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Abstract— The growing complexity of microgrid operations, driven by the integration of renewable energy sources and distributed
generation, has heightened the need for more advanced islanding detection methods. Traditional techniques, such as passive and active
methods, often struggle with accuracy in these dynamic environments. Passive methods can result in high false detection rates as they rely
on system parameters like voltage and frequency, which are sensitive to fluctuations. Active methods, while generally more accurate, can
introduce disturbances into the system and are often less effective in low-power scenarios. These limitations pose significant challenges
to maintaining the stability and integrity of microgrids, underscoring the need for innovative approaches. To address these challenges,
this paper presents a novel approach that combines deep learning with fuzzy logic for adaptive control in microgrids. Deep learning
facilitates precise real-time data analysis, enabling the system to accurately detect islanding events as they occur. Meanwhile, fuzzy
logic provides adaptable decision-making, allowing the system to respond effectively to changing conditions. This integration significantly
enhances detection accuracy and reduces error rates compared to traditional techniques, ensuring reliable performance throughout the day.
By offering a more robust and flexible solution, the proposed method not only improves fault detection but also enhances overall system
stability, making it a valuable contribution to microgrid management. This approach addresses the critical need for more effective islanding
detection in increasingly complex microgrid environments, paving the way for more resilient and reliable energy systems.

Keywords—Microgrid operations, islanding detection, deep learning, fuzzy logic, adaptive control.

1. INTRODUCTION

The increasing complexity of modern power systems,
particularly microgrids, necessitates enhanced stability, reliability,
and adaptability. Developing resilient and autonomous systems
capable of operating in islanded modes has become a critical
research area. As microgrids integrate renewable energy sources
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and inverter-based distributed generation, effective islanding
detection—when a part of the grid becomes disconnected and
continues to operate independently—is essential. This capability
ensures the safe operation of microgrids, preventing equipment
damage and safety hazards.

1.1. Research motivation
Microgrids have emerged as indispensable components of

modern energy systems, providing reliable and efficient power,
especially in remote areas without access to traditional grid
infrastructure. Their ability to operate both connected to the
main grid and independently in islanded mode enhances energy
security and ensures continuous power supply during outages
[1]. However, islanded operation introduces significant challenges,
requiring microgrids to independently manage power generation,
distribution, and consumption while addressing the variability of
renewable energy sources like solar and wind [2]. Traditional
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control methods often fail to handle the dynamic nature of such
operations, leading to issues like voltage instability, frequency
deviations, and inefficient energy use [3]. To address these
challenges, innovative approaches such as advanced control
algorithms, machine learning, and real-time analytics have been
proposed. These adaptive solutions enhance microgrid stability
and resilience by optimizing performance in real time [2].
Moreover, microgrids play a crucial role in improving power
system resilience during extreme events. Multi-objective stochastic
scheduling strategies that integrate distributed energy resources
with adaptive mechanisms can balance economic efficiency with
resilience, thereby addressing operational challenges and improving
system stability [4]. In addition, advanced integrated energy systems
(IES) are essential for meeting energy demands in off-grid areas,
offering sustainable and reliable solutions. Fig. 1 illustrates the
evolution of IES in isolated regions, highlighting the progression
from basic hybrid setups combining wind, solar, diesel, and
batteries to more sophisticated configurations [1].

1.2. Literature review
The integration of distributed generation (DG) systems

into microgrids has significantly advanced islanding detection
techniques, addressing safety and operational challenges when a
portion of the electrical grid becomes isolated from the main
grid. This literature review explores methodologies designed
to enhance microgrid resilience, self-healing, and optimization,
with a particular focus on islanding detection techniques. Key
approaches include hierarchical control, optimization techniques,
stochastic modeling, advanced sensing, and adaptive islanding
detection methods. Several studies emphasize hierarchical control
and integrated strategies to improve microgrid resilience. A
hierarchical control method integrating IoT and machine learning
achieves stability in compliance with IEEE 1547 standards [5].
Similarly, a dual-layer self-healing strategy enhances the resilience
of integrated energy systems (IES) by identifying disturbances,
making scheduling decisions, and responding to threats [1].
Additionally, a comprehensive self-healing strategy is proposed for
generation re-dispatch, network reconfiguration, and load shedding
in both grid-connected and islanded modes [6]. Optimization
techniques also play a crucial role, with Ant Colony Optimization
utilized for multi-objective self-healing to maximize served loads
following fault isolation in smart microgrids [7]. Adaptive
islanding detection methods, both active and passive, are pivotal in
minimizing the non-detection zone (NDZ). Active methods include
nondestructive reactive power disturbance techniques proposed by
Chen and Li [8], as well as fuzzy adaptive PID-based active
phase-shift detection introduced by Chen and Ye [9], which
improve inverter-based DG system performance during islanding.
Estebanez et al. [10] further evaluate active detection algorithms,
emphasizing their effectiveness in reducing NDZ and improving
the safety of grid-connected photovoltaic systems.

