M induced a spray

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
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2 A. Tayebi

which determines the geodesics, where Gi = Gi(x, y) are called the spray coefficients of G.

A Finsler metric F is called a Berwald metric if Gi = 1
2Γ

i
jk(x)y

jyk are quadratic in y ∈ TxM

for any x ∈ M . The Berwald curvature B of Finsler metrics is an important non-Riemannian

quantity constructed by L. Berwald. Then, every Berwald metric is a trivially generalized

Berwald metric. The main interesting point about the class of generalized Berwald manifolds

lies in the fact that these manifolds may have a rich isometry group [9][10]. For the recent

progress about the class of generalized Berwald manifolds, see [11], [16] and [14].

Beside the Berwald curvature, there is another interesting non-Riemannian quantity that

is close to the Berwald curvature, namely, S-curvature. The S-curvature S is constructed

by Shen for given comparison theorems on Finsler manifolds [8]. An interesting problem in

Finsler geometry is to study and characterize Finsler metrics of vanishing S-curvature. It is

known that some of Randers metrics are of vanishing S-curvature [7][13]. This is one of our

motivations to consider Finsler metrics with vanishing S-curvature. Shen proved that every

Berwald metric satisfies S = 0 [8].

There are two basic tensors on Finsler manifolds: fundamental metric tensor gy and the

Cartan torsion Cy, which are second and third order derivatives of 1
2F

2
x at y ∈ TxM0,

respectively. It is easy to see that every Finsler metric with vanishing Cartan torsion is a

Riemannian metric. The rate of change of C along Finslerian geodesics is called Landsberg

curvature Ly. A Finsler metric with vanishing Landsberg curvature is called a Landsberg

metric. In [15], Vincze et al. studied generalized Berwald surface with vanishing Landsberg

curvature and proved the following.

Theorem 1.1. ([15]) Every connected generalized Berwald surface is a Landsberg surface

if and only if it is a Berwald surface.

It is obvious that L/C can be regarded as the relative rate of change of Cartan torsion

C along Finslerian geodesics. Then F is said to be relatively isotropic Landsberg metric if

L + cFC = 0, where c = c(x) is a scalar function on M . If c = 0, then F reduces to a

Landsberg metric. In order to find some Finsler metrics of relatively isotropic Landsberg

curvature, one can consider the class of (α, β)-metrics. An (α, β)-metric is a Finsler metric

on M defined by F := αϕ(s), where s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0) with

certain regularity, α =
√

aij(x)yiyj is a positive-definite Riemannian metric and β = bi(x)y
i

is a 1-form on M . The simplest (α, β)-metrics are the Randers metrics F = α+β which were

discovered by G. Randers when he studied 4-dimensional general relativity. In [14], Vincze

proved that a Randers metric F = α+ β is a generalized Berwald metric if and only if dual

vector field β♯ is of constant Riemannian length. In [11], Tayebi-Barzegari showed that an

(α, β)-metric satisfying the so-called sign property is a generalized Berwald metric if and only

if β♯ is of constant Riemannian length. Then, Vincze showed that an (α, β)-metric satisfying

ϕ′(0) ̸= 0 is a generalized Berwald metric if and only if β♯ is of constant Riemannian length

[16]. In this paper, we study the class of generalized Berwald (α, β)-metrics with relatively

isotropic Landsberg curvature and vanishing S-curvature. We find that such metrics must

be Berwaldian. More precisely, we prove the following.

Theorem 1.2. Let F = αϕ(s), s = β/α, be a generalized Berwald (α, β)-metric on manifold

M such that ϕ′(0) ̸= 0. Then F has vanishing S-curvature S = 0 and is of relatively isotropic
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Landsberg curvature, namely L/C is isotropic,

(1.1) L+ c(x)FC = 0,

where c = c(x) is a scalar function on M if and only if B = 0.

Theorem 1.2 can be considered as a local extension of Theorem 1.1. Also, by using

Theorem 1.2, one can conclude the following.

Corollary 1.3. Let F = αϕ(s), s = β/α, be a non-Randers type generalized Berwald (α, β)-

metric on manifold M of dimension n ≥ 3 such that ϕ′(0) ̸= 0. Then F has vanishing

E-curvature E = 0 and is of relatively isotropic Landsberg curvature L+ c(x)FC = 0 if and

only if B = 0, where c = c(x) is a scalar function on M .

