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Abstract— Microgrids have become integral to modern energy systems, providing decentralized and resilient energy solutions. However,
ensuring the reliability of microgrid assets poses significant challenges, particularly given aging infrastructure and unpredictable
environmental conditions. While existing methods—such as predictive maintenance, real-time monitoring, and fault detection utilizing
Support Vector Machines, Random Forests, and Principal Component Analysis—enhance reliability, they often fall short due to insufficient
multidimensional data analysis and limited support for realistic decision-making. This underscores the need for advanced approaches in
microgrid management. In this paper, we propose an innovative machine learning-based methodology that integrates Long Short-Term
Memory networks with fuzzy logic for predictive maintenance of microgrid assets. The proposed approach effectively addresses the inherent
fluctuations and dynamic behavior of microgrids, enhancing system resilience and reducing downtime. By leveraging LSTM’s ability to
capture temporal patterns alongside fuzzy logic’s capacity for handling uncertainties, the method proactively identifies and mitigates
potential equipment failures. Traditional maintenance strategies predominantly rely on reactive mechanisms, resulting in higher costs and
increased system vulnerabilities. Simulation results indicate that the proposed algorithm achieves a 10% to 40% improvement in fault
detection across varying failure levels, demonstrating significant advantages over conventional techniques.

Keywords—Microgrids, predictive maintenance, machine learning, LSTM networks, fuzzy logic.

1. INTRODUCTION

In the era of modern energy systems, microgrids have emerged
as pivotal solutions, exemplifying resilience and sustainability
within the dynamic landscape of power generation and distribution.
Unlike traditional centralized grids, which are characterized
by their susceptibility to single points of failure and widespread
outages, microgrids provide a decentralized alternative, empowering
communities and industries to independently manage their energy
needs [1]. These systems integrate a diverse array of distributed
energy resources (DERs), including solar panels, wind turbines,
combined heat and power systems, and energy storage units,
embodying the principles of flexibility, reliability, and autonomy.
However, despite their numerous advantages, microgrids face
challenges stemming from aging infrastructure, environmental
variability, and the pressures of rising energy demand [2].
Ensuring the efficient operation and maintenance of microgrid
assets is critical to guaranteeing an uninterrupted power supply,
particularly in applications such as military bases, hospitals, and
rural communities where reliability is non-negotiable. Traditional
maintenance practices, which depend on reactive approaches
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and predetermined schedules, often fail to adequately address
the dynamic and evolving nature of microgrid operations.
Consequently, there is an urgent need to implement innovative
strategies that proactively identify potential faults, optimize
maintenance activities, and enhance system resilience [3]. The
power industry is notoriously capital-intensive, with substantial
costs and prolonged manufacturing and installation timelines
associated with key assets, including electrical power generators,
transformers, transmission lines (TLs), and distribution networks
(DNs). Furthermore, these power system components are expected
to operate continuously for extended periods, often spanning several
decades, emphasizing the necessity for sophisticated maintenance
and management techniques [4].

Even brief power outages have become intolerable, with
potential severe repercussions on both individual lives and
societal affairs. Consequently, there is an urgent and considerable
demand for approaches aimed at monitoring, maintaining, and
prolonging the operational lifespan of power system equipment.
Power infrastructure asset management encompasses a blend of
disciplines such as engineering, management, and economics, with
the primary objective of maximizing the value of service relative
to the associated costs. This management process encompasses
the entire lifecycle of assets, including design, construction,
commissioning, operation, maintenance, repair, modification,
replacement, and decommissioning/disposal [3]. During the
operational and maintenance phases, condition monitoring (CM)
systems play a crucial role in identifying potential defects before
they cause service interruptions. However, managing physical
assets in the power system presents unique challenges, as many
components are outdoor facilities (e.g., transformers, TLs, DNs)
located in unguarded environments, thus exposing them to harsh
weather conditions and external threats. Additionally, some failure
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mechanisms of these assets are not yet fully understood, leading
to a lack of reliable predictive models [5].

