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Abstract. In this paper we study the complex Lagrange space with a spe-
cial (7, 8)—metric and determined the fundamental metric tensor, its inverse
Euler-Lagrange equation, complex semi-spray coeflicient, complex non-linear
connection as well as Chern-Lagrange connections for Lagrange space with the
mentioned special metric.

Keywords: (v, )—metric, inverse Euler-Lagrange equation, complex semi-
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1. Introduction

Finsler space with (o, 3) metric were studied by several geometers such as
Hashiguchi, M. Matsumoto [7] and Kitayama [3]. The notion of (¢, 8) metric
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was generalised by to a space is called Lagrange space and by the authors Miron
[10], Nicolaescu [1, 2] and Suresh K. Shukla and P. N. Pandey [13].

In 2011 Pandey and Chaubey [14] discussed Lagranges Spaces with (v, )
and obtained several interesting result. In 2009 N. Aldea and G. Munteanu [9]
introduced the notion of Complex Finsler space with («, 8) metric. In 2019,
Sweta Kumari and P. N. Pandey worked on complex Randers space [12]. G.
Munteanu [6] obtained various important result of complex Lagrange space [4].
Sweta Kumari and P. N. Pandey [11] studied the complex Lagrange space with
(v, B) metric in 2023.

In present paper, we studied the complex Lagrange space with a special
(7, B8) metric

L=(v+8])% (1.1)

v = {/agen' Ik, (1.2)
1B(z,m)| =\/B(z.m)B(z,m) with  S(z,n) = bi(2)n’ (1.3)

7y is a cubic root metric and f is a differential (1,0)-form and determined the

where

fundamental metric tensor, its inverse Euler-Lagrange equations, complex semi-
spray coeflicient, Complex non-linear connection is as well as Chern-Lagrange
connections for complex Lagrange space with a special (v, §) metric (1.1).

2. Preliminaries

Let M be a complex manifold of dimension n. Let (2¥), & = T,n be local
coordinates in a chart (U, z*) and T’M be its holomorphic tangent bundle.
T'M has a natural structure of complex manifold such that (z*,n*) are local
coordinates in a chart on U belongs to 7M. A complex Lagrangian L [7] on
T'M is a real valued smooth function L : 7'M — R

82
G = oo L (2.1)
is a non-degenerated metric and resolve a Hermitian metric structure. A com-
plex Lagrange space is a pair L™ = {M, L(z,n)}. The presence of a complex
Lagrange function L concern the study of the variational problems on curves.
Let ¢ : [0,1] — M. be holomorphic curve and L(z,n) be the complex La-
grangian on 7'M . The Euler-Lagrange equations for a geodesic are
0 d (0
E/(L) = aziL — (8171' L> =0. (2.2)

The coefficients of the complex semi-spray S of a complex Lagrange space

L™ ={M,L(z,n)} are

6 (e = 5o i L) (23)
2 Ol Oy’
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The Cartan-connection [6] of a complex Lagrange space L™ = {M, L(z,n)} is

C

Ve 9
CL
A~

And the Chern-Lagrange connection N. jk [6] given by

CL

o 0
Ni =g 877-7'817511' (2.5)
And above connections are associated by
c crL
Nh_Llom (2.6)
I 20 0 )

3. Fundamental Metric Tensor

Differentiating partially equation (1.2) with respect to ' and 7 and using
the symmetry of az; in its indices, we obtain

0 a;
- 3.1
o) = 3 (3.1)
0 2am
= 2
o 32 (3.2)

where a; = a;;EvﬁT;k and  am = a{;mﬂinl
Now, differentiating partially equation (3.1) with respect to nP, we have
2 . 2q;p  4aip

(’97756)771{y 32 9y

(3.3)

where a;p = a,;z7k. Differentiating partially equation (1.3) with respect to nt
and 7" we get,

0 Bbi
5l = 573 (34)
8 /Bbm
o = 251 .
Again differentiating partially equation (3.1) with respect to nP, we find
0? bibp
Wlﬂl = M (3.6)

Then, we have the following.