Recent advances highlight the use of artificial intelligence in
islanding detection and microgrid optimization. A hierarchical deep
learning approach (HDL-RCNN) optimizes voltage and frequency
control for enhanced stability and performance in microgrids,
although it lacks specific focus on adaptive islanding detection
[11]. Similarly, AI-based strategies using artificial neural networks
(ANN) and adaptive neuro-fuzzy inference systems (ANFIS)
offer effective solutions for fault detection, classification, and
localization under both grid-connected and islanded modes [12].
Several novel approaches focus on integrating deep learning
and adaptive control to enhance microgrid functionality. For
instance, a deep learning-based control method for modernized
microgrids (MMGs) uses restricted Boltzmann machines and
Lyapunov-based learning to improve robustness and accuracy
under uncertainties and faults, though it primarily emphasizes
control optimization over adaptive islanding detection [13].
Hybrid control systems, combining rule-based strategies with deep

learning techniques like RNNs, LSTMs, and GRUs, improve power
prediction and operational performance, yet they address power
management rather than islanding detection [14]. Studies also
explore advanced fault detection and classification for adaptive
microgrid protection. Machine learning techniques, such as pattern
recognition, are employed to improve protection strategies under
diverse fault scenarios, though gaps in robust and adaptive
solutions persist [15]. Reinforcement learning-based methods,
combined with Variational Mode Decomposition (VMD), enhance
detection reliability and speed without system disruption, aligning
with adaptive islanding strategies [16]. Additionally, deep neural
network-based islanding detection using discrete wavelet transform
achieves over 99% accuracy, surpassing traditional approaches
in precision and reliability [17]. Self-healing strategies during
islanding are integral to microgrid resilience. One study introduces
a load-shedding algorithm for active distribution networks operating
in islanding mode to enhance resilience [5], while another focuses
on the optimized placement of plug-in hybrid electric vehicles
(PHEVs) to improve reliability [2]. Resilience in AC/DC hybrid
microgrids is further strengthened through load shedding and
distributed generation control [18]. Protection and safety in
microgrids are addressed through innovative methods, including
scalable, topology-agnostic protection schemes for inverter-based
resource-heavy microgrids, which focus on stable reconfiguration
post-fault clearance [3]. Hazard matrices and risk assessments are
also employed to enhance resilience, supported by independent
protection layers [19]. Additionally, economic strategies, such
as consumer pricing and Nested Restoration Decision Systems
(NRDS), are utilized to optimize power-sharing and maximize
social welfare during islanding [20, 21]. Emerging technologies like
quantum sensors demonstrate potential for improving parameter
estimation and system adaptability in microgrid operations. A
study evaluating the performance of quantum sensors with
qubits indicates enhanced responsiveness and fault management
capabilities [22].

While existing research addresses many aspects of microgrid
operation, gaps remain in adaptive islanding detection methods that
integrate advanced sensing, deep learning, fuzzy logic, and real-
time analytics. This article aims to fill these gaps by proposing a
comprehensive approach to islanding detection, targeting enhanced
stability, accuracy, and resilience in modern microgrid systems.

1.3. Gap challenge
While significant progress has been made in enhancing

microgrid functionality, existing islanding detection methods still
face critical limitations. Conventional algorithms, often static and
predefined, fail to adapt to the dynamic and evolving conditions
of modern microgrids, particularly under islanded operation. These
challenges are amplified by the integration of renewable energy
sources, which introduce variability and uncertainty, and inverter-
based distributed generation, which alters system dynamics.
Furthermore, traditional methods frequently lack robustness in
detecting islanding events across diverse scenarios, including
extreme events or low-probability, high-impact disturbances. This
underscores a pressing need for intelligent, adaptive techniques
capable of real-time decision-making and accurate fault detection
in complex environments. Advanced methodologies that integrate
deep learning, fuzzy logic, and stochastic optimization remain
underexplored in the context of microgrid islanding detection
and management. Addressing this gap is critical for ensuring
operational stability, enhancing resilience, and achieving optimal
performance in modern microgrids.

1.4. Main contributions
This paper introduces an adaptive islanding detection method

that combines deep learning and fuzzy logic to enhance the
stability and accuracy of islanding detection in microgrids. By
integrating the predictive capabilities of deep learning with the
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Fig 1. Structure of the IES [1]. 
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flexibility of fuzzy logic, the proposed approach enables the system
to learn from historical data while adapting to changing conditions
in real time. This hybrid method aims to address the limitations of
traditional techniques, particularly in systems with high renewable
energy penetration and dynamic operational challenges. The main
contributions are as follows:

1) Development of an adaptive islanding detection framework
o A novel hybrid framework combines deep learning models
(e.g., CNNs and LSTMs) with fuzzy logic, improving
detection accuracy, reducing the non-detection zone, and
enhancing system resilience.