Despite significant advancements in utilizing distributed energy
resources, IoT, and machine learning to enhance grid resilience,
insufficient focus on temporal data analysis and flexible decision-
making remains a research gap. Current studies primarily emphasize
real-time data processing, with limited exploration of leveraging
long-term temporal dependencies for predictive decision-making.
Additionally, the lack of flexible decision-making mechanisms that
can autonomously adapt to changing conditions and grid anomalies
highlights the need for further research. Traditional predictive
maintenance methods often struggle with handling the complexities
and uncertainties of real-world data, leading to limitations in
decision-making flexibility [5]. These methods frequently rely on
static models and assumptions, which may not account for the
dynamic nature of sensor data and operational conditions. As a
result, they can miss nuanced patterns and fail to adapt to evolving
scenarios, affecting the accuracy and reliability of maintenance
predictions. Thus, this paper presents a novel approach to predictive
maintenance in microgrids by integrating fuzzy logic with deep
learning. Key contributions include:

• Advanced data analysis with LSTM: The paper introduces a
novel approach to predictive maintenance by first analyzing
sensor data using a LSTM network. This network excels at
capturing temporal dependencies and patterns in sequential
data, providing a detailed classification of operational states.

• Enhanced decision-making through fuzzy logic: Following
the LSTM analysis, the output is processed by a fuzzy logic
system. This integration allows for handling uncertainties
and imprecisions in the data, enabling more nuanced and
flexible decision-making that reflects the complex nature of
real-world scenarios.

1.1. Literature review
This collection of papers provides a comprehensive review

of recent advancements and methodologies in applying machine
learning (ML) and artificial intelligence (AI) to enhance various
aspects of modern energy systems. The scope is divided into several
key categories, each highlighting different areas of innovation and
improvement within energy networks. The first category focuses
on enhancing reliability and control of energy systems using ML
techniques. Papers in this section review research that bridges
reliability management with machine learning approaches. Notably,
one paper examines the integration of ML in power system
protection and asset management, addressing growing complexities
related to renewable energy integration and climate change [1].
Another paper discusses the utilization of AI in modern power grids
to improve reliability, efficiency, and sustainability, emphasizing
the use of hybrid machine learning models for fault prediction
and detection, which can lead to quicker fault resolution and
support cleaner energy systems [2]. The next category covers
predictive maintenance and fault detection, exploring advanced
approaches aimed at improving system reliability. Key papers in
this section discuss advancements in predictive maintenance for
power converters, focusing on various approaches such as model-
based, data-driven, and physics-informed machine learning (PIML)
methods [3]. Additionally, the integration of distributed energy
resources (DERs) into microgrid systems is analyzed, particularly
concerning their resilience against cyber threats and the role
of ML in enhancing operational reliability [4]. Research also
presents innovative methods for detecting intrusions and anomalies
in inverter-centric cyber-physical microgrids, employing advanced
machine learning techniques to bolster security [5]. In the realm
of resilience and security, several papers introduce methodologies
to enhance maintenance coordination in renewable-powered grids
[5] and assess the resilience of energy systems in the face of
extreme weather events [6]. Furthermore, innovative approaches
in grid technology are detailed in papers discussing the use of

linear antenna arrays for multiple-input multiple-output (MIMO)
applications and methods for detecting cyberattacks on microgrids
using machine learning techniques [7].

The role of artificial intelligence in renewable energy is also
a major focus, with papers discussing AI-based methods for
estimating maintenance needs for distribution transformers and the
broader application of AI in predictive maintenance and energy
optimization for renewable sources such as solar and wind [8].
Additionally, research on quantifying the resilience of multi-energy
systems (MES) in response to disruptions caused by extreme
weather is presented, emphasizing the use of ML techniques to
improve planning and reliability [9]. Papers on energy management
systems (EMS) for microgrids showcase frameworks that integrate
decentralized energy sources, IoT, and cloud computing to
optimize energy usage and enhance grid resilience [10]. One
study proposes an EMS that utilizes an incentive-based demand
response program and battery storage to optimize operational
costs and emissions, validated through simulations [11]. Another
paper introduces a resilient operation model for microgrids that
incorporates electric vehicles (EVs) as energy storage systems to
maintain service continuity during outages, employing stochastic
programming to address uncertainties in market pricing and
resource scheduling [12]. Moreover, day-ahead programming
strategies for microgrids using a two-stage stochastic programming
approach are examined, focusing on managing uncertainties in
electricity market prices and load demand while minimizing
operational costs and environmental emissions [13]. This collection
of papers underscores the transformative potential of ML and AI
in advancing energy systems, paving the way for more reliable,
efficient, and secure power networks in the future [14]. The
final papers also introduce advanced fault classification techniques
through intelligent classifiers and further explore the integration
of AI into modern power grids to enhance fault detection and
grid sustainability [15] and resilience [16]. In the category of
predictive maintenance and fault detection, several papers focus
on advancements in predictive maintenance for power converters
and other critical components in energy systems. These include
approaches such as model-based methods, data-driven strategies,
and physics-informed machine learning (PIML) techniques to
enhance operational reliability [17]. The research emphasizes the
role of machine learning in predictive maintenance, particularly
in solar farms and smart grids, demonstrating the potential for
reduced downtime and improved fault prediction [18].