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a

Finsler tensor field are denoted by “ | ” and “, ” respectively [5].

2. Preliminary

A Finsler metric on a manifold M is a nonnegative function F on TM having the following

properties

(a) F is C∞ on TM0 := TM \ {0};
(b) F (λy) = λF (y), ∀λ > 0, y ∈ TM ;

(c) for each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]∣∣∣
s,t=0

, u, v ∈ TxM.

Then the pair (M,F ) is called a Finsler manifold.

At each point x ∈ M , Fx := F |TxM is an Euclidean norm if and only if gy is independent of

y ∈ TxM0. To measure the non-Euclidean feature of Fx, define Cy : TxM×TxM×TxM → R
by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]∣∣∣
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion.

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0,

which in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are local functions on TM0 satisfying Gi(x, λy) = λ2Gi(x, y), λ > 0. G is

called the associated spray to (M,F ). The projection of an integral curve of G is called a

geodesic in M . In local coordinates, a curve c(t) is a geodesic if and only if its coordinates

(ci(t)) satisfy

c̈i + 2Gi(ċ) = 0.

Using the spray of F , one can define By : TxM × TxM × TxM → TxM by By(u, v, w) :=

Bi
jkl(y)u

jvkwl∂/∂xi|x, where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.
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B is called the Berwald curvature.

Define the mean of Berwald curvature by Ey : TxM × TxM → R, where

Ey(u, v) :=
1

2

n∑
i=1

gij(y)gy

(
By(u, v, ∂i), ∂j

)
.

The family E = {Ey}y∈TM0 is called the mean Berwald curvature or E-curvature of F . In a

local coordinates, Ey(u, v) := Eij(y)u
ivj , where

Eij :=
1

2
Bm

mij .

A Finsler metric F is called a weakly Berwald metric if E = 0.

Let U(t) be a vector field along a curve c(t). The canonical covariant derivative DċU(t) is

defined by

DċU(t) :=
{dU i

dt
(t) + U j(t)

∂Gi

∂yj
(ċ(t))

} ∂

∂xi
|c(t).

U(t) is said to be parallel along c if Dċ(t)U(t) = 0.

To measure the changes of the Cartan torsion C along geodesics, we define Ly : TxM ×
TxM × TxM → R by

Ly(u, v, w) :=
d

dt

[
Cċ(t)(U(t), V (t),W (t))

]∣∣
t=0

,

where c(t) is a geodesic and U(t), V (t),W (t) are parallel vector fields along c(t) with ċ(0) =

y, U(0) = u, V (0) = v,W (0) = w. The family L := {Ly}y∈TM\{0} is called the Landsberg

curvature. A Finsler metric is called a Landsberg metric if L = 0. An important fact is that

if F is Berwaldian, then it is Landsbergian. L/C is regarded as the relative rate of change of

C along Finslerian geodesics. Then F is said to be isotropic Landsberg metric if L = cFC,

where c = c(x) is a scalar function on M .

For a Finsler metric F on an n-dimensional manifold M , the Busemann-Hausdorff volume

form dVF = σF (x)dx
1 · · · dxn is defined by

σF (x) :=
VolBn(1)

Vol
{
(yi) ∈ Rn

∣∣∣ F(
yi ∂

∂xi |x
)
< 1

} .

In general, the local scalar function σF (x) can not be expressed in terms of elementary

functions, even F is locally expressed by elementary functions.

Let Gi(x, y) denote the geodesic coefficients of F in the same local coordinate system. The

S-curvature is defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi

∂

∂xi

[
lnσF (x)

]
.

where y = yi ∂
∂xi |x ∈ TxM . It is proved that S = 0 if F is a Berwald metric [7]. There are

many non-Berwald metrics satisfying S = 0 [1].
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Given a Riemannian metric α, a 1-form β on a manifold M , and a C∞ function ϕ = ϕ(s)

on [−bo, bo], where bo := supx∈M ∥β∥x, one can define a function on TM by

F := αϕ(s), s =
β

α
.

If ϕ and bo satisfy (2.1) and (2.2) below, then F is a Finsler metric on M . Finsler metrics in

this form are called (α, β)-metrics. Randers metrics are special (α, β)-metrics.

Now we consider (α, β)-metrics. Let α =
√

aijyiyj be a Riemannian metric and β = biy
i

a 1-form on a manifod M . Let

∥β∥x :=
√
aij(x)bi(x)bj(x).