2) Evaluation and validation through simulations
o Comprehensive simulations assess the framework’s
performance against state-of-the-art islanding detection
techniques. Results demonstrate its superior reliability and
adaptability, particularly in scenarios involving high renewable
energy integration and fluctuating load conditions.

3) Enhanced stability and accuracy in microgrids
o The proposed approach improves voltage and frequency
stability, providing robust support during islanding events
and minimizing disruptions to critical system operations.
Limitations and challenges

While the proposed method shows significant improvements
over traditional islanding detection techniques, it also has some
limitations:

1) Computational complexity
o The integration of deep learning and fuzzy logic increases
computational demands, which may require advanced
hardware or optimization techniques for real-time application
in large-scale microgrids.

2) Reliance on high-quality data
o The effectiveness of deep learning models depends on
the availability of sufficient, high-quality historical data.
Microgrids with limited data or inconsistent measurements
may experience reduced performance.

3) Adaptability in extreme scenarios
o While the method demonstrates strong performance under
most conditions, its adaptability to extreme scenarios, such
as cyber-attacks or rare high-impact events, requires further
investigation.

Despite these limitations, the proposed framework represents a
significant step forward in achieving more reliable and adaptive
microgrid systems. This research paves the way for future
improvements in islanding detection and offers a robust foundation
for addressing the evolving challenges of modern power systems.

1.5. Paper organization
The remainder of this paper is structured as follows. Section

2 describes the proposed islanding detection method in detail,
elaborating on the underlying algorithms and the hybrid framework
combining deep learning and fuzzy logic. Section 3 outlines the
experimental setup, presents the simulation results, and analyzes
the performance of the proposed method in comparison to state-
of-the-art techniques. Finally, Section 4 summarizes the findings
and discusses potential directions for future research, highlighting
areas for further refinement and application.

2. METHODOLOGY
This section presents the methodology for adaptive islanding

detection in microgrids, utilizing a combination of deep learning
(LSTM network) and fuzzy logic. The system is designed to
accurately and reliably detect islanding events by analyzing diverse
operational data and learning temporal dependencies.

2.1. Overview of islanding detection process
The islanding detection methodology follows a systematic

approach involving several key stages: data acquisition,
preprocessing, feature extraction, training of the LSTM network,
prediction and classification, fuzzy logic-based decision-making,
and final decision integration. To help visualize the entire process,
Fig. 2 illustrates a flowchart that outlines the steps involved in the
islanding detection system.

2.2. Mathematical modeling of the microgrid system
To support the data-driven approach with a solid physical

foundation, the dynamic behavior of the microgrid under normal and
islanded conditions is modeled using key system equations. These
equations describe the power balance, frequency dynamics, and
voltage deviations during disturbances, providing a comprehensive
understanding of the system’s response.
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Table 1. Key data parameters for islanding detection in microgrids.

Voltage measurements Includes bus voltage levels and fluctuations
Frequency measurements System frequency and the rate of change of frequency

Power flow data Active and reactive power across different parts of the microgrid
Current measurements Line currents and current harmonics
Phase angle differences Between buses and between generation sources and loads

Power quality indicators Total harmonic distortion and power factor
Operational status data Breaker status and generator operational state

Environmental and external data Weather conditions and time of day
Historical data Previous islanding events and normal operation

Sensor data From smart meters and phasor measurement units

 

Figure 2.  Adaptive Island Detection steps. 
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Fig. 2. Adaptive island detection steps.

A) Power balance equation
The fundamental power balance in the microgrid is represented

as:

Pgen − Pload − Pload = 0 (1)

where:
Pgen: Total generated power from distributed energy resources

(DERs)
Pload: Total load demand
Ploss: Total power losses in the system
This equation ensures that the generation matches the load and

system losses under both normal and islanded conditions.

2.3. Frequency deviation dynamics

The system’s frequency response to disturbances, such as sudden
disconnection from the main grid, is modeled by:

d∆f

dt
=

1

2H
(Pgen − Pload −D∆f) (2)

where:
H: Inertia constant of the microgrid system
D: Damping coefficient
∆F : Frequency deviation from the nominal frequency
This dynamic equation captures how frequency deviates during

islanding events due to an imbalance between generation and load.

A) Voltage deviation equation
Voltage deviations resulting from reactive power imbalance are

modeled as:

∆V =
Qgen −Qload

V X
(3)

where:
Qgen: Generated reactive power
Qload: Load reactive power
V : Bus voltage magnitude
X: System reactance
This equation describes how voltage levels fluctuate when the

system transitions into islanded mode.
B) Rate of Change of Frequency (RoCoF)

The rate of change of frequency is a critical indicator for
detecting islanding and is calculated as:

RoCoF =
df

dt
(4)

A significant RoCoF value indicates sudden disturbances, often
associated with islanding events.