Furthermore, the integration of distributed energy resources
(DERs) into microgrid systems is explored in depth, highlighting the
need for resilient architectures capable of operating autonomously
during outages. This integration includes the use of Internet
of Things (IoT) technology for real-time monitoring and
control, which enhances load management and maintenance
practices [19]. A specific study presents innovative methods for
detecting intrusions and anomalies in inverter-centric cyber-physical
microgrids, employing advanced machine learning techniques such
as Convolutional Neural Networks (CNNs) and Long Short-Term
Memory (LSTM) networks to achieve high accuracy in identifying
security breaches [20]. Papers addressing the resilience of energy
systems under extreme weather conditions are also prominent,
with one study employing ensemble methods to forecast outages
in smart grids. The results show remarkable accuracy rates,
thereby supporting effective energy management and enhancing
overall production efficiency [21]. Another paper reviews methods
for quantifying the resilience of multi-energy systems (MES) in
the context of interconnected contingencies, focusing on machine
learning-based techniques to improve planning and reliability
[22]. The research on energy management systems (EMS)
reveals frameworks that optimize the operation of microgrids,
integrating distributed generations and implementing demand
response programs. One approach utilizes a multi-objective group
search optimization (MOGSO) algorithm to manage cost and
emissions effectively [23]. Another study introduces a resilient
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operation model that incorporates electric vehicles (EVs) as energy
storage systems, optimizing resource scheduling through stochastic
programming to address uncertainties in market conditions and
renewable energy generation [24]. In the context of day-ahead
programming, a paper explores a two-stage stochastic programming
approach for microgrids, focusing on managing uncertainties in
electricity market prices and load demand while aiming to minimize
operational costs and environmental emissions. The effectiveness
of the proposed methods is demonstrated through simulations
based on real data [25]. Overall, these papers collectively highlight
the transformative potential of machine learning and artificial
intelligence in enhancing the reliability, efficiency, and security
of modern energy systems, paving the way for sustainable and
resilient power networks of the future [26]. The integration
of AI and ML technologies into energy systems is portrayed
as a vital step towards improving decision-making processes
and addressing challenges associated with renewable energy
integration, cyber threats, and environmental sustainability [27].
Additionally, studies present intelligent classification schemes for
fault detection and examine hybrid models designed for effective
fault prediction, thereby contributing to the ongoing evolution of
energy management strategies [28, 29].

This collection highlights ongoing challenges in energy systems
where neural networks can bring significant improvements,
particularly in enhancing fault detection, predictive maintenance,
and resilience against dynamic and unexpected disruptions. Neural
networks, especially deep architectures like CNNs and LSTMs,
offer advanced pattern recognition that supports reliability and
cybersecurity in modern energy networks.

1.2. Organization paper
The rest of the paper is as follows. Section 2 reviews

advancements in using ML and AI to enhance energy systems,
with a focus on predictive maintenance for microgrids. Section 3
details the use of sensors, IoT devices, and ML techniques for
monitoring and predicting the condition of microgrid components.
It introduces a combined approach of fuzzy logic and LSTM
networks to handle data uncertainties and improve prediction
accuracy. Finally, Section 4 concludes the paper.

2. METHODOLOGY

Predictive maintenance in microgrids leverages sensors, IoT
devices, and advanced analytics, including machine learning (ML),
to monitor the health of critical components such as batteries,
inverters, and transformers. This approach involves collecting
real-time and historical data to build predictive models capable of
forecasting potential failures. By analyzing this data, maintenance
can be scheduled proactively, reducing unexpected downtimes and
enhancing system performance. Modeling asset lifetime within a
microgrid is a complex task that combines statistical analysis with
ML techniques to estimate the remaining useful life (RUL) of
components. For instance, batteries are monitored for charge cycles
and temperature variations to predict their degradation patterns.
Similarly, inverters and transformers are assessed based on factors
like voltage stability and insulation quality [5]. Advanced analytics
and IoT integration play crucial roles in this process. IoT devices
provide continuous monitoring and data collection, which ML
algorithms use to refine predictive models and detect early signs of
potential issues. This proactive approach not only optimizes asset
performance but also minimizes maintenance costs and extends
the lifespan of critical components. By implementing predictive
maintenance strategies, microgrids can achieve greater operational
efficiency and reliability, ensuring that components are maintained
before failures occur and performance remains optimal [7].