For a C∞ function ϕ = ϕ(s) on [−bo, bo], where bo = supx∈M ∥β∥x, define

F := αϕ(s), s =
β

α
.

By a direct computation, we obtain

gij = ρaij + ρ0bibj − ρ1(biαj + bjαi) + sρ1αiαj ,

where αi := aijy
j/α, and

ρ := ϕ(ϕ− sϕ′),

ρ0 := ϕϕ′′ + ϕ′ϕ′,

ρ1 := s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′.

By further computation, one obtains

det (gij) = ϕn+1
(
ϕ− sϕ′)n−2

[
(ϕ− sϕ′) + (∥β∥2x − s2)ϕ′′

]
det (aij) .

Using the continuity, one can easily show that

Lemma 2.1. Let bo > 0. F = αϕ(β/α) is a Finsler metric on M for any pair {α, β} with

supx∈M ∥β∥x ≤ bo if and only if ϕ = ϕ(s) satisfies the following conditions:

ϕ(s) > 0, (|s| ≤ bo)(2.1)

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, (|s| ≤ b ≤ bo).(2.2)

Let

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i), ri0 := rijy

j , r00 := rijy
iyj , rj := birij ,

si0 := sijy
j , sj := bisij , sij = aimsmj , si0 = sijy

j , r0 := rjy
j , s0 := sjy

j .

Suppose that Gi = Gi(x, y) and Ḡi = Ḡi(x, y) denote the coefficients of F and α respectively

in the same coordinate system. By definition, we obtain the following identity

Gi = Ḡi + Pyi +Qi,(2.3)
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where

P = α−1Θ
[
r00 − 2Qαs0

]
Qi = αQsi0 +Ψ

[
r00 − 2Qαs0

]
bi,

Q =
ϕ′

ϕ− sϕ′

Θ =
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
(
(ϕ− sϕ′) + (b2 − s2)ϕ′′

)
Ψ =

1

2

ϕ′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

Clearly, if β is parallel with respect to α (rij = 0 and sij = 0), then P = 0 and Qi = 0. In

this case, Gi = Ḡi are quadratic in y, and F is a Berwald metric.

3. Proof of Theorem 1.2

In this section, we will prove a generalized version of Theorem 1.2. Indeed, we study

generalized Berwald (α, β)-metric with relatively isotropic mean Landsberg curvature and

isotropic S-curvature. More precisely, we prove the following.

Theorem 3.1. Let F = αϕ(s), s = β/α, be an non-Riemannian generalized Berwald (α, β)-

metric on manifold M such that ϕ ̸= c1
√
1 + c2s2 + c3s and ϕ′(0) ̸= 0 for any constant

c1 > 0, c2, c3. Then F has isotropic S-curvature S = (n+1)λF and is of relatively isotropic

mean Landsberg curvature, namely J/I is isotropic,

(3.1) J+ c(x)F I = 0,

where λ = λ(x) and c = c(x) are scalar functions on M if and only if B = 0.

To prove Theorem 1.2, we need the following key lemma.

Lemma 3.2. ([16]) An (α, β)-metric satisfying ϕ′(0) ̸= 0 is a generalized Berwald manifold

if and only if β has constant length with respect to α.

A Finsler metric F on an n-dimensional manifold M is called of isotropic S-curvature, if

S = (n+ 1)cF , where c = c(x) is a scalar function on M . In [4], Cheng-Shen characterized

(α, β)-metrics with isotropic S-curvature on a manifold M of dimension n ≥ 3. Soon, they

found that their result holds for the class of (α, β)-metrics with constant length one-forms,

only. In [12], we give a new characterization of the class of generalized Berwald metrics with

vanishing S-curvature and prove the following.

