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Abstract. In this paper we study the complex Lagrange space with a spe-

cial (γ, β)−metric and determined the fundamental metric tensor, its inverse

Euler-Lagrange equation, complex semi-spray coefficient, complex non-linear

connection as well as Chern-Lagrange connections for Lagrange space with the

mentioned special metric.
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1. Introduction

Finsler space with (α, β) metric were studied by several geometers such as

Hashiguchi, M. Matsumoto [7] and Kitayama [8]. The notion of (α, β) metric
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was generalised by to a space is called Lagrange space and by the authors Miron

[10], Nicolaescu [1, 2] and Suresh K. Shukla and P. N. Pandey [13].

In 2011 Pandey and Chaubey [14] discussed Lagranges Spaces with (γ, β)

and obtained several interesting result. In 2009 N. Aldea and G. Munteanu [9]

introduced the notion of Complex Finsler space with (α, β) metric. In 2019,

Sweta Kumari and P. N. Pandey worked on complex Randers space [12]. G.

Munteanu [6] obtained various important result of complex Lagrange space [4].

Sweta Kumari and P. N. Pandey [11] studied the complex Lagrange space with

(γ, β) metric in 2023.

In present paper, we studied the complex Lagrange space with a special

(γ, β) metric

L = (γ + |β|)2, (1.1)

where

γ = 3

√
aīj̄k̄η

iη̄j η̄k, (1.2)

|β(z, η)| =
√
β(z, η)β(z, η) with β(z, η) = bi(z)η

i (1.3)

γ is a cubic root metric and β is a differential (1, 0)-form and determined the

fundamental metric tensor, its inverse Euler-Lagrange equations, complex semi-

spray coefficient, Complex non-linear connection is as well as Chern-Lagrange

connections for complex Lagrange space with a special (γ, β) metric (1.1).

2. Preliminaries

Let M be a complex manifold of dimension n. Let (zk), k = 1, n be local

coordinates in a chart (U, zk) and T ′M be its holomorphic tangent bundle.

T ′M has a natural structure of complex manifold such that (zk, ηk) are local

coordinates in a chart on U belongs to T ′M . A complex Lagrangian L [7] on

T ′M is a real valued smooth function L : T ′M → R

gij =
∂2

∂ηi∂ηj̄
L (2.1)

is a non-degenerated metric and resolve a Hermitian metric structure. A com-

plex Lagrange space is a pair Ln = {M,L(z, η)}. The presence of a complex

Lagrange function L concern the study of the variational problems on curves.

Let c : [0, 1] → M . be holomorphic curve and L(z, η) be the complex La-

grangian on T ′M . The Euler-Lagrange equations for a geodesic are

Ei(L) ≡ ∂

∂zi
L− d

dt

(
∂

∂ηi
L

)
= 0. (2.2)

The coefficients of the complex semi-spray S of a complex Lagrange space

Ln = {M,L(z, η)} are

Gk(z, η) =
1

2
gīk
(

∂2

∂ηj∂ηī
L

)
ηj . (2.3)
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The Cartan-connection [6] of a complex Lagrange space Ln = {M,L(z, η)} is

C︷︸︸︷
Nk
j =

∂

∂ηj
Gi. (2.4)

And the Chern-Lagrange connection

CL︷︸︸︷
Nk
j [6] given by

CL︷︸︸︷
Nk
j = gīk

∂2

∂ηj∂ηī
L. (2.5)

And above connections are associated by

C︷︸︸︷
Nk
j =

1

2

∂

∂ηj

CL︷︸︸︷
Nk

0 . (2.6)

3. Fundamental Metric Tensor

Differentiating partially equation (1.2) with respect to ηl and η̄m and using

the symmetry of aīj̄k̄ in its indices, we obtain

∂

∂ηl
γ =

al
3γ2

, (3.1)

∂

∂ηm̄
γ =

2am̄
3γ2

, (3.2)

where al = aīj̄k̄η̄
j η̄k and am̄ = aīj̄m̄η

iη̄j .

Now, differentiating partially equation (3.1) with respect to η̄p, we have

∂2

∂ηl∂ηp̄
γ =

2alp̄

3γ2
− 4alp̄

9γ5
(3.3)

where alp̄ = alp̄k̄η̄k. Differentiating partially equation (1.3) with respect to ηl

and η̄m we get,

∂

∂ηl
|β| = β̄bl

2|β|
(3.4)

∂

∂ηm̄
|β| = βbm̄

2|β|
. (3.5)

Again differentiating partially equation (3.1) with respect to η̄p, we find

∂2

∂ηl∂ηp̄
|β| = blbP̄

4|β|
. (3.6)

Then, we have the following.