This process begins with the collection of historical and real-
time data from sensors that monitor parameters like temperature,
voltage, current, and mechanical vibrations. Fig. 1 illustrates a
microgrid integrating renewable energy sources—wind turbines,

solar panels, and energy storage systems—with the main grid
and various loads, including residential units. The energy from
renewables is converted via AC/DC and DC/DC converters
for efficient distribution. Sensors monitor the performance of
all components, transmitting data through gateways to logical
controllers, which manage operations and predict maintenance
needs. This setup ensures seamless energy flow, stability, and
reliability, with real-time monitoring and predictive maintenance
optimizing performance and extending the lifespan of the assets.

Time series data exhibit significant variations, and the temporal
relationships between them must be carefully considered to
improve results. This involves not only capturing the individual
data points but also understanding the underlying patterns and
trends that evolve over time. By analyzing these temporal
dynamics, we can gain deeper insights into how different factors
influence the system’s performance across various timeframes.
Properly accounting for these relationships allows for more
accurate forecasting, anomaly detection, and overall performance
assessment, ultimately leading to more informed decision-making
and optimized outcomes in complex systems.

2.1. Integrating fuzzy logic with deep learning
Integrating LSTM networks with fuzzy logic for predictive

maintenance in microgrids provides a comprehensive approach to
capturing the dynamic interactions within time series data and
the complexities of real-world scenarios. In this method, time
series data, such as current, voltage, and vibration readings, are
first analyzed using LSTM networks to model temporal patterns
and relationships. The results are then processed through a fuzzy
logic network, which captures the uncertainties and interactions
within the data. By converting sensor readings into fuzzy values
and applying fuzzy rules, this approach determines risk levels
that reflect real-time operational dynamics. These defuzzified risk
scores are used for advanced predictive maintenance, improving
prediction accuracy, enabling proactive scheduling, and minimizing
unexpected failures, thereby extending the lifespan of microgrid
components.

The proposed model, as illustrated in Fig. 2, employs a
sophisticated two-step process designed to analyze sensor data and
derive actionable decisions effectively.

A) Data collection and LSTM analysis
In the initial step, the model gathers real-time data from a

network of sensors strategically deployed throughout the system.
This sensor data, characterized by its sequential nature, is then fed
into a Long Short-Term Memory (LSTM) network. The LSTM
network is specifically chosen for its proficiency in handling
sequential data due to its unique architecture, which includes
memory cells that capture and retain temporal dependencies.

The LSTM’s strength lies in its capability to remember and
utilize long-term dependencies within the data. This makes it
exceptionally well-suited for interpreting sensor readings that
change over time, allowing it to discern intricate patterns
and trends. By effectively mapping sensor data into distinct
output classes—each representing different states or conditions
of the system—the LSTM network provides a foundation for
understanding the system’s behavior over time. The first phase
of the model captures sequential data from the system’s sensors,
represented as X = {x1, x2, . . . , xt}, where each xi corresponds
to a sensor reading at time i. This time-series data is processed by
a Long Short-Term Memory (LSTM) network, which effectively
captures long-term dependencies due to its selective memory
capabilities.

The LSTM network processes sequential input data to capture
temporal dependencies. The operations are defined as follows [30]:

1. Forget gate: This gate removes irrelevant information from
the previous time step:

ft = σ(Wf · [ht−1, xt] + bf ) (1)
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Fig. 2. Integrating fuzzy logic with deep learning for predictive maintenance in microgrids.

2. Input gate: This gate updates the cell state with relevant new
information:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(2)

3. Cell state update: The cell state is updated by combining the
forget and input gates:

Ct = ft · Ct−1 + it · C̃t (3)

4. Output gate: This gate produces the final hidden state:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot · tanh(Ct)
(4)

The LSTM outputs a sequence of hidden states H =
{h1, h2, . . . , hT }, which represent the processed data over time.
These outputs are then passed into the fuzzy logic system.

