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Abstract. This paper deals with the space known as ”generalized fifth recur-

rent Finsler space.” The core idea centers around a mathematical object called

the” Inheritance Kulkarni-Nomizu product” which is applied to two Ricci ten-

sors satisfy an inheritance property. We apply the inheritance property with

Kulkarni-Nomizu product of two Ricci tensosrs by using Lie - derivative in

generalized fifth recurrent Finsler space. In addition, we prove that the Lie -

derivative of the inheritance Kulkarni-Nomizu product of K−Ricci tensor and

H−Ricci tensor vanishes simultaneously.
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1. Introduction and Preliminaries

An inheritance Kulkarni-Nomizu product considers a new concept in Finsler

geometry. Various identities on curvature inheritance in Finsler space estab-

lished by Gatoto [16]. New relationship on curvature inheritance and other

tensors was investigated by Ali et al. [7]. The Kulkarni-Nomizu product of

two (0,2) type tensors defined by Deszcz et al. [15]. Further, AL-Qashbari and

Baleedi [12] studied K−curvature inheritance in fifth recurrent Finsler space.

Opondo [25] studied W−curvature inheritance in bi-recurrent Finsler space.

In the same regards, the Lie - derivative of forms and its application was

investigated by authors [22, 23, 26, 28]. Several results on generalized recurrent

Finsler spaces of higher orders studied by [4, 8, 11, 13, 6, 10, 24]. The relations

between Ricci tensors and associate curvature tensors for various curvature

tensors discussed by [1, 2, 3, 5, 9, 14, 17, 18, 19, 20, 21, 27, 29].

Let us explore a generalized BK−fifth recurrent Finsler space satisfying the

following relations [11]

BsBqBlBnBmKjk = asqlnmKjk, (1.1)

BsBqBlBnBmHjk = asqlnmHjk, (1.2)

and

BsBqBlBnBmRijkh = asqlnmRijkh (1.3)

if and only if

bsqlnmgjk − csqlnmCjkn − dsqlnmCjkl − esqlnmCjkq − 2bqlnmyrBrCjks = 0,(1.4)

BsBqBlBnBm

(
P t
jkt + P r

jkP
t
rt − P t

jtk − P r
jtP

t
rk

)
(1.5)

+asqlnm
(
−P t

jkt − P r
jkP

t
rt + P t

jtk + P r
jtP

t
rk

)
+ bsqlnm (n− 1) gjk

−2bqlnmyrBr (n− 1)Cjks − csqlnm (n− 1)Cjkn

−dsqlnm (n− 1)Cjkl − esqlnm (n− 1)Cjkq = 0

and

bsqlnm (ghjgik − gkjgih)− 2bqlnmyrBr (ghjCiks − gkjCihs) (1.6)

−csqlnm (ghjCikn − gkjCihn)− dsqlnm (ghjCikl − gkjCihl)

−esqlnm (ghjCikq − gkjCihq) +BsBqBlBnBm(CijtH
t
kh)

−asqlnm
(
CijtH

t
kh

)
= 0,

respectively.

The Kulkarni-Nomizu product (A∧U) of two (0,2) - type symmetric tensors

A and U is defined as

(A ∧ U)ijkh = AihUjk −AikUjh +AjkUih −AjhUik . (1.7)
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See [30]. The associate curvature tensors Kijkh, Pijkh and Wijkh satisfy the

following relations [30]

Kijkh = Rijkh − 1

(n− 2)
(A ∧ U)ijkh. (1.8)

Pijkh = Rijkh − 1

(n− 1)
(AihUjk −AjhUik) . (1.9)

Wijkh = Rijkh − c

2n(n− 1)
(A ∧A)ijkh, (1.10)

where c is constant.

The non-zero covariant tensor field of fifth order asqlnm vanishes simulta-

neously with the vanishing of the scalar function α(x) by Berwald’s covariant

derivative of the fifth order [12]

Lvasqlnm = BsBqBlBnBmα(x) (1.11)

if and only if

BsBqBlBnBm(LvK
i
jkh) = Lv(BsBqBlBnBmKi

jkh). (1.12)

The H−Ricci tensor and K−Ricci tensor have an inheritance property that

characterized by

LvHjk = α(x)Hjk (1.13)

LvKjk = α(x)Kjk. (1.14)

See [12].

2. Lie - Derivative of the Inheritance Kulkarni-Nomizu Product of

Two Ricci - Tensors in GBK − 5RFn

Definition 2.1. The Kulkarni-Nomizu product (A∧U) of two (0,2)-type sym-

metric tensors A and U which is defined by (1.7), is called inheritance Kulkarni-

Nomizu product if the tensors A and U are satisfying the inheritance property.