C) Power flow equations
The active (P ) and reactive (Q) power flows between buses are

defined by the standard AC power flow equations:

Pi =

N∑
j=1

ViVj (Gij cos θij +Bij sin θij) (5)

Qi =

N∑
j=1

ViVj (Gij sin θij −Bij cos θij) (6)

where:
Vi, Vj : Voltage magnitudes at buses i and j
Gij , Bij : Conductance and susceptance between buses i and j
Qij : Phase angle difference between buses i and j
These equations simulate real-time variations in power flow,

reflecting the dynamic conditions during islanding.

2.4. Deep learning method for islanding detection
In this study, a Spatio-Temporal Long Short-Term Memory

(STLM) network is employed for adaptive islanding detection
in microgrids. The STLM network is designed to effectively
capture both spatial and temporal dependencies within the
system’s operational data, enabling accurate detection of islanding
conditions. The spatio-temporal modeling capability allows the
network to analyze sequential data patterns and system dynamics
that traditional methods may overlook.

The STLM model processes time-series voltage and frequency
data collected from the microgrid, learning to distinguish between
normal operational states and islanding events. By leveraging its
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Fig. 3. Architecture of LSTM-based data analysis integrated with fuzzy logic for islanding detection.

memory units and gated mechanisms, the STLM network adapts
to varying load conditions and uncertainties, enhancing detection
accuracy and robustness. The network is trained using labeled
datasets that include both islanding and non-islanding scenarios.
Its adaptive learning framework allows continuous refinement of
detection performance under different system disturbances, making
it suitable for real-time monitoring applications.

This deep learning approach addresses the limitations of
conventional islanding detection techniques by providing a data-
driven, adaptive solution capable of responding to complex system
behaviors.

2.5. Structure and design process of the STLM network and
fuzzy logic controller
The architecture of the proposed Spatio-Temporal Long Short-

Term Memory (STLM) network is specifically designed to model
the dynamic behavior of microgrids under varying operating
conditions. The network consists of multiple layers, including
input, spatio-temporal LSTM processing layers, and fully connected
output layers.

• Input layer: Receives preprocessed voltage and frequency
time-series data.

• Spatio-temporal LSTM layers: Capture temporal dependencies
and spatial relationships in system dynamics.

• Fully connected layers: Map the extracted features to output
classifications, indicating normal operation or islanding
conditions.

Hyperparameters such as the number of LSTM units, learning
rate, and dropout rates were optimized through extensive
experimentation to prevent overfitting and improve generalization.
The network was trained using a backpropagation-through-time
algorithm and optimized with the Adam optimizer to ensure
efficient convergence.

To enhance decision-making reliability, a Fuzzy Logic Controller
(FLC) is integrated with the STLM output. The FLC processes
the probabilistic output of the STLM network and refines it using
fuzzy inference rules. This integration provides an additional layer
of interpretability and adaptability, ensuring accurate islanding
detection even under noisy or uncertain conditions.

The design process involved:

1) STLM network configuration: Selection of LSTM cell
parameters, activation functions, and network depth.

2) Training and validation: Model training with diverse
operational datasets to ensure robustness.

3) Fuzzy rule base development: Formulation of fuzzy rules and
membership functions to interpret STLM outputs.

4) System integration: Seamless integration of the STLM model
and FLC into the microgrid control system for real-time
detection.

This combined STLM-FLC framework enhances detection
performance by leveraging the learning capacity of deep networks
and the reasoning ability of fuzzy logic, resulting in a highly
accurate and adaptive islanding detection system.

2.6. Data acquisition, preprocessing, and feature extraction

The process begins with data acquisition from microgrid sensors,
including measurements of voltage, frequency, current, power flow,
and environmental conditions like temperature and wind speed.
These data points form the foundation for islanding detection.
Table 1 lists the key parameters used in this study.

A) Data preprocessing
The collected data undergo preprocessing, which involves noise

removal, handling missing values, and normalization to ensure
consistent scaling across all data streams. The normalization
process is defined as:

xnorm =
x−min(x)

max(x)−min(x)
(7)

where x represents the raw data, and max(x) and min(x) denote
the maximum and minimum values, respectively. Normalization,
as shown in Eq. (1), ensures consistent scaling across all data
streams [23, 24].

B) Feature extraction
Key features relevant for islanding detection are extracted,

including the rate of change of frequency (RoCoF), voltage
deviations, and harmonic distortion. The feature vector F is
formulated as:
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F = {f1, f2, . . . , fn} (8)

where f1 = ∆f
∆t

and f2 = |Vbus − Vnom|. These features allow
the identification of significant changes in system behavior, such
as those during islanding events [25].