Proposition 3.1. In a complex Lagrange space with a special (γ, β) metric

satisfy the equations (3.1), (3.2), (3.3), (3.4), (3.5)and(3.6).
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The moments of Lagrangian L = (γ + |β|)2 are defined as

pi =
1

2

∂

∂ηi
(γ + |β|)2.

By using the equations (3.1) and (3.4), we get

pi =
(γ + |β|)

3γ2
ai +

(γ + |β|)β̄
2|β|

bi. (3.7)

Theorem 3.2. In a complex Lagrange space Ln with a special (γ, β), the mo-

ments of Lagrangian L = (γ + |β|)2 are as follows

pi = ρai + ρ1bi,

where

ρ =
(γ + |β|)

3γ2
(3.8)

ρ1 =
(γ + |β|)β̄

2|β|
. (3.9)

Here, the scalars ρ and ρ1 are called the principal invariants of the space Ln.

Differentiating partially equations (3.8) and (3.9) with respect to ηj and η̄l we

get,
∂

∂ηj
ρ =

1

9
γ−4{1− 2γ−1(γ + |β|)}aj +

1

6
β̄|β|−1γ−2bj .

∂

∂ηj̄
ρ =

2

9
γ−4{1− 2γ−1(γ + |β|)}aj̄ +

1

6
β̄|β|−1γ−2bj̄ .

∂

∂ηj
ρ1 =

1

6
β̄|β|−1γ−2aj +

1

4
β̄|β|−1{1 + |β|−1(γ + |β|)}bj .

∂

∂ηj̄
ρ1 =

1

3
β̄|β|−1γ−2aj̄ +

1

4
|β|−1{1 + |β|−1(γ + |β|)}bj̄ .

Thus, we get

Theorem 3.3. The derivatives of the principal invariants of a complex La-

grange space Ln with a special (γ, β) metric are given by

∂

∂ηj
ρ = ρ−2aj + β̄β−1ρ−1bj . (3.10)

∂

∂ηj̄
ρ = ρ−2aj̄ + ρ−1bj̄ . (3.11)

∂

∂ηj
ρ1 = β̄β−1(ρ−1aj + ρ0bj). (3.12)

∂

∂ηj̄
ρ1 = 2β̄β−1(ρ−1aj̄ + ρ0bj̄) (3.13)

where

ρ−2 =
1

9
γ−4

{
1− 2γ−1(γ + |β|)

}
. (3.14)

ρ−1 =
1

6
β|β|−1γ−2. (3.15)
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ρ0 =
1

4

{
1 + |β|−1(γ + |β|)

}
. (3.16)

The energy of the complex Lagrangian L is given by

EL = ηi
∂

∂ηj
L− L. (3.17)

Put L = (γ + |β|)2 in equation (3.17), we get

EL = ηi
{ ∂

∂γ
(γ + |β|)2 ∂

∂ηi
γ +

∂

∂|β|
(γ + |β|)2 ∂

∂ηi
|β|
}
− (γ + |β|)2. (3.18)

We know that γ and |β| positively homogeneous of degree 1 in ηi, therefore by

Euler’s theorem on homogeneous functions, we come to a result

ηi
∂

∂ηi
γ =

γ

3
(3.19)

ηi
∂

∂ηi
|β| = |β|

2
. (3.20)

With the help of equations (3.19) and (3.20), the equation (3.18) becomes

EL =
2γ

3
(γ + |β|) + |β|(γ + |β|)− (γ + |β|)2 (3.21)

EL = −γ
3

(γ + |β|). (3.22)

This leads to

Theorem 3.4. The energy of the Lagrangian L in a complex Lagrange space

with a special (γ, β) metric is given by (3.22).

Now, we find the fundamental metric tensor gij(z, η) of a complex Lagrange

space with a special (γ, β) metric. By using equation (1.1) in equation (2.1),

we get

gij =
2(γ + |β|)

3γ2
aij +

{ 2

9γ4
− 4(γ + |β|)

9γ5

}
aiaj̄

+

(
β̄

3γ2|β|
aj̄bi +

β

6γ2|β|
aibj̄

)
+
{ ββ̄

4|β|2
+

(γ + |β|)
4|β|

}
.