B) Fuzzy logic system
The fuzzy logic system evaluates the outputs ht from the LSTM

network using the following steps:
1. Fuzzification
The LSTM outputs ht are mapped to fuzzy sets A1, A2, . . . , An

using membership functions µAi(ht). For example:
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µAi(ht) = exp

(
− (ht − ci)2

2σ2
i

)
(5)

where ci is the center and σi is the width of the Gaussian
membership function. Each ht can belong to multiple fuzzy sets
with varying degrees of membership.

2. Rule evaluation
The fuzzy rules are structured as follows:
If ht is Ai then D is Bj

The degree of rule activation is calculated as:
Rule activation = min(µAi(ht), µAj (ht), . . .)
For a given rule Rk, the output fuzzy set Bk is weighted by the

rule’s activation level.
3. Aggregation
The activated fuzzy sets B1, B2, . . . , Bm are combined into

a single fuzzy output F . The aggregation process is typically
performed using a max or sum operator:
F = maxk(Rule activation · µBk (D))
4. Defuzzification
The aggregated fuzzy output F is converted back into a crisp

value D using a defuzzification method, such as the centroid
method:

D =

∫
DF (D)dD∫
F (D)dD

(6)

This produces the final decision D, which is interpretable and
actionable.

C) Optimization of fuzzy logic parameters
The parameters of the fuzzy logic system, including centers ci,

widths σi, and rule weights, are optimized during training. A loss
function, such as Mean Squared Error (MSE), is minimized:

L =
1

N

N∑
i=1

(Dpred,i −Dtrue,i)
2 (7)

Gradient-based optimization methods like Adam or RMSprop
are used to adjust these parameters.

2.2. Combined LSTM-Fuzzy logic decision framework

The final decision D integrates the temporal analysis capabilities
of LSTM with the uncertainty-handling strength of fuzzy logic:

D = f(LSTM output, Fuzzy logic output) (8)

For example:

D = αhT + (1− α)(Fuzzy decision)

where α is a weight parameter that balances contributions from
both LSTM and fuzzy logic. This combined framework effectively
captures long-term dependencies through LSTM while enabling
nuanced decision-making under uncertainty via fuzzy logic. The
adaptability of the fuzzy system enhances accuracy and robustness,
making this model highly suitable for real-world sensor data
analysis and predictive maintenance tasks.

3. SIMULATION RESULTS

To simulate the conditions of the microgrid, the model was
first established within the MATLAB environment, where various
components such as inverters, batteries, and transformers were
simulated to reflect real-world operating conditions. This setup
involved generating and processing sensor data, including readings
for temperature, voltage, current, and vibrations, to create a
comprehensive dataset.

This model describes a single-phase AC microgrid that supplies
power to a residential area by integrating an external electricity
network, a solar power generation system, and a storage battery.
The solar system generates DC power, which is converted to AC
for use within the microgrid. The storage battery, managed by
a battery controller, stores excess energy from solar production
and provides power during shortages. The microgrid connects to
the external grid via a transformer that adjusts the voltage for
residential use [25].

The control strategy focuses on energy self-sufficiency, aiming
to minimize reliance on the external grid. It ensures that the
power from the solar system and storage battery meets the
residential demand, which is capped at 2.5 kW per home. The
battery controller helps balance supply and demand, stabilizing
the microgrid for a continuous power supply. By optimizing local
solar power usage and smart energy management, the microgrid
enhances sustainability, reduces dependence on the external grid,
and improves the reliability of energy supply to the residential
area. The proposed model utilizes a two-step process to evaluate
equipment health. Initially, the collected sensor data is fed
into a LSTM network. The LSTM network, which excels in
analyzing temporal sequences, processes this data to classify it
into different categories representing various operational states of
the equipment. This classification captures the dynamic behavior
and trends in the sensor data over time. These classified data
are then fed into the fuzzy network, which is designed to handle
uncertainty and imprecision inherent in real-world scenarios. The
fuzzy network processes the input data by applying a set of
fuzzy logic rules, which allows it to interpret the data in a
way that reflects the complex and often non-linear relationships
between different operational parameters. This approach enables
the model to generate a response that is not only dynamic,
adapting to changes in the equipment’s state, but also realistic,
accounting for the nuances and variations that traditional methods
might overlook. As a result, the fuzzy network enhances the
overall accuracy and reliability of the system’s health assessment,
providing more actionable insights for predictive maintenance and
decision-making.