Proposition 3.1. In a complex Lagrange space with a special (v, ) metric
satisfy the equations (3.1),(3.2), (3.3), (3.4), (3.5)and(3.6).
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The moments of Lagrangian L = (y + |3|)? are defined as
10 5

~ S+ 1B

By using the equations (3.1) and (3.4), we get

RS N CRN
32

Di

g (3.7)

Theorem 3.2. In a complex Lagrange space L™ with a special (v, 3), the mo-
ments of Lagrangian L = (v + |B])? are as follows

i = pa; + p1b;,

where (1 18]
_
pP= T (3.8)
_(y+18DB
p1 = 28 (3.9)

Here, the scalars p and p; are called the principal invariants of the space L™.
Differentiating partially equations (3.8) and (3.9) with respect to 7’ and 7' we
get,

o 1 4 1 Lo a—1 -2
Wﬂ =37 {1=29""(v+1B8I)}a; + gﬂlﬂl Ybs.
0 _ 2 4 1 _ 1 —1,-27_
"= 9" {1 =27 (v +1BD}a; + GBIBI " 705
0 1z .4 o Laa—1 -1
wmfgﬂw 7 ag A+ BB BT (y + 1B1) 105
0

5ot = 01 8L B -+ 8D

Thus, we get

Theorem 3.3. The derivatives of the principal invariants of a complex La-
grange space L™ with a special (v, B) metric are given by

0 =
oy = P20 + BB p_1b;. (3.10)
9 = = b 3.11
o = P2 + p-1bj. (3.11)
0 _
87773"01 = BB (p-1a5 + pobj). (3.12)
0 =
877301 =288~ (p-1a;5 + pob;) (3.13)
where L
p-o = 57’4{1 -2y (v + IBI)}- (3.14)

po1= %B\ﬁl’lv’z- (3.15)
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1

{1+ e+ 18D} (3.16)

P0=4

The energy of the complex Lagrangian L is given by

i (3.17)

Put L = (v + [8])? in equation (3.17) we get

(vt \BI)

B = {5+ 1817 5 i1} - o la)? @)

8IBI

We know that « and | 3| positively homogeneous of degree 1 in 7, therefore by
Euler’s theorem on homogeneous functions, we come to a result

0 Y

P 1
"o 3 (3.19)
181
vl = (3.20)
With the help of equations (3.19) and (3.20), the equation (3.18) becomes
2

By = S+ 18) + 18Iy + 181) — (v + 18))? (3.21)

_
Ep=—2(y+18D): (3.22)

3
This leads to

Theorem 3.4. The energy of the Lagrangian L in a complex Lagrange space
with a special (v, B) metric is given by (3.22).

Now, we find the fundamental metric tensor 5@-(27 7n) of a complex Lagrange
space with a special (v, §) metric. By using equation (1.1) in equation (2.1),
we get

2(y +18I) 4(v +181)
0T 3y o+ {97 945 }aiaj
B B ) BB, (v+18])
+ azb; + a;b; { + }
(372|/3’| 6Bl 41812 418
With the help of equations (3.8), (3.14), (3.15) and (3.16) the equation (3.23)
becomes

(3.23)

= 2paz; + p—20;a; + B~ p_1(2Bajb; + Baib;) + pobib;. (3.24)

A normal calculation shows that

3 306 39718l 4|p|
2Bajb; ibj) = iflj — bib; — iaj,
(20aibict 5ati) = oy e T T M 3

(3.25)
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where 7; = §;L and 7 = 35L. By using equation (3.25), equation (3.24)
becomes

9ij = 2pa; + q—20:a5 + q171i7; + qobib3, (3.26)
where
2|1Blp—1
22 ("‘2 T T3y%8 )
= 3Bl
By +181)?
_ 3’)’2\3|P—1
and g0 = po — TR

Equation (3.26) can be written as
= 2paz; + ¢, (3.27)
where
c; =r_1a; +rob;, ror_1=4q_1, (r,l)2 =q_o, (r0)2 = qp.

Thus, we obtain

Theorem 3.5. The expression for the fundamental metric tensor gz of a com-
plex Lagrange space with a special (v, 8) metric is given by equation (3.27).

With the help of proposition given by D. Bao, S. S. Chern and Z. Shen [3],
the inverse ¢¢ of the fundamental metric tensor ;7 is obtained as

=, 1 =, 1 PG
—(a 2p n CQC Cj) (328)

where ¢! = aﬂq, = a’c;c;. This gives:

Theorem 3.6. The inverse 7' of the fundamental metric tensor 957 of a com-
plex Lagrange space with a special (v, §)-metric is given by (3.28).