(3.23)

With the help of equations (3.8), (3.14), (3.15) and (3.16) the equation (3.23)

becomes

gij = 2ρaij + ρ−2aiaj̄ + β−1ρ−1(2β̄aj̄bi + βaibj̄) + ρ0bibj̄ . (3.24)

A normal calculation shows that

(2β̄aj̄bi + βaibj̄) =
3γ2|β|

2(γ + |β|)2
ηiη̄j −

3γ2|β|
2

bibj̄ −
4|β|
3γ2

aiaj̄ , (3.25)
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where ηi = ∂̇iL and η̄j = ∂̇j̄L. By using equation (3.25), equation (3.24)

becomes

gij = 2ρaij + q−2aiaj̄ + q−1ηiη̄j + q0bibj̄ , (3.26)

where

q−2 = 2

(
ρ−2 −

2|β|ρ−1

3γ2β

)
,

q−1 =
3γ2|β|ρ−1

β(γ + |β|)2

and q0 = ρ0 −
3γ2|β|ρ−1

2β
.

Equation (3.26) can be written as

gij = 2ρaij + cicj̄ , (3.27)

where

ci = r−1ai + r0bi, r0r−1 = q−1, (r−1)2 = q−2, (r0)2 = q0.

Thus, we obtain

Theorem 3.5. The expression for the fundamental metric tensor gij of a com-

plex Lagrange space with a special (γ, β) metric is given by equation (3.27).

With the help of proposition given by D. Bao, S. S. Chern and Z. Shen [3],

the inverse gj̄i of the fundamental metric tensor gij is obtained as

gj̄i =
1

2ρ
(aj̄i − 1

2ρ+ c2
cicj̄) (3.28)

where ci = aj̄icj̄ , c2 = aj̄icicj̄ . This gives:

Theorem 3.6. The inverse gj̄i of the fundamental metric tensor gij of a com-

plex Lagrange space with a special (γ, β)-metric is given by (3.28).

4. Euler-Lagrange Equations

By using equation (1.1), the equation (2.2) becomes

Ei(L) =2(γ + |β|)Ei(γ) + 2(γ + |β|)Ei(|β|)−
(

2
dγ

dt
+ 2

d|β|
dt

)
∂γ

∂ηi

−
(

2
dγ

dt
+ 2

d|β|
dt

)
∂|β|
∂ηi

= 0

(4.1)

and

Ei(γ
3) = 3γ2Ei(γ)− 3

∂γ

∂ηi
dγ2

dt
, (4.2)

Ei(|β|2) = 2|β|Ei(|β|)− 2
∂|β|
∂ηi

d|β|
dt

. (4.3)
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Putting values of Ei(γ) and Ei(|β|) from equations (4.2) and (4.3) in equation

(4.1), we get

Ei(L) ≡2ρEi(γ
3) +

2

β̄
ρ1Ei(|β|2) + 6ρ

∂γ

∂ηi
dγ2

dt
+

4

β̄
ρ1
∂|β|
∂ηi

d|β|
dt

− ∂γ

∂ηi

(
2
dγ

dt
+ 2

d|β|
dt

)
− ∂|β|
∂ηi

(
2
dγ

dt
+ 2

d|β|
dt

)
= 0.

(4.4)

This gives

Theorem 4.1. The Euler-Lagrange equations of a complex Lagrange space

with a special (γ, β)-metric is given by equation (4.4).

For the natural parameterization of the curve c : t ∈ [1, 0]→ zi(t) ∈M with

respect to the cubic-root metric γ, we have

γ

(
z,
dz

dt

)
= 1.

Thus, we find

Theorem 4.2. The natural parameterization, the Euler–Lagrange equations of

a complex Lagrange space with a special (γ, β)-metric is

Ei(L) ≡ 2ρEi(γ
3) +

2

β̄
ρ1Ei(|β|2) +

4

β̄
ρ1
∂|β|
∂ηi

d|β|
dt
− 2

∂γ

∂ηi
d|β|
dt
− 2

∂|β|
∂ηi

d|β|
dt

= 0.

If |β| is constant along the integral curve of the Euler-Lagrange equations

with natural parameterization, then the Euler-Lagrange equations of a complex

Lagrange space with a special (γ, β) metric is given by

Ei(L) ≡ 2ρEi(γ
3) +

2

β̄
ρ1Ei(|β|2) = 0. (4.5)

This gives

Theorem 4.3. If |β| is constant along the integral curve of the Euler-Lagrange

equations with natural parameterization, then the Euler-Lagrange equation of a

complex Lagrange space with a special (γ, β) metric are given by equation (4.5).