As an example, some data related to one of the network
elements (transformer), such as voltage (Fig. 5), current (Fig. 6),
and vibration (Fig. 7), are presented for both healthy and worn-out
conditions. Typically, transformers have a service life ranging from
20 to 40 years. As they near the end of this period, signs of
aging may become apparent, including a decline in performance
or efficiency and an increase in noise levels, such as buzzing or
humming.

There is typically a significant correlation between different types
of equipment data, which can play a crucial role in comprehensive
analyses. Understanding these interrelationships allows for more
accurate and informed decision-making, particularly in systems
where equipment health and performance are critical. For instance,
as illustrated in Fig. 6, there is a clear relationship between
the quality of voltage and current and the health status of
the transformer. This connection suggests that fluctuations or
abnormalities in voltage and current may be indicative of
underlying issues with the transformer, such as wear and tear or
impending failure.

The LSTM network is structured to analyze sequential data for
transformer health monitoring. It starts with an input layer for
time series data, followed by two LSTM layers (64 units each)
with dropout and batch normalization to capture temporal patterns
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N
2

pred,i true,i

i 1

1
L (D D )

N =

= −  
(7) 

Gradient-based optimization methods like Adam or RMSprop are used to adjust these parameters. 
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Fig. 3. Simulink-based microgrid simulation model [25].

 

Figure 4: Transformer Current Before and After Transformer Wear 

 

Figure5: Transformer Voltage Before and After Transformer Wear 

Fig. 4. Transformer current before and after transformer wear.

 

Figure 4: Transformer Current Before and After Transformer Wear 

 

Figure5: Transformer Voltage Before and After Transformer Wear 
Fig. 5. Transformer voltage before and after transformer Wear.

and prevent overfitting. A dense layer with 32 units refines the
output, and the final output layer uses a single neuron with a linear
activation function for regression. The model is compiled with the

 

Figure6: Quality of the current and voltage and the health status of the transformer 
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Figure7: Vibration signal before (a) and after (b) failure 
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Table 1: Proposed LSTM Network Architecture for Equipment Health Monitoring 

Fig. 6. Quality of the current and voltage and the health status of the
transformer.

Table 1. Proposed LSTM network architecture for equipment health
monitoring.

Input layer Shape: (timesteps, features)
LSTM layer 1 64 units, return_sequences=True dropout:

20% Batch normalization
LSTM layer 2 64 units, return_sequences=False dropout:

20% Batch normalization
Dense layer 32 units, ReLU activation dropout: 20%
Output layer 1-unit, linear activation
Loss function Mean squared error (MSE)

Optimizer Adam

Adam optimizer and Mean Squared Error loss function, designed
to effectively predict and analyze transformer health data.

The output data from this LSTM network is subsequently
provided as input to the fuzzy network. This fuzzy network
utilizes a set of predefined fuzzy functions to process the data
further. These functions, detailed below, are designed to handle
uncertainty and imprecision by applying fuzzy logic rules, which
help in interpreting and making decisions based on the LSTM-
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generated predictions. The integration of LSTM and fuzzy logic
enables a more nuanced and adaptive response, reflecting complex
relationships and variations in the data.
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LSTM Layer 1 
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Dropout: 20% 

Batch Normalization 

LSTM Layer 2 
64 units, return_sequences=False 

Dropout: 20% 

Batch Normalization 

Dense Layer 
32 units, ReLU activation 

Dropout: 20% 

Output Layer 1-unit, Linear activation 

Loss Function Mean Squared Error (MSE) 

Optimizer Adam 

The LSTM network is structured to analyze sequential data for transformer health monitoring. It 
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dropout and batch normalization to capture temporal patterns and prevent overfitting. A Dense 

layer with 32 units refines the output, and the final output layer uses a single neuron with a linear 

activation function for regression. The model is compiled with the Adam optimizer and Mean 

Squared Error loss function, designed to effectively predict and analyze transformer health data. 

The output data from this LSTM network is subsequently provided as input to the fuzzy network. 

This fuzzy network utilizes a set of predefined fuzzy functions to process the data further. These 

functions, detailed below, are designed to handle uncertainty and imprecision by applying fuzzy 

logic rules, which help in interpreting and making decisions based on the LSTM-generated 

predictions. The integration of LSTM and fuzzy logic enables a more nuanced and adaptive 

response, reflecting complex relationships and variations in the data. 
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10-State Representation 
Fig. 8. Gaussian membership functions for voltage, crrent, vibration, and
historical data: 10-state representation.

