

Research Paper

SOME SOLITONS ON ANTI-INVARIANT SUBMANIFOLD OF LP-KENMOTSU MANOFOLD ADMITTING ZAMKOVOY CONNECTION

Abhijit Mandal^{1,∗ 1}D and Meghlal Mallik² ^{1D}

¹Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, India, abhijit4791@gmail.com ²Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, India, meghlal.mallik@gmail.com

ARTICLE INFO

Article history: Received: 12 June 2024 Accepted: 30 November 2024 Communicated by Dariush Latifi

Keywords: Lorentzian para-Kenmotsu manifold Anti-invariant submanifold Zamkovoy connection Einstein soliton η -Einstein soliton

MSC: 53C05; 53C25; 53D15

ABSTRACT

In this paper we prove some curvature properties of anti-invariant submanifold of Lorentzian para-Kenmotsu manifold (briefly, LP-Kenmotsu manifold) with respect to Zamkovoy connection (∇^*) . Next, we study Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold with respect to Zamkovoy connection. Further, we study η -Einstein soliton on this submanifold with respect to Zamkovoy connection under different curvature conditions. Finally, we give an example of anti-invariant submanifold of 5-dimensional LP-Kenmotsu manifold admitting η -Einstein soliton with respect to ∇^* and verify a relation on the manifold under consideration.

1. INTRODUCTION

In 2008, the notion of Zamkovoy canonical connection (briefly, Zamkovoy connection) was introduced by Zamkovoy [\[30\]](#page-15-0) for a para-contact manifold. And this connection was defined as a canonical para-contact connection whose torsion is the obstruction of para-contact manifold to be a para-Sasakian manifold. Later, Biswas and Baishya [\[1,](#page-14-0) [2\]](#page-14-1) studied this connection on generalized pseudo Ricci symmetric Sasakian manifolds and on almost pseudo symmetric Sasakian manifolds. This connection was further studied by Blaga [\[3\]](#page-14-2) on para-Kenmotsu

[∗]Address correspondence to A. Mandal; Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, India, abhijit4791@gmail.com.

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License. Copyright © 2024 The Author(s). Published by University of Mohaghegh Ardabili.

manifolds. In 2020, Mandal and Das [\[7,](#page-14-3) [13,](#page-14-4) [14,](#page-14-5) [15\]](#page-14-6) studied in detail on various curvature tensors of Sasakian and LP-Sasakian manifolds admitting Zamkovoy connection. In 2021, they discussed LP-Sasakian manifolds equipped with Zamkovoy connection and conharmonic curvature tensor [\[16\]](#page-14-7). Recently, they introduced Zamkovoy connection on Lorentzian para-Kenmotsu manifold [\[17\]](#page-14-8) and studied Ricci soliton on it with respect to this connection. Zamkovoy connection for an *n*-dimensional almost contact metric manifold M equipped with an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g, is defined by

(1.1)
$$
\nabla_X^* Y = \nabla_X Y + (\nabla_X \eta)(Y) \xi - \eta(Y) \nabla_X \xi + \eta(X) \phi Y,
$$

for all X, $Y \in \chi(M)$, where $\chi(M)$ is the set of all vector fields on M.

In 2018, the notion of Lorentzian para-Kenmotsu manifold (LP- Kenmotsu manifold for short) has been introduced by Haseeb and Prasad [\[9\]](#page-14-9). Later, Shukla and Dixit [\[25\]](#page-14-10) studied φ-recurrent Lorentzian para-Kenmotsu manifolds and find that such type of manifolds are η -Einstein. Further, Chandra and Lal $\lceil 6 \rceil$ studied some special results on 3-dimensional Lorentzian para-Kenmotsu manifolds. This manifold is also studied by Sai Prasad, Sunitha Devi [\[22\]](#page-14-12).

In 1977, anti-invariant submanifolds of Sasakian space forms were introduced by Yano and Kon [\[28\]](#page-15-1). Later in 1985, Pandey and Kumar investigated properties of anti-invariant submanifolds of almost para-contact manifolds [\[20\]](#page-14-13). Recently, Karmakar and Bhattyacharyya [\[11\]](#page-14-14) studied anti-invariant submanifolds of some indefinite almost contact and para-contact manifolds. Most recently, Karmakar $[10]$ studied η -Ricci-Yamabe soliton on anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection.

Let ϕ be a differential map from a manifold \widetilde{N} into another manifold \widetilde{M} and let the dimensions of \widetilde{N} , \widetilde{M} be \widetilde{n} , \widetilde{m} ($\widetilde{n} < \widetilde{m}$), respectively. If rank $\phi = \widetilde{n}$, then ϕ is called an immersion of \widetilde{N} into \widetilde{M} . If $\phi(p) \neq \phi(q)$ for $p \neq q$, then ϕ is called an imbedding of \widetilde{N} into \widetilde{M} . If the manifolds \widetilde{N} and \widetilde{M} satisfy the following two conditions, then \widetilde{N} is called submanifold of \widetilde{M} - (i) $\widetilde{N} \subset \widetilde{M}$, (ii) the inclusion map from \widetilde{N} into \widetilde{M} is an imbedding of \widetilde{N} into \widetilde{M} .

A submanifold \widetilde{N} is called anti-invariant if $X \in T_x(\widetilde{N}) \Rightarrow \phi X \in T_x^{\perp}(\widetilde{N})$ for all $X \in \widetilde{N}$, where $T_x(\tilde{N})$ and $T_x^{\perp}(\tilde{N})$ are respectively tangent space and normal space at $x \in \tilde{N}$. Thus in an anti-invariant submanifold \widetilde{N} , we have for all $X, Y \in \widetilde{N}$

$$
g(X, \phi Y) = 0.
$$

The concept of Ricci flow was first introduced by R. S. Hamilton in the early 1980s. Hamilton [\[8\]](#page-14-16) observed that the Ricci flow is an excellent tool for simplifying the structure of a manifold. It is the process which deforms the metric of a Riemannian manifold by smoothing out the irregularities. The Ricci flow equation is given by

$$
\frac{\partial g}{\partial t} = -2S,
$$

where g is a Riemannian metric, S is Ricci tensor and t is time. The solitons for the Ricci flow is the solutions of the above equation, where the metrices at different times differ by a diffeomorphism of the manifold. A Ricci soliton is represented by a triple (g, V, λ) , where V is a vector field and λ is a scalar, which satisfies the equation

$$
(1.3) \t\t\t L_V g + 2S + 2\lambda g = 0,
$$

where S is Ricci curvature tensor and $L_V g$ denotes the Lie derivative of g along the vector field V. A Ricci soliton is said to be shrinking, steady, expanding according as $\lambda < 0, \lambda = 0, \lambda > 0$, respectively. The vector field V is called potential vector field and if it is a gradient of a smooth function, then the Ricci soliton (g, V, λ) is called a gradient Ricci soliton and the associated function is called potential function. Ricci soliton was further studied by many researchers. For instance, we see [\[19,](#page-14-17) [21,](#page-14-18) [24,](#page-14-19) [26\]](#page-15-2) and their references.