2.7. LSTM network training and classification

The core of the detection methodology is an LSTM network,
which captures temporal dependencies in the data. The LSTM
processes the input features over time, and its hidden states are
updated as follows:

ht = f(W · xt + U · ht−1 + b) (9)

where ht is the hidden state at time t, and f is the
activation function. The LSTM network outputs a sequence of
predictions, which are then combined with fuzzy logic for enhanced
decision-making.

A) Training the LSTM network
The LSTM network is trained using a diverse dataset generated

from simulated microgrid conditions. This data includes various
operational states, such as voltage fluctuations, frequency variations,
and power flow disturbances. The dataset is designed to ensure
comprehensive coverage of normal and islanding conditions,
improving the LSTM’s generalization ability. Fig. 3 illustrates the
microgrid used for generating the training data [26].

B) Prediction and output
The LSTM network processes the feature vector F over time

and predicts the likelihood of an islanding event occurring.
This prediction is further refined using fuzzy logic to handle
uncertainties and improve decision accuracy.

2.8. Fuzzy logic-based decision making

Fuzzy logic is used to handle the uncertainty inherent in
islanding detection, enabling the system to make flexible and
dynamic decisions based on the LSTM output. The LSTM network
outputs are fuzzified into linguistic variables such as “low,”
“medium,” and “high,” using membership functions:

µA(x) =


0 if x 6 a,
x−a
b−a

if a < x 6 b,
1 if x > b,

(10)

where a and b define the fuzzy set boundaries. These fuzzy
values are then used by the fuzzy inference system to generate a
crisp decision [23], [25].

A) Rule-based inference
Fuzzy rules are applied to evaluate the membership values and

make decisions about the likelihood of islanding. For example, a
rule might be:

If RoCoF is high and voltage deviation is significant, then
islanding is likely.

B) Defuzzification
The output of the fuzzy inference system is defuzzified to obtain

a crisp value y that guides the final decision. The defuzzification
process is formulated as:

y =

∑
µi · xi∑
µi

(11)

2.9. Integration and final decision
The outputs from both the LSTM network and the fuzzy logic

system are combined to form a final prediction. The integrated
prediction Pfinal is calculated as:

Pfinal = αPLSTM + βPFuzzy (12)

where PLSTM and PFuzzy represent the outputs from the LSTM
and fuzzy logic systems, respectively. α and β are the weighting
factors, with α+ β = 1.

A) Threshold decision rule
A threshold rule is applied to the integrated prediction to

determine whether an islanding event has occurred.

2.10. Data generation for LSTM training
To train the LSTM network effectively, diverse data from the

microgrid system is generated, as shown in Fig. 3. The data
includes direct measurements from the power system, such as
voltage and frequency, as well as simulated sensor data that reflects
the behavior of microgrid components (e.g., distributed generation
units, loads, and switching devices).

A) Data repetition and coverage
The training data is systematically repeated to cover all potential

operational states, including both normal and islanding conditions.
This repetition ensures that the LSTM network learns to recognize
a wide range of patterns, improving its ability to generalize across
varying conditions [24], [26].

B) Simulated sensor data
In addition to the primary electrical parameters, simulated

data from sensors monitoring environmental conditions (e.g., wind
speed, temperature) and operational statuses (e.g., equipment state)
are included to provide a holistic view of the microgrid’s behavior.

2.11. Simulink model for data generation
The data generation process is facilitated by the Simulink model

illustrated in Fig. 4, which simulates the behavior of the microgrid
under different operating conditions. The model ensures realistic
data for training the islanding detection system and helps refine its
accuracy by simulating various scenarios, including disturbances
and changes in load or generation.

A) Dynamic decision making
The combination of LSTM data analysis and fuzzy logic-

based decision-making allows for dynamic, real-time responses
to changes in network conditions. The Simulink model aids
in generating data that supports this adaptive detection process,
ensuring accurate identification of islanding events.

2.12. Objective function and constraints
The optimization process is guided by an objective function that

minimizes the detection error while satisfying key constraints.
A) Objective function

The detection error E is minimized as follows:

E =
1

N

N∑
i=1

(yi − ŷi)2 + λR (13)

where yi and ŷi are the actual and predicted outputs, respectively,
and R is the regularization term with weight λ.

B) Temporal consistency constraint
The temporal consistency of the data is preserved by ensuring:

|xt − xt−1| 6 δ (14)

where δ is a small threshold.
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training the islanding detection system and helps refine its accuracy by simulating various scenarios, 

including disturbances and changes in load or generation. 

 

 

Figure 4. Simulink model for data generation [27]. 

A) Dynamic decision making 

Fig. 4. Simulink model for data generation [27].

C) Membership function constraints
Fuzzy membership functions satisfy the constraint:

n∑
i=1

µi(x) = 1, ∀x ∈ X (15)

This methodology ensures that the islanding detection system is
not only accurate and reliable but also adaptive to the dynamic
conditions of real-world microgrids. By integrating advanced
machine learning with fuzzy decision-making, the system provides
a comprehensive solution for islanding detection in complex power
systems.