We denoted to the Lie - derivative of the inheritance Kulkarni-Nomizu product

by LvIh(A ∧ U)ijkh.

Using (1.1) and (1.2) in (1.7), we get

(K ∧H)ijkh =
1

(asqlnm)2
[(BsBqBlBnBmKih)(BsBqBlBnBmHjk)(2.1)

−(BsBqBlBnBmKik)(BsBqBlBnBmHjh) + (BsBqBlBnBmKjk)

(BsBqBlBnBmHih)− (BsBqBlBnBmKjh)(BsBqBlBnBmHik)].
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Taking the Lie - derivative of both sides in (2.1) and using K−Ricci tensor and

H−Ricci tensor that have inheritance property, we get

LvIh(K ∧H)ijkh = (asqlnm)2Lv

(
1

(asqlnm)2

)[
KihHjk −KikHjh (2.2)

+KjkHih −KjhHik

]
+

1

(asqlnm)

[
HjkKihLv(asqlnm) + α(x)asqlnmHjkKih

+KihHjkLv(asqlnm) + α(x)asqlnmKihHjk −HjhKikLv(asqlnm)

−α(x)asqlnmHjhKik −KikHjhLv(asqlnm)− α(x)asqlnmKikHjh

+HihKjkLv(asqlnm) + α(x)asqlnmHihKjk +KjkHihLv(asqlnm)

+α(x)asqlnmKjkHih −HikKjhLv(asqlnm)− α(x)asqlnmHikKjh

−KjhHikLv(asqlnm)− α(x)asqlnmKjhHik

]
.

Using (1.11) in (2.2), we get

LvIh(K ∧H)ijkh = (asqlnm)2Lv

(
1

(asqlnm)2

)[
KihHjk −KikHjh

+KjkHih −KjhHik

]
+

1

(asqlnm)

[
2α(x)asqlnmKihHjk

−2α(x)asqlnmKikHjh + 2α(x)asqlnmKjkHih − 2α(x)asqlnmKjhHik

]
.

Above equation can be written as

LvIh(K ∧H)ijkh =
[
(asqlnm)2Lv

(
1

(asqlnm)2

)
+ 2α(x)

][
KihHjk

−KikHjh +KjkHih −KjhHik

]
. (2.3)

Thus, we conclude

Theorem 2.2. In GBK − 5RFn, Lie - derivative of inheritance Kulkarni-

Nomizu product of K−Ricci tensor and H−Ricci tensor is giving by (2.3),

provided (1.4), (1.5) and (1.12) hold.

Using (1.1) in (1.7), we get

(K ∧K)ijkh =
2

(asqlnm)2
[(BsBqBlBnBmKih)(BsBqBlBnBmKjk)

−(BsBqBlBnBmKik)(BsBqBlBnBmKjh)]. (2.4)



120 Adel M. Al-Qashbari, Alaa A. Abdallah and Saeedah M. Baleedi

Taking the Lie - derivative of both sides of (2.4) and using K-Ricci tensor that

has inheritance property, we get

LvIh(K ∧K)ijkh = (asqlnm)2Lv

(
2

(asqlnm)2

)[
KihKjk −KikKjh

]
(2.5)

+
2

(asqlnm)

[
KjkKihLv(asqlnm) + α(x)asqlnmKjkKih +KihKjkLv(asqlnm)

+α(x)asqlnmKihKjk −KjhKikLv(asqlnm)− α(x)asqlnmKjhKik

−KikKjhLv(asqlnm)− α(x)asqlnmKikKjh

]
.

Using (1.11) in (2.5), we get

LvIh(K ∧K)ijkh = (asqlnm)2Lv

(
2

(asqlnm)2

)[
KihHjk −KikHjh

]
+

2

(asqlnm)

[
2α(x)asqlnmKihKjk − 2α(x)asqlnmKikKjh

]
.

Above equation can be written as

LvIh(K ∧K)ijkh =
[
(asqlnm)2Lv

(
2

(asqlnm)2

)
+ 4α(x)

][
KihKjk −KikKjh

]
(2.6)

Thus, we conclude

Theorem 2.3. In GBK−5RFn, the Lie - derivative of inheritance Kulkarni-

Nomizu product of K−Ricci tensor with itself is giving by (2.6), provided (1.4)

and (1.12) hold.

Taking the Lie - derivative of both sides of (1.8), using the inheritance

Kulkarni-Nomizu product of K−Ricci tensor and H−Ricci tensor, we get

LvKijkh = LvRijkh − 1

(n− 2)
LvIh(K ∧H)ijkh. (2.7)

Using (2.3) in (2.7), we get

LvKijkh = LvRijkh − 1

(n− 2)

[
(asqlnm)2Lv

(
1

(asqlnm)2

)
+ 2α(x)

]
(2.8)[

KihHjk −KikHjh +KjkHih −KjhHik

]
.