Catino and Mazzieri [\[5\]](#page-14-20) in 2016 first introduced the notion of Einstein soliton as a generalization of Ricci soliton. An almost contact manifold M with structure (ϕ, ξ, η, g) is said to have an Einstein soliton (q, V, λ) if

(1.4)
$$
L_{V}g + 2S + (2\lambda - r)g = 0,
$$

holds, where r being the scalar curvature. The Einstein soliton (g, V, λ) is said to be shrinking, steady or expanding according as $\lambda < 0, \lambda = 0$ or $\lambda > 0$, respectively. Einstein soliton creates some self-similar solutions of the Einstein flow equation

$$
\frac{\partial g}{\partial t} = -2S + rg.
$$

Again as a generalization of Einstein soliton the η -Einstein soliton on manifold $M(\phi,\xi,\eta,g)$ is introduced by A. M. Blaga [\[4\]](#page-14-21) and it is given by

(1.5)
$$
L_{V}g + 2S + (2\lambda - r)g + 2\beta\eta \otimes \eta = 0,
$$

where, β is some constant. When $\beta = 0$ the notion of η -Einstein soliton simply reduces to the notion of Einstein soliton. And when $\beta \neq 0$, the data (g, V, λ, β) is called proper η-Einstein soliton on M. The η-Einstein soliton is called shrinking if $\lambda < 0$, steady if $\lambda = 0$, and expanding if $\lambda > 0$.

A transformation of an *n*-dimensional Riemannian manifold M , which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation [\[12,](#page-14-22) [29\]](#page-15-3). A concircular transformation is always a conformal transformation. Here geodesic circle means a curve in M whose first curvature is constant and second curvature is identically zero. An interesting invariant of a concircular transformation is the concircular curvature tensor (\mathcal{W}) , which was defined in [\[27,](#page-15-4) [29\]](#page-15-3) as

(1.6)
$$
W(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y],
$$

for all X, Y, $Z \in \chi(M)$, set of all vector fields of the manifold M, where R is the Riemannian curvature tensor and r is the scalar curvature.

Definition 1.1. A Riemannian manifold M is called an η -Einstein manifold if its Ricci curvature tensor is of the form

$$
S(Y, Z) = k_1 g(Y, Z) + k_2 \eta(Y) \eta(Z),
$$

for all Y, $Z \in \chi(M)$, where k_1, k_2 are scalars.

This paper is structured as follows:

First two sections of the paper have been kept for introduction and preliminaries. In Section-3, we give expression for Zamkovoy connection on anti-invariant submanifold of LP-Kenmotsu manifold. In Section-4, we study Einstein soliton with respect to Zamkovoy connection on anti-invariant submanifold of LP-Kenmotsu manifold. Section-5 concerns

with η -Einstein soliton with respect to Zamkovoy connection on anti-invariant submanifold of LP-Kenmotsu manifold. Section-6 contains η -Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying $(\xi)_{R^*}$. $S^* = 0$. **Section-7** deals with η -Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying $(\xi.)_{\mathcal{W}^*}$. $S^* = 0$. In Section-8, we discuss η -Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying $(\xi.)_{S^*}$. $\mathcal{W}^* = 0$. Finally **Section-9**, contains an example of anti-invariant submanifold of 5-dimensional LP-Kenmotsu manifold admitting η -Einstein soliton with respect to Zamkovoy connection.

2. Preliminaries

Let \overline{M} be an *n*-dimensional Lorentzian almost para-contact manifold with structure (ϕ, ξ, η, g) , where η is a 1-form, ξ is the structure vector field, ϕ is a (1, 1)-tensor field and g is a Lorentzian metric satisfying

(2.1)
$$
\phi^{2}(X) = X + \eta(X)\xi, \eta(\xi) = -1,
$$

$$
(2.2) \t\t g(X,\xi) = \eta(X),
$$

(2.3)
$$
g(\phi X, \phi Y) = g(X, Y) + \eta(X) \eta(Y),
$$

for all vector fields X, Y on \overline{M} . A Lorentzian almost para-contact manifold is said to be Lorentzian para-contact manifold if η becomes a contact form. In a Lorentzian para-contact manifold the following relations also hold [\[18,](#page-14-23) [23\]](#page-14-24):

$$
\phi(\xi) = 0, \eta \circ \phi = 0,
$$

(2.5)
$$
g(X, \phi Y) = g(\phi X, Y).
$$

The manifold \overline{M} is called a Lorentzian para-Kenmotsu manifold if

(2.6)
$$
(\nabla_X \varphi) Y = -g(\phi X, Y) \xi - \eta(Y) \phi X,
$$

for all smooth vector fields X, Y on \overline{M} .

In a Lorentzian para-Kenmotsu manifold the following relations also hold [\[9,](#page-14-9) [17\]](#page-14-8):

$$
\nabla_X \xi = -X - \eta(X) \xi,
$$

(2.8)
$$
(\nabla_X \eta) Y = -g(X, Y) - \eta(X) \eta(Y),
$$

(2.9)
$$
\eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),
$$

(2.10)
$$
R(X,Y)\xi = \eta(Y)X - \eta(X)Y,
$$

(2.11)
$$
R(\xi, X)Y = g(X, Y)\xi - \eta(Y) X,
$$

$$
(2.12) \t\t R(\xi, X)\xi = X + \eta(X)\xi,
$$

(2.13)
$$
S(X,\xi) = (n-1)\eta(X),
$$

(2.14)
$$
S(\xi,\xi) = -(n-1),
$$

$$
(2.15) \tQ\xi = (n-1)\xi,
$$

(2.16)
$$
S(\phi X, \phi Y) = S(X, Y) + (n - 1) \eta(X) \eta(Y),
$$

for all smooth vector fields X, Y, Z on \overline{M} .