5. Complex Canonical Semi-spray

The coefficients of the complex canonical semi-spray of a complex Lagrange

space with a special (γ, β)-metric is given by equation (2.3) together with equa-

tion (1.1).

Differentiating partially equations (1.2) and (1.3) with respect to zh, we get

∂

∂zh
γ = Ahγ

−2 (5.1)

∂

∂zh
|β| = β̄

2|β|
Bh +

β

2|β|
Ch, (5.2)
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where

Ah = ∂h(aijk)ηiη̄j η̄k, Bh = (∂hbi)η
i, Ch = (∂hbj̄)η̄

j .

Putting equations (4.5), (5.1) and (5.2) in

∂

∂ηk
L = Lγ∂kγ + L|β|∂k|β|,

we obtain
∂

∂ηk
(γ + |β|)2 = 6ρAk + 2ρ1(Bk +

β

β̄
Ck). (5.3)

Differentiating partially equation (5.3) with respect to η̄h, we get

∂2

∂η̄h∂ηk
(γ + |β|)2 =

(
6ρ−2Ak +

4β̄

β
ρ−1Bk + 4ρ−1Ck

)
ah̄

+

(
6ρ−1Ak + 2ρ0Bk +

2β

β̄
ρ0Ck − 2ρ1

2β

β̄2
Ck

)
bh̄

+

(
6ρAkh̄ + 2ρ1Bkh̄ +

2β

β̄
ρ1Ckh̄

)
.

(5.4)

where

Akh̄ =
∂

∂η̄h
Ak, Bkh̄ =

∂

∂η̄h
Bk, Ckh̄ =

∂

∂η̄h
Ck. (5.5)

∂2

∂η̄h∂ηk
(γ + |β|)2ηk =

(
6ρ−2A0 +

4β̄

β
ρ−1B0 + 4ρ−1C0

)
ah̄

+

(
6ρ−1A0 + 2ρ0B0 +

2β

β̄
ρ0C0 − 2ρ1

2β

β̄2
C0

)
bh̄

+

(
6ρA0h̄ + 2ρ1B0h̄ +

2β

β̄
ρ1C0h̄

)
.

(5.6)

where

A0 = Ak(z, n)ηk, A0 = Ak(z, n)ηk, B0 = Bk(z, n)ηk, C0 = Ck(z, n)ηk

A0h̄ = Akh̄(z, n)ηk, B0h̄ = Bkh̄(z, n)ηk, C0h̄ = Ckh̄(z, n)ηk.

(5.7)

Substituting equation (5.6) in equation (2.3), we find

Gi = gh̄i[

(
3ρ−2A0 +

2β̄

β
ρ−1B0 + 2ρ−1C0

)
ah̄

+

(
3ρ−1A0 + ρ0B0 +

β

β̄
ρ0C0 − ρ1

β

β̄2
C0

)
bh̄

+

(
3ρA0h̄ + ρ1B0h̄ +

β

β̄
ρ1C0h̄

)
].

(5.8)

Hence, we have

Theorem 5.1. The coefficient of the complex canonical semi-spray of a com-

plex Lagrange space with a special (γ, β) metric is given by (5.8).
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6. Canonical Complex Nonlinear Connection and Chern-Lagrange

Connection

Now we find the coefficients of the nonlinear connection

C︷︸︸︷
Nk
j and Chern-

Lagrange connection

CL︷︸︸︷
Nk
j of a complex Lagrange space with a special (γ, β)-

metric. Partial differentiation of gh̄igh̄i = δij with respect to ηj , gives

∂

∂ηj
gh̄i = −gh̄rCirj . (6.1)

Differentiating partially equations (3.14), (3.15), (3.16) and (5.7) with respect

to ηj , we obtain

∂

∂ηj
ρ−2 = µ−3aj + µ−2bj , (6.2)

∂

∂ηj
ρ−1 =

1

2
ββ̄−1µ−2aj + µ−1bj (6.3)

∂

∂ηj
ρ0 = µ−1aj + µ0bj , (6.4)

∂

∂ηj
A0 = Aj +A0j , (6.5)

∂

∂ηj
C0 = Cj , (6.6)

∂

∂ηj
A0h̄ = 2A0h̄j +Ajh̄ (6.7)