4. Euler-Lagrange Equations

By using equation (1.1), the equation (2.2) becomes

Ei(L) =20y + [B))Ei(y) + 20y + 81 E(|81) — <2+2d'5')

dt ) ont
4.1
(o oty 2 oy
dt dt ) ont

and ey g
Bi(%) = 392 Ei(3) =35 50 (42)

0|8| d
E(182) = 2181E:(18]) — 2251 4181 (4.3)

ont dt
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Putting values of E;(y) and E;(|8]) from equations (4.2) and (4.3) in equation
(4.1), we get

(TN —o (Y L 2 a2 C’Mdl é 9|8l d|8|
Ez(L)—2pEz(7)+Bp1EZ(IBI)+ Pomidr T 57 i

dy Y dlﬁl 9Bl (dy | JdIBl
oy (2 2 dt on' 2dt+2dt =0.

(4.4)

This gives

Theorem 4.1. The FEuler-Lagrange equations of a complexr Lagrange space
with a special (7, B)-metric is given by equation (4.4).

For the natural parameterization of the curve ¢ : t € [1,0] — 2%(t) € M with
respect to the cubic-root metric v, we have

dz
) =1
’Y(Z, dt>

Theorem 4.2. The natural parameterization, the Euler—Lagrange equations of
a complex Lagrange space with a special (v, B)-metric is

é alpldigl oy dBl olBldB| _
plE(WHJrﬂ ot Cog i oy dt

Thus, we find

Ei(L) = 2pEi(v*) + 3

If |8] is constant along the integral curve of the Euler-Lagrange equations
with natural parameterization, then the Euler-Lagrange equations of a complex
Lagrange space with a special (v, 8) metric is given by

Ei(L) = 20E:(+*) + %plEiaﬂF) — 0. (4.5)
This gives

Theorem 4.3. If || is constant along the integral curve of the Euler-Lagrange
equations with natural parameterization, then the Fuler-Lagrange equation of a
complex Lagrange space with a special (v, 8) metric are given by equation (4.5).

5. Complex Canonical Semi-spray

The coefficients of the complex canonical semi-spray of a complex Lagrange
space with a special (v, 8)-metric is given by equation (2.3) together with equa-
tion (1.1).

Differentiating partially equations (1.2) and (1.3) with respect to 2", we get

9.0 = Apy~2 (5.1)

0
@W =

B
MB;L + MC’;L (5.2)
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where
Ap = On(agpn' 0", Bu = (Onbi)n',  Ch = (9nby)iY.
Putting equations (4.5), (5

1) and (5.2) in
0
8717’€L = L0y + L0k B,
we obtain 5 3
a—nm+ 1B1)? = 6pAx + 2p1(By, + 56 (5.3)

Differentiating partially equation (5.3) with respect to 7", we get
2

4p
W(W +181)? = (6P2Ak + prlBk + 4p10k) aj,

2 2
+ <6p—1Ak + 2po By + BBPOCk - 2P1—§Ck> b, (5.4)

2
+ <6PAkﬁ + 2p1 By, + 5,010103) :
where 5 5 5
Ak:fl = WAIC’ Bkﬁ - 8777]}LB]€7 Ckﬁ = Tﬁth; (55)
? 2k 48
W(W +18])"n" = [ 6p—240 + ﬁﬂqBo +4p_1Co | a,
2 2
+ <6P1A0 +2poBo + FBPOCO —2p1 ﬁfco) by, (5.6)
28
+ | 6pAgs + 2p1 By, + ?Plcoﬁ .
where

Ay = Ak(z,n)nk, Ay = Ak(z,n)nk, By = B;.C(,z,n)nk7 Co= C’k(z,n)nk
Aoi, = A (20", Bop = Bii(z,n)n*,  Cop = Cy(z,m)n".