3. Zamkovoy connection on anti-invariant submanifold of LP-Kenmotsu manifold

Expression of Zamkovoy connection on an *n*-dimensional LP-Kenmotsu manifold \overline{M} [\[17\]](#page-14-8) is

(3.1)
$$
\nabla_X^* Y = \nabla_X Y - g(X, Y)\xi + \eta(Y) X + \eta(X)\phi Y.
$$

Setting $Y = \xi$ in [\(3.1\)](#page-4-0) we obtain

(3.2)
$$
\nabla_X^* \xi = -2 \left[X + \eta \left(X \right) \xi \right].
$$

The Riemannian curvature tensor R^* with respect to Zamkovoy connection [\[17\]](#page-14-8) on \overline{M} is given by

$$
R^*(X,Y)Z = R(X,Y)Z + 3g(Y,Z)X - 3g(X,Z)Y
$$

+2g(Y,Z) \eta(X)\xi - 2g(X,Z) \eta(Y)\xi
+2g(Y,\phi Z)\eta(X)\xi - 2g(X,\phi Z) \eta(Y)\xi
+2\eta(Y) \eta(Z) X - 2\eta(X) \eta(Z) Y
(3.3)
-2\eta(Y) \eta(Z) \phi X + 2\eta(X) \eta(Z) \phi Y.

For an anti-invariant submanifold M of \overline{M} the Riemannian curvature tensor with respect to Zamkovoy connection is given by

(3.4)
\n
$$
R^*(X,Y) Z = R(X,Y) Z + 3g(Y,Z) X - 3g(X,Z) Y \n+2g(Y,Z) \eta(X) \xi - 2g(X,Z) \eta(Y) \xi \n+2\eta(Y) \eta(Z) X - 2\eta(X) \eta(Z) Y \n-2\eta(Y) \eta(Z) \phi X + 2\eta(X) \eta(Z) \phi Y.
$$

Writing the equation (3.4) by the cyclic permutations of X, Y and Z and using the fact that $R(X, Y) Z + R(Y, Z) X + R(Z, X) Y = 0$, we have

(3.5)
$$
R^* (X,Y) Z + R^* (Y,Z) X + R^* (Z,X) Y = 0.
$$

Therefore, the Riemannian curvature tensor with respect to Zamkovoy connection on M satisfies the 1st Bianchi identity.

Taking inner product of (3.4) with a vector field U, we get

(3.6)
$$
R^*(X, Y, Z, U) = R(X, Y, Z, U) + 3g(Y, Z) g(X, U) - 3g(X, Z) g(Y, U) + 2g(Y, Z) \eta(X) \eta(U) - 2g(X, Z) \eta(Y) \eta(U) + 2g(X, U) \eta(Y) \eta(Z) - 2\eta(X) \eta(Z) g(Y, U),
$$

where $R^*(X, Y, Z, U) = g(R^*(X, Y) Z, U)$ and $X, Y, Z, U \in \chi(M)$. Contracting (3.6) over X and U, we get

(3.7)
$$
S^*(Y,Z) = S(Y,Z) + (3n-5)g(Y,Z) + 2(n-2)\eta(Y)\eta(Z),
$$

where S^* is the Ricci curvature tensor with respect to Zamkovoy connection.

Proposition 3.1. The Riemannian curvature tensor with respect to Zamkovoy connection on an anti-invariant submanifold of LP-Kenmotsu manifold satisfies the 1st Bianchi identity. Proposition 3.2. Ricci tensor with respect to Zamkovoy connection of an anti-invariant submanifold of LP-Kenmotsu manifold is symmetric and it is given by [\(3.7\)](#page-4-3).

Lemma 3.3. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting Zamkovoy connetion, then

(3.8)
$$
R^*(X, Y) \xi = 2 [\eta(Y) X - \eta(X) Y + \eta(Y) \phi X - \eta(X) \phi Y],
$$

\n(3.9)
$$
R^*(\xi, Y) Z = 2 [g(Y, Z) \xi - \eta(Z) Y - \eta(Z) \phi Y],
$$

\n(3.10)
$$
R^*(\xi, Y) \xi = 2 [\eta(Y) \xi + Y + \phi Y],
$$

\n(3.11)
$$
S^*(\xi, Z) = S^*(Z, \xi) = 2 (n - 1) \eta(Z),
$$

\n(3.12)
$$
Q^* Y = QY + (3n - 5)Y + 2(n - 2) \eta(Y) \xi,
$$

\n(3.13)
$$
Q^* \xi = 2 (n - 1) \xi,
$$

\n(3.14)
$$
r^* = r + (n - 1)(3n - 4),
$$

for all X, Y, $Z \in \chi(M)$, where R^* , Q^* and r^* denote Riemannian curvature tensor, Ricci operator and scalar curvature of M with respect to ∇^* , respectively.

Theorem 3.4. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu manifold is Ricci flat with respect to Zamkovoy connection, then M is η-Einstein manifold.

Proof. Let M be an *n*-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold, which is Ricci flat with respect to Zamkovoy connection i.e., $S^*(Y, Z) = 0$, for all Y, Z \in $\chi(M)$. Then from (3.7) , we have

$$
S(Y,Z) = -(3n-5)g(Y,Z) - 2(n-2)\eta(Y)\eta(Z),
$$

which implies that M is an η -Einstein manifold. \square

Concircular curvature tensor of M with respect to Zamkovoy connection is given by

(3.15)
$$
W^*(X, Y) Z = R^*(X, Y) Z - r^* - \frac{r^*}{n (n-1)} [g(Y, Z) X - g(X, Z) Y],
$$

for all $X, Y, Z \in \chi(M)$, where R^*, W^* and r^* are Riemannian curvature tensor, concircular curvature tensor and scalar curvature tensor of M with respect to ∇^* , respectively.

Lemma 3.5. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu manifold admitting Zamkovoy connetion, then

(3.16)
$$
\eta(W^*(X, Y) Z) =
$$

$$
\left[\frac{r + (n - 1)(3n - 4)}{n(n - 1)} \right] [g(X, Z) \eta(Y) - g(Y, Z) \eta(X)],
$$

(3.17)
$$
\eta(W^*(X,Y)\xi) = 0, \eta(W^*(X,\xi)\xi) = 0, \eta(W^*(\xi,Y)\xi) = 0,
$$

(3.18)
$$
\mathcal{W}^*(X, Y) \xi = \left[\frac{r + (n-1)(n-4)}{n(n-1)} \right] [\eta(X) Y - \eta(Y) X] + 2 [\eta(Y) \phi X - \eta(X) \phi Y],
$$

(3.19)
$$
\mathcal{W}^*(\xi, X) Y = -\left[\frac{r + (n-1)(n-4)}{n(n-1)} \right] \left[g(X, Y) \xi - \eta(Y) X \right],
$$

for all X, Y, $Z \in \chi(M)$.

4. Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold with respect to Zamkovoy connection

Theorem 4.1. An Einstein soliton (g, V, λ) on an anti-invariant submanifold of LP-Kenmotsu manifold is invariant under Zamkovoy connection if relation holds

(4.1)
$$
0 = 2g(X, Y)\eta(V) - g(X, V)\eta(Y) - g(Y, V)\eta(X)
$$

$$
-(n-2)(3n-7)g(X, Y) + 4(n-2)\eta(X)\eta(Y).
$$

Proof. The equation (1.4) with respect to Zamkovoy connection on an anti-invariant submanifold M of LP-Kenmotsu manifold may be written as

(4.2)
$$
(L_V^*g)(X,Y) + 2S^*(X,Y) + (2\lambda - r^*)g(X,Y) = 0,
$$

where L_V^*g denote Lie derivative of g with respect to ∇^* along the vector field V and S^* is the Ricci curvature tensor of M with respect to ∇^* .

After expanding (4.2) and using (3.1) and (3.7) we have

(4.3)
\n
$$
(L_V^* g)(X, Y) + 2S^*(X, Y) + (2\lambda - r^*)g(X, Y)
$$
\n
$$
= g(\nabla_X^* V, Y) + g(X, \nabla_Y^* V) + 2S^*(X, Y) + (2\lambda - r^*)g(X, Y)
$$
\n
$$
= (L_V g)(X, Y) + 2S(X, Y) + (2\lambda - r)g(X, Y)
$$
\n
$$
+ 2g(X, Y)\eta(V) - g(X, V)\eta(Y) - g(Y, V)\eta(X)
$$
\n(4.3)
\n
$$
-(n-2)(3n-7)g(X, Y) + 4(n-2)\eta(X)\eta(Y),
$$

which shows that the Einstein soliton (g, V, λ) is invariant on M under Zamkovoy connection, if (4.1) holds.

Theorem 4.2. Let M be an anti-invariant submanifold of LP-Kenmotsu manifold admitting an Einstein soliton (g, V, λ) with respect to ∇^* . If the non-zero potential vector field V be collinear with the structure vector field of M, then the soliton is

- 1. expanding if $r > -(3n-8)(n-1)$,
- 2. steady if $r = -(3n-8)(n-1)$,
- 3. shrinking if $r < -(3n-8)(n-1)$.

Proof. Setting $V = \xi$ in [\(4.2\)](#page-6-0) and using [\(3.2\)](#page-4-4) we get

(4.4)
\n
$$
0 = (L_{\xi}^{*}g)(X,Y) + 2S^{*}(X,Y) + (2\lambda - r^{*})g(X,Y)
$$
\n
$$
= g(\nabla_{X}^{*}\xi, Y) + g(X, \nabla_{Y}^{*}\xi) + 2S^{*}(X,Y) + (2\lambda - r^{*})g(X,Y)
$$
\n
$$
= [-4 - (n - 2)(3n - 7) + 2\lambda - r] g(X,Y)
$$
\n
$$
+ 2S(X,Y) + 4(n - 3)\eta(X)\eta(Y).
$$

Putting $X = Y = \xi$ and using [\(2.1\)](#page-3-0), [\(2.14\)](#page-3-1) in [\(4.4\)](#page-6-2) we get

$$
\lambda = \frac{1}{2} [r + (3n - 8)(n - 1)],
$$

which proves the theorem.

5. η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold with respect to Zamkovoy connection

Theorem 5.1. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu manifold admits η-Einstein soliton (g, ξ, λ, β) with respect to Zamkovoy connection, then the soliton scalars are given by the following equations

$$
\lambda = \frac{r}{2} \left[\frac{n-2}{n-1} \right] + \frac{1}{2} (3n^2 - 10n + 12),
$$

\n
$$
\beta = -\frac{1}{2(n-1)} [r - (n-1)(n+4)].
$$

Proof. The equation [\(1.5\)](#page-2-1) with respect to Zamkovoy connection on an anti-invariant submanifold M of LP-Kenmotsu manifold may be written as

(5.1)
$$
(L_V^*g)(X,Y) + 2S^*(X,Y) + (2\lambda - r^*)g(X,Y) + 2\beta \eta(X)\eta(Y) = 0.
$$

Applying $V = \xi$ in [\(5.1\)](#page-7-0) we get

(5.2)
$$
0 = g(\nabla_X^* \xi, Y) + g(X, \nabla_Y^* \xi) + 2S^*(X, Y) + (2\lambda - r^*)g(X, Y) + 2\beta \eta(X) \eta(Y).
$$

Using (3.2) in (5.2) we obtain

(5.3)
$$
0 = 2S^*(X,Y) + (2\lambda - r^* - 4)g(X,Y) + 2(\beta - 2)\eta(X)\eta(Y).
$$

Using (3.7) in (5.3) we get

(5.4)
$$
0 = 2S(X,Y) + [2\lambda - (r+4) - (n-2)(3n-7)]g(X,Y) + 2(\beta + 2n - 6)\eta(X)\eta(Y).
$$

Setting $X = Y = \xi$ in [\(5.4\)](#page-7-3) we have

(5.5)
$$
\lambda = \beta + \frac{1}{2} [r + (3n - 8)(n - 1)].
$$

Taking an orthonormal frame field and contracting (5.4) over X and Y we obtain

(5.6)
$$
\beta = \lambda n - \frac{r}{2}(n-2) - \frac{1}{2}(n-1)(3n^2 - 10n + 12).
$$

Comparing the value of β from [\(5.5\)](#page-7-4) and [\(5.6\)](#page-7-5) we get

(5.7)
$$
\lambda = \frac{r}{2} \left[\frac{n-2}{n-1} \right] + \frac{1}{2} (3n^2 - 10n + 12).
$$

Putting the value of λ from [\(5.7\)](#page-7-6) in [\(5.5\)](#page-7-4) we get

$$
\beta = -\frac{1}{2(n-1)} [r - (n-1)(n+4)].
$$

Corollary 5.2. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu manifold contains η -Einstein soliton (g, ξ, λ, β) with respect to ∇^* then M is η -Einstein manifold

 \Box

Proof. From equation [\(5.4\)](#page-7-3) we have

$$
S(X,Y) = -\left[\frac{2\lambda - (r+4) - (n-2)(3n-7)}{2}\right]g(X,Y) - (\beta + 2n - 6)\eta(X)\eta(Y),
$$

which shows that M is η -Einstein manifold.