3. SIMULATION RESULTS

To thoroughly evaluate the performance of the proposed
method, the architecture depicted in Fig. 3 was implemented.
This framework integrates LSTM-based data analysis with fuzzy
logic for adaptive islanding detection. The LSTM network extracts
features from temporal data streams, which are subsequently
processed by the fuzzy logic system for accurate decision-making.
This dual-layered approach enhances the method’s ability to adapt
to diverse and dynamic microgrid conditions. For data generation,
the Simulink model shown in Fig. 4 was utilized. This model
simulates the dynamic behavior of a microgrid under various
operating scenarios, including normal grid-connected states, load
variations, generation fluctuations, and islanding events. It provides
a realistic and comprehensive dataset, capturing critical parameters
such as voltage and frequency deviations, power flows, and
distributed generation responses under both typical and edge-
case conditions. The simulation environment also incorporated
disturbances and uncertainties common in microgrids, such as
equipment failures, environmental variations, and intermittent
renewable energy sources. This ensured the method’s robustness

in handling real-world challenges. Fig. 5 illustrates the simulated
example data for various key parameters of the microgrid system.
The data includes voltage and frequency measurements, active
and reactive power flows, current measurements, phase angle
differences, power quality indicators such as THD and power
factor, as well as operational status data for breakers and
generators. Additionally, the figure presents environmental data
like temperature and humidity, alongside sensor data from phasor
measurement units (PMUs). This comprehensive visualization
offers a detailed overview of the dynamic behavior and monitoring
of the microgrid under typical operating conditions, providing a
foundation for further analysis and model validation.

 

Figure 5. Sample data visualization of key microgrid parameters . 

 

 

3.1 Performance evaluation 

 

The proposed method's performance was assessed using key metrics such as detection speed, accuracy, 

false alarm rate, and sensitivity to various islanding scenarios. Results were benchmarked against three 

methods commonly used in islanding detection: 

A) Stochastic approach [6] 

This method evaluates self-healing capabilities using a stochastic framework for active AC/DC 

hybrid microgrids. Its strength lies in managing uncertainties in system dynamics, but its 

computational intensity can limit real-time applicability. 

B) Hierarchical control with IoT integration [28] 

This method combines IoT technologies and machine learning for adaptive islanding detection. It 

emphasizes scalability and hierarchical management but is less effective in handling rapid 

transient events. 

C) Rule-based conventional method [29] 

A traditional approach that relies on predefined thresholds for voltage and frequency deviations. 

While computationally simple, it struggles with false positives and lacks adaptability to dynamic 

conditions. 

Table 2 summarizes the key features and performance metrics of these methods, highlighting the 

advantages of the proposed method, particularly its high accuracy (>95%) and low error rate (<5%). The 

proposed method’s integration of deep learning and fuzzy logic enables real-time analysis and adaptive 

Fig. 5. Sample data visualization of key microgrid parameters.

3.1. Performance evaluation
The proposed method’s performance was assessed using key

metrics such as detection speed, accuracy, false alarm rate,
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Table 2. Summarizes the key features and performance metrics of these methods.

Method Key features Detection accuracy Error rate
Proposed method Deep learning for real-time analysis; fuzzy logic for adaptive control >95% <5%

Stochastic approach Manages uncertainties; computationally intensive 88% 12%
Hierarchical control with IoT Scalable; less effective with rapid transients 85% 15%

Rule-based conventional method Simple thresholds; prone to false positives; lacks adaptability 78% 22%

and sensitivity to various islanding scenarios. Results were
benchmarked against three methods commonly used in islanding
detection:

A) Stochastic approach [6]
This method evaluates self-healing capabilities using a stochastic

framework for active AC/DC hybrid microgrids. Its strength lies in
managing uncertainties in system dynamics, but its computational
intensity can limit real-time applicability.

B) Hierarchical control with IoT integration [28]
This method combines IoT technologies and machine learning

for adaptive islanding detection. It emphasizes scalability and
hierarchical management but is less effective in handling rapid
transient events.

C) Rule-based conventional method [29]
A traditional approach that relies on predefined thresholds for

voltage and frequency deviations. While computationally simple,
it struggles with false positives and lacks adaptability to dynamic
conditions.

Table 2 summarizes the key features and performance metrics
of these methods, highlighting the advantages of the proposed
method, particularly its high accuracy (>95%) and low error
rate (<5%). The proposed method’s integration of deep learning
and fuzzy logic enables real-time analysis and adaptive control,
outperforming the other methods in detection reliability and
adaptability across various islanding scenarios.

control, outperforming the other methods in detection reliability and adaptability across various islanding 

scenarios. 

Table 2- Summarizes the key features and performance metrics of these methods. 