During the training process, parameters such as
v1, ..., c1, ..., vi1, ..., h1, ... are optimized. These parameters
correspond to different levels of voltage, current, vibration, and
historical data. Optimization adjusts these parameters to improve
the model’s accuracy in capturing variations and relationships in
the data, leading to more reliable predictions and assessments.

To evaluate the performance of the proposed method in
predicting equipment status and microgrid conditions, the model
has been assessed against other methods, demonstrating superior
accuracy and efficiency in fault detection and monitoring equipment

status. Next, we proceed to the empirical cumulative distribution
function (CDF) calculation, which utilizes the formula as:

F (x) =
k

n
(9)

Where F (x) represents the CDF at a specific time interval
x, k denotes the count of fault occurrences that are less than or
equal to x, and n signifies the total number of time intervals
considered. This calculation is performed for each unique time
interval, resulting in the corresponding CDF values.

Through this systematic approach, we can effectively analyze
fault occurrences over time and assess the reliability of our
proposed fault detection method. The empirical CDF is particularly
useful as it provides a non-parametric estimate of the underlying
distribution of fault occurrences, allowing for a clear visualization
of how faults accumulate over time and helping to identify patterns
or trends in the data.
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and efficiency in fault detection and monitoring equipment status.  Next, we proceed to the 

empirical cumulative distribution function (CDF) calculation, which utilizes the formula as: 
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Through this systematic approach, we can effectively analyze fault occurrences over time and 

assess the reliability of our proposed fault detection method. The empirical CDF is particularly 

useful as it provides a non-parametric estimate of the underlying distribution of fault occurrences, 

allowing for a clear visualization of how faults accumulate over time and helping to identify 

patterns or trends in the data. 

 

 

Figure9: CDF Comparison of Fault Detection Performance Across Four Devices Fig. 9. Comparison of fault detection performance across four devices.

The figures compare the CDFs of the proposed method and
Methods 18 and 23 across four devices. In each case, the proposed
method consistently outperforms both Methods 18 and 23, showing
faster and more efficient fault detection. The proposed method’s
CDF curves rise more steeply, indicating superior performance in
detecting faults at lower deterioration levels, while Methods 18
and 23 show slower detection across all devices. This demonstrates
the robustness and effectiveness of the proposed method across
different network environments.

The proposed model integrates LSTM networks with fuzzy logic
to enhance equipment health monitoring in microgrid systems.
The LSTM network, designed with two layers of 64 units,
effectively captures temporal patterns in sensor data, achieving
a 93% accuracy in classifying equipment states. This accuracy
represents a substantial improvement over traditional method.

Moreover, the analysis of transformer data, including voltage,
current, and vibration signals, revealed significant correlations
between these operational parameters. For instance, fluctuations
in voltage were strongly linked to current anomalies, offering
valuable insights for early fault detection. Such correlations allow
the model to identify potential issues that could be overlooked by
conventional approaches.

The model further benefits from historical data optimization,
where key parameters are fine-tuned to reflect real-world operational
conditions. This optimization led to a reduction in mean squared
error (MSE) from 0.057 to 0.028, significantly enhancing the
accuracy of the predictions. By leveraging both real-time and
historical data, the model provides a more reliable and adaptive
solution for predictive maintenance, ensuring better decision-
making and improved system performance in microgrids.
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4. CONCLUSION

Recent advancements in energy systems increasingly harness
machine learning (ML) and artificial intelligence (AI) to manage
complex datasets, thereby enhancing predictive maintenance and
fault detection capabilities. The proposed method, which integrates
Long Short-Term Memory (LSTM) networks with fuzzy logic,
demonstrates significant advancements in fault detection accuracy
and equipment health assessment within microgrid environments.
Simulation results indicate that this approach outperforms
conventional methods, achieving accuracy improvements of up
to 10%. By leveraging temporal pattern analysis through LSTM
networks, the method provides a comprehensive understanding
of data trends, while the fuzzy logic framework effectively
addresses uncertainties, enabling more informed and adaptive
decision-making. Consequently, the proposed method not only
accelerates fault detection but also enhances the reliability and
resilience of microgrids. This dual-focus approach establishes a
robust foundation for sustainable energy management, offering a
pathway toward more resilient and adaptive energy infrastructures.
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