Theorem 5.3. Let M be an anti-invariant submanifold of an LP-Kenmotsu manifold admitting η-Einstein soliton (g, ξ, λ, β) with respect to ∇^* . If the structure vector field ξ of M be parallel i.e., $\nabla_X \xi = 0$, then M is an η -Einstein manifold.

Proof. If ξ is parallel, then from (3.1) we have

(5.8)
$$
\nabla_X^* \xi = -X - \eta(X) \xi.
$$

After expanding the Lie derivative and setting $V = \xi$ in [\(5.1\)](#page-7-0) we get

(5.9)
$$
0 = g(\nabla_X^* \xi, Y) + g(X, \nabla_Y^* \xi) + 2S^*(X, Y) + (2\lambda - r^*)g(X, Y) + 2\beta \eta(X) \eta(Y).
$$

Using (3.7) , (3.14) and (5.8) in (5.9) we get

$$
S(X,Y) = -\frac{1}{2} [2\lambda - r + (3n - 7)(n - 2)] g(X,Y) - (\beta + 2n - 5)\eta(X)\eta(Y),
$$

which shows that M is η -Einstein.

Theorem 5.4. If M be an anti-invariant submanifold of an LP-Kenmotsu manifold admitting η -Einstein soliton (g, V, λ, β) with respect to ∇^* such that $V \in D$, then scalar curvature of M is given by

$$
r = 2(\lambda - \beta) - (n - 1)(3n - 8),
$$

where D is a distribution on M defined by $D = \ker \eta$.

Proof. Here $V \in D$ and hence

$$
(5.10) \t\t \eta(V) = 0.
$$

Taking covariant derivative of [\(5.10\)](#page-8-2) with respect to ξ and using $(\nabla_{\xi} \eta) V = 0$, we get

$$
(5.11) \t\t \eta\left(\nabla_{\xi}V\right) = 0.
$$

In view of (3.1) and (5.11) we have

(5.12)
$$
\eta\left(\nabla_{\xi}^{*}V\right) = 0.
$$

After expanding the Lie derivative of (5.1) we get

(5.13)
$$
0 = g(\nabla_X^* V, Y) + g(X, \nabla_Y^* V) + 2S^*(X, Y) + (2\lambda - r^*)g(X, Y) + 2\beta \eta(X) \eta(Y).
$$

Setting $X = Y = \xi$ in [\(5.13\)](#page-8-4) and using [\(3.11\)](#page-5-0), [\(5.12\)](#page-8-5), we obtain

$$
0 = 2\lambda - r - (n - 1)(3n - 8) - 2\beta.
$$

This gives the theorem.

6. η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold SATISFYING $(\xi.)_{R^*}$. $S^* = 0$

Theorem 6.1. Let $M(\phi, \xi, \eta, q)$ be an n-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold admitting η -Einstein soliton (g, ξ, λ, β) with respect to ∇^* . If M satisfies $(\xi_i)_{B^*}.S^* = 0$, then the soliton constants are given by

$$
\beta = 2, \lambda = \frac{1}{2} [r + (3n - 8)(n - 1) + 4].
$$

Proof. If M contains an η -Einstein soliton (g, ξ, λ, β) with respect to ∇^* , then [\(5.2\)](#page-7-1) gives

(6.1)
$$
S^*(X,Y) = \left[2 - \lambda + \frac{r^*}{2}\right]g(X,Y) - (\beta - 2)\eta(X)\eta(Y).
$$

The condition that must be satisfied by S^* is

(6.2)
$$
S^*(R^*(\xi, X)Y, Z) + S^*(Y, R^*(\xi, X)Z) = 0,
$$

for all X, Y, $Z \in \chi(M)$.

Using (3.9) and replacing the expression of S^* from (6.1) in (6.2) we get

(6.3)
$$
0 = (\beta - 2) [g(X, Y)\eta (Z) + \eta (Y) \eta (Y) \eta (Z)] + (\beta - 2) [g(X, Z)\eta (Y) + \eta (Y) \eta (Y) \eta (Z)].
$$

For $Z = \xi$, we have

$$
(\beta - 2)g(\phi X, \phi Y) = 0,
$$

for all $X, Y \in \chi(M)$, which gives

 $\beta = 2.$

From (5.5) and (6.3) it follows that

$$
\beta = 2, \lambda = \frac{1}{2} [r + (3n - 8)(n - 1) + 4].
$$

Corollary 6.2. The η-Einstein soliton (q, ξ, λ, β) on an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu manifold satisfying $(\xi)_{R^*}$. $S^* = 0$ is shrinking, steady or expanding according as

$$
r < -[(3n-8)(n-1)+4],
$$

\n
$$
r = -[(3n-8)(n-1)+4],
$$

\n
$$
r > -[(3n-8)(n-1)+4].
$$

Corollary 6.3. There is no Einstein soliton on M satisfying $(\xi_i)_{R^*}$. $S^* = 0$ with potential vector field ξ.

7. η -EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP -KENMOTSU MANIFOLD SATISFYING $(\xi.)_{\mathcal{W}^*}$. $S^* = 0$

Theorem 7.1. Let $M(\phi, \xi, \eta, g)$ be an n-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold admitting η -Einstein soliton (g, ξ, λ, β) with respect to ∇^* . If M satisfies $(\xi.)_{\mathcal{W}^*}$.S^{*} = 0, then the scalar curvature of M is given by

$$
r = -2(n-1)(n-2),
$$

provided $\beta \neq 2$.

Proof. The condition that must be satisfied by S^* is

(7.1)
$$
0 = S^*(\mathcal{W}^*(\xi, X)Y, Z) + S^*(Y, \mathcal{W}^*(\xi, X)Z),
$$

for all X, Y, $Z \in \chi(M)$.