Thus, we conclude

Corollary 2.4. In GBK−5RFn, the Lie - derivative of the associate curvature

tensor Kijkh of the curvature tensor Ki
jkh is giving by (2.8) if H−Ricci tensor

and K−Ricci tensor have an inheritance property, provided (1.4), (1.5) and

(1.12) hold.
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Transvecting (2.7) by asqlnm, we get

asqlnm(LvKijkh) = asqlnm(LvRijkh)−
asqlnm
(n− 2)

LvIh(K ∧H)ijkh.

Taking the Lie - derivative of both sides of (1.3) and using the result in above

equation, we get

asqlnm(LvKijkh) = Lv(BsBqBlBnBmRijkh)− (Lvasqlnm)Rijkh

− asqlnm
(n− 2)

LvIh(K ∧H)ijkh.

Above equation can be written as

Lv(BsBqBlBnBmRijkh) = asqlnm(LvKijkh) (2.9)

if and only if

LvIh(K ∧H)ijkh =
2− n

asqlnm
(Lvasqlnm)Rijkh. (2.10)

Thus, we conclude

Theorem 2.5. In GBK − 5RFn, Lie- derivatives of associate curvature ten-

sor Kijkh and Berwald’s covariant derivative of the fifth order for associate

curvature tensor Rijkh are codirectional if and only if the Lie- derivative of

inheritance Kulkarni-Nomizu product of K−Ricci tensor and H−Ricci tensor

is giving by (2.10), provided (1.6) holds.

Taking the Lie - derivative of both sides of (1.9) and using K−Ricci tensor

and H−Ricci tensor that have inheritance property, we get

LvPijkh = LvRijkh − 1

(n− 1)
LvIh(KihHjk −KjhHik). (2.11)

Using (2.3) in (2.11), we get

LvPijkh = LvRijkh − 1

(n− 1)
LvIh

[
1

(asqlnm)2Lv

(
1

(asqlnm)2

)
+ 2α(x)

[LvIh(K ∧H)ijkh +
[
(asqlnm)2Lv

(
1

(asqlnm)2

)
(2.12)

+2α(x)
]
(KikHjh −KjkHih)]

]
.

Thus, we conclude the following.

Corollary 2.6. In GBK−5RFn, the Lie - derivative of the associate curvature

tensor Pijkh of the curvature tensor P i
jkh is giving by (2.12) if H−Ricci tensor

and K−Ricci tensor have an inheritance property, provided (1.4), (1.5) and

(1.12) hold.
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Transvecting (2.11) by asqlnm, we get

asqlnm(LvPijkh) = asqlnm(LvRijkh)−
asqlnm
(n− 1)

LvIh(KihHjk −KjhHik).

Taking the Lie - derivative of both sides of (1.3) and using the result in above

equation, we get

asqlnm(LvPijkh) = Lv(BsBqBlBnBmRijkh)− (Lvasqlnm)Rijkh

− asqlnm
(n− 1)

LvIh(KihHjk −KjhHik).

Above equation can be written as

Lv(BsBqBlBnBmRijkh) = asqlnm(LvPijkh) (2.13)

if and only if

LvIh(KihHjk −KjhHik) =
1− n

asqlnm
(Lvasqlnm)Rijkh. (2.14)

Thus, we conclude

Theorem 2.7. In GBK − 5RFn, Lie- derivatives of associate curvature ten-

sor Pijkh and Berwald’s covariant derivative of the fifth order for associate

curvature tensor Rijkh are codirectional if and only if the Lie - derivative of

inheritance tensor (KihHjk −KjhHik) is giving by (2.14), provided (1.6) holds.

Taking the Lie - derivative of both sides of (1.10) and using the inheritance

Kulkarni-Nomizu product of K−Ricci tensor with itself, we get

LvWijkh = LvRijkh − c

2n(n− 1)
LvIh(K ∧K)ijkh. (2.15)

Using (2.6) in (2.15), we get

LvWijkh = LvRijkh − c

2n(n− 1)

[
(asqlnm)2Lv

(
2

(asqlnm)2

)
(2.16)

+4α(x)
][
KihKjk −KikKjh

]
.

Thus, we conclude

Corollary 2.8. In GBK−5RFn, the Lie - derivative of the associate curvature

tensor Wijkh of the curvature tensor W i
jkh is giving by (2.16) if K−Ricci tensor

has an inheritance property, provided (1.4) and (1.12) hold.