Method Key features 
Detection 

accuracy 

Error 

rate 

Proposed method 
Deep learning for real-time analysis; fuzzy logic 

for adaptive control 
>95% <5% 

Stochastic approach 
Manages uncertainties; computationally 

intensive 
~88% ~12% 

Hierarchical control 

with IoT 
Scalable; less effective with rapid transients ~85% ~15% 

Rule-based 

conventional method 

Simple thresholds; prone to false positives; lacks 

adaptability 
~78% ~22% 

 

 

 

 

3.2 Comparison of methods 

Fig. 6 compares the islanding detection accuracy of the proposed method against the hierarchical control 

and rule-based methods. The blue line (proposed method) demonstrates consistently higher accuracy over 

a 24-hour period, surpassing the hierarchical control (red line) and rule-based method (green line). This is 

particularly evident during periods of variable load or generation, where traditional methods tend to falter.

 

Fig. 6. Fuzzy logic input representation for microgrid parameters.

Figure 6. Fuzzy logic input representation for microgrid parameters. 

The proposed method’s superior accuracy stems from the integration of deep learning for real-time data 

analysis and fuzzy logic for adaptive decision-making. The neural network effectively extracts relevant 

features from diverse data streams, while the fuzzy logic system dynamically interprets these features to 

make informed decisions. This dual-layered approach enhances the system's ability to adapt to 

fluctuations in microgrid conditions. 

Figure 7 compares islanding detection error rates over a 24-hour period for the proposed adaptive method 

(blue graph) and the traditional method (red graph). The horizontal axis represents hours of the day and 

night, while the vertical axis shows detection error rates. The proposed method consistently achieves lower 

error rates at all times, with notable improvements during peak hours and transitional periods, such as early 

morning and evening, when load and generation variations are most pronounced. In contrast, the traditional 

method exhibits higher error rates, especially during these critical periods, reflecting its limitations in 

adapting to dynamic microgrid conditions. 

The enhanced performance of the proposed method is attributed to its adaptive design, which integrates 

deep learning and fuzzy logic to address the complexities of microgrid operations. Deep learning analyzes 

real-time patterns for precise scenario classification, while fuzzy logic dynamically adjusts thresholds to 

handle uncertainties and variability. This synergy ensures reliable detection even during high variability 

periods, as evidenced by the blue graph’s consistently lower error rates. These findings highlight the 

robustness and precision of the proposed method, confirming its potential for improving islanding detection 

in modern microgrids. 

 

 

Figure 7. Island detection error rates comparison over a 24-hour period. 

 

Fig. 7. Island detection error rates comparison over a 24-hour period.

 

Figure 8. Island detection accuracy comparison over a 24-hour period. 

3.3 Data Integration and Decision-Making 

The comprehensive dataset generated during simulations was processed by the neural network, as shown 

in Fig. 6, to compute precise input values for the fuzzy logic algorithm. By leveraging fuzzy sets (e.g., 

"Low," "Medium," "High"), the system adapts to changes in microgrid conditions, ensuring accurate 

islanding detection. This adaptability is particularly beneficial in handling variability and uncertainty, 

which are inherent in real-world scenarios. 

3.4 Summary of Findings 

The proposed method demonstrates clear advantages over the compared methods, Especially in terms of 
accuracy and robustness, as we see in Figure 8. It achieves a detection accuracy of over 95% in most 

scenarios, compared to 88% for the stochastic approach, 85% for the hierarchical control method, and 

78% for the rule-based approach. Its error rate remains consistently below 5%, highlighting its reliability 

in reducing false positives and negatives. Additionally, the method’s ability to dynamically adapt to 

fluctuating operational conditions ensures its practical applicability in diverse microgrid scenarios. 

However, the proposed approach also has certain limitations. Its reliance on deep learning introduces 

computational complexity and a need for sufficient training data, which may pose challenges in real-time 

applications with constrained resources. Additionally, the method's sensitivity to the quality of input data 

means that inaccuracies or noise in sensor readings could potentially impact performance. 

Despite these limitations, the results confirm that the proposed approach offers a flexible and reliable 

solution for islanding detection, while recognizing the need for further optimization to address 

computational demands and data quality issues. 

 

4. Conclusion 

This study introduces an adaptive islanding detection methodology for microgrids, integrating the 

temporal modeling strength of LSTM networks with the flexibility of fuzzy logic-based decision-making. 

Fig. 8. Island detection accuracy comparison over a 24-hour period.

3.2. Comparison of methods
Fig. 6 compares the islanding detection accuracy of the proposed

method against the hierarchical control and rule-based methods.
The blue line (proposed method) demonstrates consistently higher
accuracy over a 24-hour period, surpassing the hierarchical control
(red line) and rule-based method (green line). This is particularly
evident during periods of variable load or generation, where
traditional methods tend to falter.