Replacing the expression of S^* from (6.1) in (7.1) we obtain

(7.2)
$$
0 = (\beta - 2) \left[1 - \frac{r^*}{n(n-1)} \right] \left[g(X, Y) \eta(Z) + \eta(Y) \eta(Y) \eta(Z) \right] + (\beta - 2) \left[1 - \frac{r^*}{n(n-1)} \right] \left[g(X, Z) \eta(Y) + \eta(Y) \eta(Y) \eta(Z) \right].
$$

Setting $Z = \xi$ in [\(7.2\)](#page-10-1) we get

(7.3)
$$
0 = (\beta - 2) \left[1 - \frac{r^*}{n(n-1)} \right] g(\phi X, \phi Y).
$$

Using (3.14) in (7.3) we get

$$
r = -2(n-1)(n-2),
$$

if

 $\beta \neq 2$,

which gives the theorem. \Box

8. η -EINSTEIN SOLITON ON ANTI-INVARIANT SUBMANIFOLD OF LP -KENMOTSU MANIFOLD SATISFYING $(\xi.)_{S^*}$. $\mathcal{W}^* = 0$

Theorem 8.1. Let $M(\phi, \xi, \eta, g)$ be an n-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold admitting η -Einstein soliton (g, ξ, λ, β) with respect to ∇^* . If M satisfies $(\xi.)_{S^*}$. $\mathcal{W}^* = 0$, then the soliton constants are given by

$$
\lambda = \frac{r + (n - 1)(3n - 4) + 4}{2} + \frac{2(n - 1)[r + (n - 1)(3n - 4)]}{r + (n - 1)(n - 4)},
$$

$$
\beta = 2n + \frac{2(n - 1)[r + (n - 1)(3n - 4)]}{r + (n - 1)(n - 4)}.
$$

Proof. The condition that must be satisfied by S^* is

(8.1)
\n
$$
0 = S^*(X, \mathcal{W}^*(Y, Z)V)\xi - S^*(\xi, \mathcal{W}^*(Y, Z)V)X
$$
\n
$$
+S(X, Y)\mathcal{W}^*(\xi, Z)V - S^*(\xi, Y)\mathcal{W}^*(X, Z)V
$$
\n
$$
+S^*(X, Z)\mathcal{W}^*(Y, \xi)V - S^*(\xi, Z)\mathcal{W}^*(Y, X)V
$$
\n
$$
+S^*(X, V)\mathcal{W}^*(Y, Z)\xi - S^*(\xi, V)\mathcal{W}^*(Y, Z)X,
$$

for all X, Y, Z, $V \in \chi(M)$. Taking inner product with ξ the relation [\(8.1\)](#page-10-3) becomes

(8.2)
\n
$$
0 = -S^*(X, \mathcal{W}^*(Y, Z)V) - S^*(\xi, \mathcal{W}^*(Y, Z)V)\eta(X) \n+S^*(X, Y)\eta(\mathcal{W}^*(\xi, Z)V) - S^*(\xi, Y)\eta(\mathcal{W}^*(X, Z)V) \n+S^*(X, Z)\eta(\mathcal{W}^*(Y, \xi)V) - S^*(\xi, Z)\eta(\mathcal{W}^*(Y, X)V) \n+S^*(X, V)\eta(\mathcal{W}^*(Y, Z)\xi) - S^*(\xi, V)\eta(\mathcal{W}^*(Y, Z)X).
$$

Setting $V = \xi$ and using [\(3.16\)](#page-5-1), [\(3.17\)](#page-5-2), [\(3.18\)](#page-5-3), [\(3.19\)](#page-5-4) we get

(8.3)
$$
0 = S^*(X, \mathcal{W}^*(Y, Z)\xi) + S^*(\xi, \mathcal{W}^*(Y, Z)\xi)\eta(X) + S^*(\xi, \xi)\eta(\mathcal{W}^*(Y, Z)X).
$$

Replacing the expression of S^* from (6.1) in (8.3) we obtain

(8.4)
$$
0 = \left[2 - \lambda + \frac{r^*}{2}\right] \left[2 - \frac{r^*}{n(n-1)}\right] \left[g\left(X, Y\right) \eta\left(Z\right) - g\left(X, Z\right) \eta\left(Y\right)\right] + \frac{2r^*}{n} \left[g\left(X, Y\right) \eta\left(Z\right) - g\left(X, Z\right) \eta\left(Y\right)\right].
$$

Setting $Z = \xi$ in [\(8.4\)](#page-11-1) we get

(8.5)
$$
0 = \left[2 - \lambda + \frac{r^*}{2}\right] \left[2 - \frac{r^*}{n(n-1)}\right] g\left(\phi X, \phi Y\right) + \frac{2r^*}{n} g\left(\phi X, \phi Y\right),
$$

Using (3.14) in (8.5) we obtain

$$
\lambda = \frac{r + (n - 1)(3n - 4) + 4}{2} + \frac{2(n - 1)\left[r + (n - 1)(3n - 4)\right]}{r + (n - 1)(n - 4)}.
$$

Putting the value of λ in [\(5.5\)](#page-7-4) we get

$$
\beta = 2n + \frac{2(n-1)\left[r + (n-1)(3n-4)\right]}{r + (n-1)(n-4)}.
$$

This gives the theorem. \Box

9. Example of anti-invariant submanifold of 5-dimensional LP-Kenmotsu manifold admitting η-Einstein soliton with respect to Zamkovoy **CONNECTION**

We consider a 5-dimensional manifold

$$
M = \left\{ (x, y, z, u, v) \in R^5 \right\},\
$$

where (x, y, z, u, v) are the standard co-ordinates in $R⁵$. We choose the linearly independent vector fields

$$
E_1 = x\frac{\partial}{\partial x}, E_2 = x\frac{\partial}{\partial y}, E_3 = x\frac{\partial}{\partial z}, E_4 = x\frac{\partial}{\partial u}, E_5 = x\frac{\partial}{\partial v}.
$$

Let g be the Riemannian metric defined by $g(E_i, E_j) = 0$, if $i \neq j$ for $i, j = 1, 2, 3, 4, 5$, and $g(E_1, E_1) = -1$, $g(E_2, E_2) = 1$, $g(E_3, E_3) = 1$, $g(E_4, E_4) = 1$, $g(E_5, E_5) = 1$.

Let η be the 1-form defined by $\eta(X) = g(X, E_1)$, for any $X \in \chi(M^5)$. Let ϕ be the $(1, 1)$ tensor field defined by

(9.1)
$$
\phi E_1 = 0, \phi E_2 = -E_3, \phi E_3 = -E_2, \phi E_4 = -E_5, \phi E_5 = -E_4.
$$

Let X, Y, $Z \in \chi(M^5)$ be given by

$$
X = x_1E_1 + x_2E_2 + x_3E_3 + x_4E_4 + x_5E_5,
$$

\n
$$
Y = y_1E_1 + y_2E_2 + y_3E_3 + y_4E_4 + y_5E_5,
$$

\n
$$
Z = z_1E_1 + z_2E_2 + z_3E_3 + z_4E_4 + z_5E_5.
$$

Then, we have

$$
g(X,Y) = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5,
$$

\n
$$
\eta(X) = -x_1,
$$

\n
$$
g(\phi X, \phi Y) = x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5.
$$

Using the linearity of g and ϕ , $\eta(E_1) = -1$, $\phi^2 X = X + \eta(X) E_1$ and $g(\phi X, \phi Y) =$ $g(X, Y) + \eta(X) \eta(Y)$ for all $X, Y \in \chi(M)$.