Transvecting (2.15) by asqlnm, we get

asqlnm(LvWijkh) = asqlnm(LvRijkh)−
c asqlnm
2n(n− 1)

LvIh(K ∧K)ijkh.
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Taking the Lie - derivative of both sides of (1.3) and using the result in above

equation, we get

asqlnm(LvWijkh) = Lv(BsBqBlBnBmRijkh)− (Lvasqlnm)Rijkh

− c asqlnm
2n(n− 1)

LvIh(K ∧K)ijkh.

Above equation can be written as

Lv(BsBqBlBnBmRijkh) = asqlnm(LvWijkh) (2.17)

if and only if

LvIh(K ∧K)ijkh =
2n(1− n)

c asqlnm
(Lvasqlnm)Rijkh. (2.18)

Thus, we conclude

Theorem 2.9. In GBK−5RFn, Lie- derivatives of associate curvature tensor

Wijkh and Berwald’s covariant derivative of the fifth order for associate cur-

vature tensor Rijkh are codirectional if and only if the Lie - derivative of the

inheritance Kulkarni-Nomizu product of K−Ricci tensor with itself is giving by

(2.18), provided (1.6) holds.

From (2.7), we get

LvKijkh = LvRijkh

if and only if

LvIh(K ∧H)ijkh = 0.

Thus, we conclude

Corollary 2.10. In GBK − 5RFn, the Lie - derivative of the associate cur-

vature tensor Kijkh and associate curvature tensor Rijkh are equal if and only

if the Lie - derivative of the inheritance inheritance Kulkarni-Nomizu product

of K−Ricci tensor and H−Ricci tensor is equal zero.

From (2.15), we get

LvWijkh = LvRijkh

if and only if

LvIh(K ∧K)ijkh = 0.

Thus, we conclude

Corollary 2.11. In GBK − 5RFn, the Lie - derivative of the associate cur-

vature tensor Wijkh and associate curvature tensor Rijkh are equal if and only

if the Lie - derivative of the inheritance Kulkarni-Nomizu product of K−Ricci

tensor with itself is equal zero.
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From (2.11), we get

LvPijkh = LvRijkh

if and only if

LvIh(KihHjk −KjhHik) = 0.

Thus, we conclude

Corollary 2.12. In GBK−5RFn, the Lie - derivative of the associate curva-

ture tensor Pijkh and associate curvature tensor Rijkh are equal if and only if

the Lie - derivative of the inheritance tensor (KihHjk −KjhHik) is equal zero.

In view of (2.3) and (2.6), we get

LvIh(K ∧H)ijkh = LvIh(K ∧K)ijkh = 0 (2.19)

if and only if

(asqlnm)2Lv

(
1

(asqlnm)2

)
= −2α(x). (2.20)

Thus, we conclude

Corollary 2.13. In GBK−5RFn, the Lie - derivative of Inheritance Kulkarni-

Nomizu product of K−Ricci tensor and H−Ricci tensor vanishes simultane-

ously with the vanishing of the Lie - derivative of inheritance Kulkarni-Nomizu

product for K−Ricci tensor with itself if and only if (2.20) holds.

In view of (2.7) with (2.11), (2.11) with (2.15) and (2.15) with (2.7), respec-

tively, we get

LvKijkh = LvPijkh, (2.21)

LvPijkh = LvWijkh (2.22)

and

LvKijkh = LvWijkh (2.23)

if and only if

LvIh(K ∧H)ijkh =
n− 2

n− 1
LvIh(KihHjk −KjhHik), (2.24)

LvIh(K ∧K)ijkh =
2n

c
LvIh(KihHjk −KjhHik) (2.25)

and

LvIh(K ∧H)ijkh =
c (n− 2)

2n(n− 1)
LvIh(K ∧K)ijkh, (2.26)

respectively. Thus, we conclude
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Corollary 2.14. In GBK − 5RFn, the Lie - derivatives of the associate cur-

vature tensor Kijkh, associate curvature tensor Pijkh and associate curvature

tensor Wijkh are equivalent if and only if inheritance K−Ricci tensor and in-

heritance H−Ricci tensor satisfying (2.24), (2.25) and (2.26) respectively.

3. Conclusions

We established new identities by using the Lie - derivative of Inheritance

Kulkarni-Nomizu product which applied two Ricci tensors. Specifically, we

demonstrated that under important conditions, we obtained equivalence be-

tween three associate curvature tensors when the inheritance K−Ricci tensor

and inheritance H−Ricci tensor satisfying certain relations in GBK − 5RFn.

Acknowledgment: The authors thank the referees for carefully reading the

paper and their comments and remarks.
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