The proposed method’s superior accuracy stems from the
integration of deep learning for real-time data analysis and fuzzy
logic for adaptive decision-making. The neural network effectively
extracts relevant features from diverse data streams, while the
fuzzy logic system dynamically interprets these features to make
informed decisions. This dual-layered approach enhances the
system’s ability to adapt to fluctuations in microgrid conditions.

Fig. 7 compares islanding detection error rates over a 24-hour
period for the proposed adaptive method (blue graph) and the
traditional method (red graph). The horizontal axis represents
hours of the day and night, while the vertical axis shows detection
error rates. The proposed method consistently achieves lower error
rates at all times, with notable improvements during peak hours
and transitional periods, such as early morning and evening, when
load and generation variations are most pronounced. In contrast,
the traditional method exhibits higher error rates, especially during
these critical periods, reflecting its limitations in adapting to
dynamic microgrid conditions.

The enhanced performance of the proposed method is attributed
to its adaptive design, which integrates deep learning and
fuzzy logic to address the complexities of microgrid operations.
Deep learning analyzes real-time patterns for precise scenario
classification, while fuzzy logic dynamically adjusts thresholds to
handle uncertainties and variability. This synergy ensures reliable
detection even during high variability periods, as evidenced by the
blue graph’s consistently lower error rates. These findings highlight
the robustness and precision of the proposed method, confirming its
potential for improving islanding detection in modern microgrids.

3.3. Data integration and decision-making
The comprehensive dataset generated during simulations was

processed by the neural network, as shown in Fig. 6, to compute
precise input values for the fuzzy logic algorithm. By leveraging
fuzzy sets (e.g., "Low," "Medium," "High"), the system adapts
to changes in microgrid conditions, ensuring accurate islanding
detection. This adaptability is particularly beneficial in handling
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variability and uncertainty, which are inherent in real-world
scenarios.

3.4. Summary of findings
The proposed method demonstrates clear advantages over the

compared methods, Especially in terms of accuracy and robustness,
as we see in Fig. 8. It achieves a detection accuracy of over
95% in most scenarios, compared to 88% for the stochastic
approach, 85% for the hierarchical control method, and 78%
for the rule-based approach. Its error rate remains consistently
below 5%, highlighting its reliability in reducing false positives
and negatives. Additionally, the method’s ability to dynamically
adapt to fluctuating operational conditions ensures its practical
applicability in diverse microgrid scenarios. However, the proposed
approach also has certain limitations. Its reliance on deep learning
introduces computational complexity and a need for sufficient
training data, which may pose challenges in real-time applications
with constrained resources. Additionally, the method’s sensitivity
to the quality of input data means that inaccuracies or noise in
sensor readings could potentially impact performance.

Despite these limitations, the results confirm that the proposed
approach offers a flexible and reliable solution for islanding
detection, while recognizing the need for further optimization to
address computational demands and data quality issues.

4. CONCLUSION

This study introduces an adaptive islanding detection
methodology for microgrids, integrating the temporal modeling
strength of LSTM networks with the flexibility of fuzzy logic-based
decision-making. The proposed system effectively addresses the
limitations of conventional methods, such as low accuracy and
high false alarm rates, by leveraging advanced machine learning
and adaptive control techniques. The method was evaluated
under diverse operational scenarios and demonstrated a detection
accuracy exceeding 95%, significantly outperforming benchmark
methods, including the stochastic approach (88%), hierarchical
IoT-based control (85%), and traditional rule-based techniques
(78%). Furthermore, the proposed system achieved a consistently
low error rate of less than 5%, compared to 12% for the
stochastic approach and 15% for hierarchical control methods.
These results underscore its robustness in reducing false positives
and negatives across dynamic microgrid conditions, including
scenarios with rapid transients and fluctuating loads. The system’s
adaptability to operational and environmental uncertainties is
another key strength, driven by the dual-layered approach of
LSTM-based feature extraction and fuzzy logic interpretation. For
example, the system maintained stable performance even during
peak operational periods, where traditional methods struggled with
increased error rates. This adaptability highlights its suitability
for real-world applications in modern microgrids characterized
by high penetration of renewable energy sources. While highly
effective, the proposed method does have a few limitations.
The reliance on deep learning introduces some computational
overhead, which may require optimization for deployment in
resource-constrained microgrids. Additionally, its performance can
be influenced by the quality of training data, particularly in highly
variable environments. Future research could explore lightweight
model architectures and advanced preprocessing techniques to
further enhance the system’s efficiency and scalability.

In conclusion, this study demonstrates the potential of combining
LSTM networks and fuzzy logic to create a highly accurate, reliable,
and adaptive solution for islanding detection in microgrids. By
significantly improving upon traditional approaches, the proposed
method sets a benchmark for intelligent microgrid management
and paves the way for future research aimed at optimizing energy
system resilience and efficiency.
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