We have

$$
[E_1, E_2] = E_2, [E_1, E_3] = E_3, [E_1, E_4] = E_4, [E_1, E_5] = E_5,
$$

\n
$$
[E_2, E_1] = -E_2, [E_3, E_1] = -E_3, [E_4, E_1] = -E_4, [E_5, E_1] = -E_5,
$$

\n
$$
[E_i, E_j] = 0 \text{ for all others } i \text{ and } j.
$$

Let the Levi-Civita connection with respect to g be ∇ , then using Koszul formula we get the following

$$
\begin{array}{rcll} \nabla_{_{E_1}}E_1&=&0,\nabla_{_{E_1}}E_2=0,\nabla_{_{E_1}}E_3=0,\nabla_{_{E_1}}E_4=0,\nabla_{_{E_1}}E_5=0,\\ \nabla_{_{E_2}}E_1&=&-E_2,\nabla_{_{E_2}}E_2=-E_1,\nabla_{_{E_2}}E_3=0,\,\,\nabla_{_{E_2}}E_4=0,\nabla_{_{E_2}}E_5=0,\\ \nabla_{_{E_3}}E_1&=&-E_3,\,\,\nabla_{_{E_3}}E_2=0\,\,,\nabla_{_{E_3}}E_3=-E_1\,\,,\nabla_{_{E_3}}E_4=0\,\,,\nabla_{_{E_3}}E_5=0,\\ \nabla_{_{E_4}}E_1&=&-E_4,\nabla_{_{E_4}}E_2=0,\nabla_{_{E_4}}E_3=0,\nabla_{_{E_4}}E_4=-E_1,\nabla_{_{E_4}}E_5=0,\\ \nabla_{_{E_5}}E_1&=&-E_5,\nabla_{_{E_5}}E_2=0,\nabla_{_{E_5}}E_3=0,\nabla_{_{E_5}}E_4=0,\,\,\nabla_{_{E_5}}E_5=-E_1. \end{array}
$$

From the above results we see that the structure (ϕ, ξ, η, g) satisfies

$$
(\nabla_X \phi)Y = -g(\phi X, Y)\xi - \eta(Y)\phi X,
$$

for all $X, Y \in \chi$ (M^5) , where $\eta(\xi) = \eta(E_1) = -1$. Hence $M^5(\phi, \xi, \eta, g)$ is a LP-Kenmotsu manifold.

Let $M^*(\phi,\xi,\eta,g)$ be an anti-invariant submanifold of $M^5(\phi,\xi,\eta,g)$. Then the non-zero components of Riemannian curvature of M^* with respect to Levi-Civita connection ∇ are given by

$$
R(E_1, E_2) E_1 = E_2, R(E_1, E_2) E_2 = -E_1, R(E_1, E_3) E_1 = E_3,
$$

\n
$$
R(E_1, E_3) E_3 = -E_1, R(E_1, E_4) E_1 = E_4, R(E_1, E_4) E_4 = -E_1,
$$

\n
$$
R(E_1, E_5) E_1 = E_5, R(E_1, E_5) E_5 = -E_1, R(E_2, E_1) E_2 = E_1,
$$

\n
$$
R(E_2, E_1) E_1 = -E_2, R(E_2, E_3) E_2 = E_3, R(E_2, E_3) E_3 = -E_2,
$$

\n
$$
R(E_2, E_4) E_2 = E_4, R(E_2, E_4) E_4 = -E_2, R(E_2, E_5) E_2 = E_5,
$$

\n
$$
R(E_2, E_5) E_5 = -E_2, R(E_3, E_1) E_3 = E_1, R(E_3, E_1) E_1 = -E_3,
$$

\n
$$
R(E_3, E_2) E_3 = E_2, R(E_3, E_2) E_2 = -E_3, R(E_3, E_4) E_3 = E_4,
$$

\n
$$
R(E_3, E_4) E_4 = -E_3, R(E_3, E_5) E_3 = E_5, R(E_3, E_5) E_5 = -E_3,
$$

\n
$$
R(E_4, E_1) E_4 = E_1, R(E_4, E_1) E_1 = -E_4, R(E_4, E_2) E_4 = E_2,
$$

\n
$$
R(E_4, E_2) E_2 = -E_4, R(E_4, E_3) E_4 = E_3, R(E_4, E_3) E_3 = -E_4,
$$

\n
$$
R(E_4, E_5) E_4 = E_5, R(E_4, E_5) E_5 = -E_4, R(E_5, E_1) E_5 = E_1,
$$

\n
$$
R(E_5, E_1) E_1 = -E_5, R(E_5, E_2) E_5 = E_2, R(E_5, E_2) E_2 = -E_5,
$$

\n $$

By the help of (3.1) , we obtain

$$
\nabla_{E_1}^* E_1 = 0, \nabla_{E_1}^* E_2 = E_3, \nabla_{E_1}^* E_3 = E_2, \nabla_{E_1}^* E_4 = E_5, \nabla_{E_1}^* E_5 = E_4,
$$
\n
$$
\nabla_{E_2}^* E_1 = -2E_2, \nabla_{E_2}^* E_2 = -2E_1, \nabla_{E_2}^* E_3 = 0, \nabla_{E_2}^* E_4 = 0, \nabla_{E_2}^* E_5 = 0,
$$
\n
$$
\nabla_{E_3}^* E_1 = -2E_3, \nabla_{E_3}^* E_2 = 0, \nabla_{E_3}^* E_3 = -2E_1, \nabla_{E_3}^* E_4 = 0, \nabla_{E_3}^* E_5 = 0,
$$
\n
$$
\nabla_{E_4}^* E_1 = -2E_4, \nabla_{E_4}^* E_2 = 0, \nabla_{E_4}^* E_3 = 0, \nabla_{E_4}^* E_4 = -2E_1, \nabla_{E_4}^* E_5 = 0,
$$
\n
$$
\nabla_{E_5}^* E_1 = -2E_5, \nabla_{E_5}^* E_2 = 0, \nabla_{E_5}^* E_3 = 0, \nabla_{E_5}^* E_4 = 0, \nabla_{E_5}^* E_5 = -2E_1.
$$