∂

∂ηj
C0h̄ = Cjh̄, (6.8)

∂

∂ηj
ah̄ = 2ajh̄ (6.9)

∂

∂ηj
B0 = Skj{

∂

∂ηk
bj}ηk, (6.10)

∂

∂ηj
B0h̄ = Bjh̄. (6.11)

where

µ−3 =
2

27
γ−8{−6γ + 10(γ + |β|)},

µ−2 =
−2

9
γ−5β̄|β|−1,

µ−1 =
1

12
γ−2|β|−1,
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µ0 =
1

8
β̄|β|−1{|β| − (γ + |β|)},

A0h̄j = Arh̄jη
r,

Arh̄j =
∂

∂ηj
ah̄j ,

and Skj shows that the interchange of the indices k and j, and addition. By

applying equation (5.8) in equation (2.4), we find

C︷︸︸︷
N i
j =

1

2

∂

∂ηj
gh̄i

[(
3ρ−2A0 +

2β̄

β
ρ−1B0 + 2ρ−1C0

)
ah̄

+
(

3ρ−1A0 + ρ0B0 +
β

β̄
ρ0C0 − ρ1

β

β̄2
C0

)
bh̄ +

(
3ρA0h̄ + ρ1B0h̄ +

β

β̄
ρ1C0h̄

)]

+ gh̄i
∂

∂ηj

[(
3ρ−2A0 +

2β̄

β
ρ−1B0 + 2ρ−1C0

)
ah̄ +

(
3ρ−1A0 + ρ0B0

+
β

β̄
ρ0C0 − ρ1

β

β̄2
C0

)
bh̄ +

(
3ρA0h̄ + ρ1B0h̄ +

β

β̄
ρ1C0h̄

)]
.

(6.12)

With the help of (3.10), (3.11), (3.12), (3.13), (5.5), (5.7), (6.1) and (6.2) in

(6.3) and simplifying, we get

C︷︸︸︷
N i
j = CirjG

r + gh̄i
[
ρ−2{3(A0j +Aj)ah̄ + 6A0ajh̄ +

3

2
a0h̄aj}

]
ρ−1

{
(3A0j + 3Aj − aj β̄−1C0)bh̄ + 4(β̄β−1B0 + C0)ajh̄

+(3β̄β−1A0h̄ − β̄β−2B0ah̄)bj + 2(β̄β−1Skjη
k ∂

∂ηk
bj + Cj)ah̄

+β̄β−1(B0h̄ + β−1βC0h̄)aj

}
+ ρ0

{
(Skjη

k ∂

∂ηk
bj + β̄β−1Cj)bh̄

+β̄β−1(B0h̄ + β̄−1βC0h̄)bj

}
+ ρ1

{
β̄−1βC0h̄bj − β−2(bjC0 − βCj)bh̄

+β̄−1βCjh̄ +Bjh̄

}
+ 3ρ(2A0h̄j +Ajh̄) + 3µ−3ajah̄A0

+µ−2

{
(B0 + β̄−1βC0)ajah̄ +A0bjah̄

}
+ µ−1

{
(B0 + β̄−1βC0)ajbh̄

+2(β̄β−1B0 + C0)bjah̄ + 3A0bjbh̄

}
. (6.13)
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Using equation (5.4) in equation (2.5), we get

CL︷︸︸︷
N i
j = gīk[(6ρ−2Aj +

4β̄

β
ρ−1Bj + 4ρ−1C0)aī + (6ρ−1Aj + 2ρ0Bj

+
2β

β̄
ρ0Cj − 2ρ1

2β

β̄2
Cj)bī + (6ρAjī + 2ρ1Bjī +

2β

β̄
ρ1Cjī)].

(6.14)

Theorem 6.1. The coefficients of complex nonlinear connection and Chern–Lagrange

connection of a complex Lagrange space with a special (γ, β)-metric are given

by equation (6.4) and equation (6.5) respectively.

7. Conclusions

The theory of Complex-Lagrange spaces developed with metric (1.1) plays a

crucial role in further study of works of G. Muntanu [5, 6]. The several results

obtained in this paper will be applicable in extensions work of connections,

holomorphic curvature and torsions. The results regarding complex canonical

spray, complex non-linear connections and Chern Lagrange connections ob-

tained in the paper can be used in geodesic correspondence between any two

complex Lagrange spaces developed by two different (γ, β) metrics.
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