(5.7)
Substituting equation (5.6) in equation (2.3), we find
i hi 23
G' = g"[| 3p—240 + prlBO +2p_1Cp | aj,
B p )
+ (3p—140 + poBo + =poCo — p1 @C@ by, (5.8)

+

( :
<3pth + p1Bor, + gp100h>]-

Hence, we have

Theorem 5.1. The coefficient of the complex canonical semi-spray of a com-
plex Lagrange space with a special (v, B) metric is given by (5.8).
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6. Canonical Complex Nonlinear Connection and Chern-Lagrange
Connection

C
~ =~
Now we find the coefficients of the nonlinear connection N j’“ and Chern-
CL
=

Lagrange connection ]\7]’4C of a complex Lagrange space with a special (v, 8)-

metric. Partial differentiation of gﬁig;ﬂ = 5; with respect to 1/, gives

0 hi A ;
_ght —qrct 1
ad =Y Crj (6.1)

Differentiating partially equations (3.14), (3.15), (3.16) and (5.7) with respect
to n?, we obtain

0

67734)72 = pi-3a; + p12bj, (6.2)
0 1 -

gl 3PP Yooaj 4 poab; (6.3)
0

G0 = Ho14s + 1oy, (6.4)
0
0

8777100 = Cj, (6.6)
0
0

Wcoﬁ = Cjﬁv (68)
0
0 0
0

a—njBO;L = Bj}_z' (6.11)

where

2 _
Hos = 5= 8{ 6y +10(y + 8]},

-2 = _
1“’*2:?7 5ﬁ|ﬁ| 17

_ 1 —21p1—1
H—1= 12’7 |ﬂ| )
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T
po = gBIBITHIAl = (v + 18D},
Aoﬁj = Arﬁjnra
A 0

7. = ——Q7T ;
rhj 8773 hj»

and &j; shows that the interchange of the indices k£ and j, and addition. By
applying equation (5.8) in equation (2.4), we find

23
(3p—2A0 + FBP—IBO + 20—100)(15

+ (39—1140 + poBo + gpoco - Pl%Cb)bﬁ + (3PA0B + p1Bor, + gplc()h)l

_ 9
+gh17

2p3
i (3p—2A0 + Fp_lBO + 2/)—100)% + (30—1140 + poBo

s g B
+ EPOCO — P ﬁco)bﬁ + <3PA0B + p1Bor, + EPICOE)

(6.12)

With the help of (3.10), (3.11), (3.12), (3.13), (5.5), (5.7), (6.1) and (6.2) in
(6.3) and simplifying, we get

N; = C,G" + g"i {P72{3(A0j + Aj)ay, + 6Aoa;; + zaoﬁaj}}

p,l{(SAoj +34; — a; 871 Co)by, +4(B57' By + Co)ayj,
+(3887 " Agj, — BB™*Boay)b; + 2(ﬁﬁ_16kj77ka?7kbj +Cj)ay,
+B871 (B, + ﬁ_lﬂcoﬁ)aj} + po{(%nka%kbj +BB71C))by,
+B87(Byp, + B_lﬁCoh)bj} + Pl{B_lﬁCoﬁbj —B72(b;Co — BC))by,
+5BC s + Byp b+ 3p(2A0n7 + Ayp) + 3_saja Ag

+/~L—2{(Bo + B7'BCo)ajay, + Aobjaﬁ} + Mfl{(Bo +B718Co)a;by,

+2(B87 By + Co)bjay, + 3Aob;b |- (6.13)
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Using equation (5.4) in equation (2.5), we get

CL
i ik 4
Nj =g"[(6p—24; + —p-1B; +4p-1Co)a; + (6p-14; + 2po B,
B8 (6.14)
2 2 2
+ gpon —2p %Cﬂ@ + (6pAji +2p1 By + ngﬁ)]-

Theorem 6.1. The coefficients of complex nonlinear connection and Chern—Lagrange
connection of a complex Lagrange space with a special (v, 3)-metric are given
by equation (6.4) and equation (6.5) respectively.

7. Conclusions

The theory of Complex-Lagrange spaces developed with metric (1.1) plays a
crucial role in further study of works of G. Muntanu [5, 6]. The several results
obtained in this paper will be applicable in extensions work of connections,
holomorphic curvature and torsions. The results regarding complex canonical
spray, complex non-linear connections and Chern Lagrange connections ob-
tained in the paper can be used in geodesic correspondence between any two
complex Lagrange spaces developed by two different (v, 8) metrics.
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