Some of the non-zero components of Riemannian curvature tensor of M[∗] with respect to Zamkovoy connection are given by

$$
R^*(E_1, E_3) E_1 = 2 (E_2 - E_3), R^*(E_2, E_3) E_2 = -4E_3,
$$

\n
$$
R^*(E_4, E_3) E_4 = -4E_3, R^*(E_5, E_3) E_5 = -4E_3,
$$

\n
$$
R^*(E_3, E_1) E_1 = 2 (E_2 - E_3), R^*(E_3, E_2) E_2 = 4E_3,
$$

\n
$$
R^*(E_3, E_4) E_4 = 4E_3, R^*(E_3, E_5) E_5 = 4E_4.
$$

Using the above curvature tensors the Ricci curvature tensors of M^* with respect to ∇ and ∇^* are

$$
S(E_1, E_1) = -4, S(E_2, E_2) = S(E_3, E_3) = -2,
$$

\n
$$
S(E_4, E_4) = S(E_5, E_5) = -2,
$$

\n
$$
S^*(E_1, E_1) = -8, S^*(E_2, E_2) = S^*(E_4, E_4) = 14,
$$

\n
$$
S^*(E_5, E_5) = S^*(E_3, E_3) = 14.
$$

Therefore, the scalar curvature tensor of M^* with respect to Levi-Civita connection is $r =$

 -12 and scalar curvature tensor with respect to Zamkovoy connection is $r^* = 32$.

Setting
$$
V = X = Y = E_1
$$
 in (5.1) we have

$$
0 = (L_{E_1}^* g) (E_1, E_1) + 2S^* (E_1, E_1) + (2\lambda - r^*) g (E_1, E_1) + 2\beta \eta (E_1) \eta (E_1),
$$

\n
$$
= g (\nabla_{E_1}^* E_1, E_1) + g (E_1, \nabla_{E_1}^* E_1)
$$

\n
$$
+ 2S^* (E_1, E_1) + (2\lambda - r^*) g (E_1, E_1) + 2\beta \eta (E_1) \eta (E_1),
$$

\n
$$
= 0 + 0 + 2(-8) + (2\lambda - 32)(-1) + 2\beta,
$$

\n
$$
= \beta - \lambda + 8,
$$

which gives

$$
\lambda = \beta + 8,
$$

= $\lambda + \frac{1}{2} [-12 + 28],$
= $\lambda + \frac{1}{2} [-12 + (3 \times 5 - 8)(5 - 1)],$
= $\lambda + \frac{1}{2} [r + (3n - 8)(n - 1)],$

which shows that λ and β satisfies relation [\(5.5\)](#page-7-4).

Acknowledgement.The authors would like to thank the reviewers and editor for their constructive comments and valuable suggestions that can improve the quality of the paper.

REFERENCES

- [1] A. Biswas, and K. K. Baishya, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin of the Transilvania University of Brasov, 12(2) (2019), 233-246.
- [2] A. Biswas, and K. K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scientific Studies and Research Series Mathematics and Informatics, $29(1)$ (2019), 59-72.
- [3] A. M. Blaga, Canonical connections on para-Kenmotsu manifolds, Novi Sad J. Math., 45(2) (2015), 131-142.
- [4] A. M. Blaga, On Gradient η-Einstein solitons, Kragujev. J. Math., 42(2) (2018), 229-237.
- [5] G. Catino and L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal., 132 (2016), 66-94.
- [6] V. Chandra and S. Lal,On 3-dimensional Lorentzian para-Kenmotsu manifolds, Diff. Geo. Dynamical System, 22 (2020), 87-94.
- [7] A. Das and A. Mandal, Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection, The Aligarh Bull. of Math., 39(2) (2020), 47-61.
- [8] R. S. Hamilton, *The Ricci flow on surfaces, Math. and General Relativity*, American Math. Soc. Contemp. Math., **7**(1) (1988), 232-262.
- [9] A. Hasseb, and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Paran. Math., 39(3) (2021), 201-220.
- [10] P. Karmakar, η-Ricci-Yamabe soliton on anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection, Balkan J. Geom. Appl., $27(2)$ (2022) , 50-65.
- [11] P. Karmakar and A. Bhattyacharyya, Anti-invariant submanifolds of some indefinite almost contact and para-contact manifolds, Bull. Cal. Math. Soc., 112(2) (2020), 95-108.
- [12] W. Kuhnel, *Conformal transformations between Einstein spaces*, Aspects Math., **12** (1988), 105-146.
- [13] A. Mandal, A. and A. Das, On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection, Adv. Math. Sci. J., 9(10) (2020), 8929-8940.
- [14] A. Mandal, A. and A. Das, *Projective Curvature Tensor with respect to Zamkovoy connection in* Lorentzian para Sasakian manifolds, J. Indones. Math. Soc., 26(3) (2020), 369-379.
- [15] A. Mandal, A. and A. Das, Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection, Bull. Cal. Math. Soc., Vol. 112(5) (2020), 431-450.
- [16] A. Mandal, A. and A. Das, LP-Sasakian manifolds requipped with Zamkovoy connection in Lorentzian para Sasakian manifolds, J. Indones. Math. Soc., 27(2) (2021), 137-149.
- [17] A. Mandal, A. H. Sarkar and A. Das, Zamkovoy connection on Lorentzian para-Kenmotsu manifolds, Bull. Cal. Math. Soc., 114(5) (2022), 401-420.
- [18] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
- [19] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, Vol. 3(2) (2012), 18-24.
- [20] H. B. Pandey and A. Kumar, Anti-invariant submanifolds of almost para-contact manifolds, Indian J. Pure Appl. Math., 20(11) (1989), 1119-1125.
- [21] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., 24 (2007), 3339-3345.
- [22] K. L. Sai Prasad, S. Sunitha Devi and G. V. S. R. Deekshitulu, On a class of Lorentzian para-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type $(1,3)$, Italian J. Pure & Applied Math., 45 (2021), 990-1001.
- [23] I. Sato, On a structure similar to the almost contact structure II, Tensor N. S., 31 (1977), 199-205.
- [24] R. Sharma, Certain results on K-contact and (k, μ) -contact manifolds, J. of Geometry., Vol. 89 (2008), 138-147.
- [25] N. V. C. Sukhla and A. Dixit, On ϕ -recurrent Lorentzian para-Kenmotsu manifolds, Int. J. of Math. and Com. App. Research, 10(2) (2020), 13-20.
- [26] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008).
- [27] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, 32 (1953).
- [28] K. Yano and M. Kon, Anti-invariant submanifolds of Sasakian space forms I, Tohoku Math. J., 1 (1977), 9-23.
- [29] K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo, 16 (1940), 195- 200.
- [30] S. Zamkovoy, *Canonical connections on paracontact manifolds*, Ann. Global Anal. Geom., **36**(1) (2008), 37-60.