Lemma 3.3. ([12]) Let F = αϕ(s), s = β/α, be a generalized Berwald (α, β)-metric on an

n-dimensional manifold M . Suppose that ϕ′(0) ̸= 0. Then S = 0 if and only if β is a Killing

form with constant length, namely

rij = 0, sj = 0(3.2)
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Remark 3.4. Let ϕ = ϕ(s) be a positive C∞ function on (−b0, b0). For a number b ∈ [0, b0),

let

Φ := −(Q− sQ′)
{
n∆+ 1 + sQ

}
− (b2 − s2)(1 + sQ)Q′′,(3.3)

where

∆ := 1 + sQ+ (b2 − s2)Q′.(3.4)

By a direct computation, one can obtain a formula for the mean Cartan torsion of (α, β)-

metrics as follows

Ii = − Φ

2∆ϕα2

(
ϕ− sϕ′

)(
αbi − syi

)
.(3.5)

According to Deickes theorem, a Finsler metric is Riemannian if and only if I = 0. By (3.5),

an (α, β)-metric F = αϕ(s) is Riemannian if and only if Φ = 0.

In [3], Cheng consider regular (α, β)-metrics with isotropic S-curvature and prove the

following.

Theorem 3.5. ([3]) A regular (α, β)-metric F := αϕ(β/α), of non-Randers type on an n-

dimensional manifold M is of isotropic S-curvature, S = (n+1)σF , if and only if β satisfies

rij = 0 and sj = 0. In this case, S = 0, regardless of the choice of a particular ϕ = ϕ(s).

Now, we are ready to consider generalized Berwald (α, β)-metrics with isotropic S-curvature

and prove the following.

Lemma 3.6. Let F = αϕ(s) , s = β/α, be an non-Riemannian generalized Berwald (α, β)-

metric on manifold M such that ϕ ̸= c1
√
1 + c2s2 + c3s for any constant c1 > 0, c2. Then

S = (n+ 1)λF and J = 0 if and only if B = 0, where λ = λ(x) is a scalar function on M .

Proof. According to the definition of generalized Berwald metrics, a generalized Berwald

(α, β)-metric F = αϕ(s) , s = β/α, is regular. Then, by Lemma 3.5, we have S = 0.

In [6], Li-Shen found the mean Landsberg curvature of an (α, β)-metric F = αϕ(s), s =

β/α, as follows

Ji = − 1

α2∆(b2 − s2)

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(r0 + s0)hi

− hi
2α3∆(b2 − s2)

(
Ψ1 + s

Φ

∆

)(
r00 − 2αQs0

)
− Φ

2α3∆2

[
αQ(α2si − yis0)

−αQ′s0hi + α2∆si0 + α2(ri0 − 2αQs0)− (r00 − 2αQs0)yi

]
.(3.6)

where

hi := αbi − syi

and

Ψ1 :=
√

b2 − s2∆
1
2

[√
b2 − s2

∆
3
2

]′

.
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By (3.2) and (3.6) we have:

Ji = − Φ

2α∆
si0.(3.7)

Considering (3.7) and the assumption J = 0, we obtain

sij = 0.(3.8)

Since rij = 0, then (3.8) tell us that β is parallel with respect to α and F is a Berwald

metric. □

Proof of Theorem 3.1: Let F = αϕ(s), s = β/α, be an (α, β)-metric with relatively

isotropic mean Landsberg curvature. The following holds

Jk + cFIk = 0.(3.9)

The following holds

Jib
i = − ∆

2α2

[
(r00 − 2αQs0)Ψ1 + α(r0 + s0)Ψ2

]
.(3.10)

where

Ψ2 := 2(n+ 1)(Q− sQ′) + 3
Φ

∆
.

By assumption, F has vanishing S-curvature. Then, (3.2) and (3.10) imply that

biJ
i = 0.(3.11)

Considering (3.11) and multiplying (3.9) with bk gives us

c(bkIk) = 0.(3.12)

Let c ̸= 0, ∀x ∈ M . By (3.12), we get

bkIk = 0.

In this case, (3.5) implies that

Φ

2∆ϕα3
(ϕ− sϕ′)(b2α2 − β2) = 0.(3.13)

Considering (3.13), one can get Φ = 0 or ϕ − sϕ′ = 0. By (3.5) it follows that I = 0 and

then F reduces to a Riemannian metric, which contradicts with the assumption. Thus, we

have c = 0. Putting it in (3.9) yields J = 0. By Lemma 3.6, F is a Berwald metric. This

completes the proof. □

Proof of Corollary 1.3: Let F = αϕ(s), s = β/α, be a non-Randers type (α, β)-metric

on manifold M of dimension n ≥ 3 such that ϕ′(0) ̸= 0. In [2], it is proved that F satisfies

E = 0 if and only if β is a killing 1-form with constant length with respect to α. By Theorem

1.2, we get the proof. □
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