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Abstract. In this paper, we introduce a statistical generalized recurrent man-

ifold, which its statistical curvature tensor R∗, satisfies the generalized recur-

rent condition ∇∗R∗ = γR∗+θH. Next we prove that a statistical generalized

recurrent manifold with constant statistical curvature is as same as a gener-

alized recurrent manifold with respect to its Levi-Civita connection. Also we

show that a statistical generalized recurrent manifold is neither statistical semi-

symmetric, nor statistical Ricci semi-symmetric. Finally we prove that in spite

of the Riemannian manifold, a statistical generalized recurrent manifold is not

statistical concircular recurrent.
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1. Introduction

A statistical manifold is a Riemannian (semi-Riemannian) manifold (Un, h)

which admits dual connections ∇ and ∇∗ with some conditions, such that each

points of that are probability distribution [1].
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U is called a Riemannian generalized recurrent manifold with respect to

Levi-Civita connection ∇̂, if the Riemannian curvature tensor R̂m satisfies

(∇̂ER̂m)(S,B, I,F) = γ̂(E)R̂m(S,B, I,F)

+ θ̂(E)[h(B, I)h(S,F)− h(S.I)h(B,F)], (1.1)

where E,S,B, I,F are vector fields on U , and γ̂ and θ̂ are nowhere vanishing

unique 1-forms, such that there exist vector fields ρ and ρ̃, we have γ̂(E) =

h(E, ρ) and θ̂(E) = h(E, ρ̃) for any E ∈ τ(U). For a Riemannian generalized

recurrent manifold Equation (1.1) can be written as

(∇̂ER̂)(S,B, I) = γ̂(E)R̂(S,B)I

+ θ̂(E)[h(B, I)S − h(S, I)B], (1.2)

where R̂m(S,B, I,F) = h(R̂(S,B)I,F).

This notion was introduced by Dubey in 1979 at first and then many authors

used this definition in their articles [3, 8, 10]. If θ̂(E) = 0 holds for all vector

fields in generalized recurrent manifold, then U is reduced to be a recurrent

manifold [5, 9].

In this paper, we introduce statistical generalized recurrent and statistical

concirculary recurrent manifolds for (Un, h,∇∗) and we prove that in spite of

the Riemannian case, they are not equivalent.

This paper is organized as follows. In Section 2 we review basic properties

of statistical manifolds. In Section 3, we define statistical generalized recur-

rent, statistical concirculary recurrent, statistical semi-symmetric and statis-

tical Ricci semi-symmetric manifolds. In section 4, we express the condition

that 1-forms γ and θ can be closed. Also we prove that a statistical gener-

alized recurrent manifold is neither statistical semi-symmetric, nor statistical

Ricci semi-symmetric. Finally we show that a statistical generalized recurrent

manifold is not statistical concircular recurrent.

2. Preliminaries

Throughout this paper, (Un, h) denotes a smooth semi-Riemannian n di-

mensional manifold. We show the set of vector fields on U by τ(U).

Definition 2.1. [4] (∇, h) is called a statistical structure on (U, h) if ∇ is an

affine and torsion free connection and

(∇Eh) (S,B) = (∇Sh) (E,B) , (2.1)

holds ∀ S,B, E,∈ τ (U).

Also, (U,∇, h) is said to be a statistical manifold.



On statistical generalized recurrent manifolds 103

Moreover, an affine connection ∇∗ is called a dual connection of ∇ with

respect to h, such that

Eh (S,B) = h (∇ES,B) + h (S,∇∗
EB) . (2.2)

From the symmetry of h it can be verified that (∇∗)
∗
= ∇ and by compatibility

of ∇̂ with h and (2.1) it holds ∇̂ = 1
2 (∇+∇∗).

Also, ∇ = ∇∗ if and only if ∇ is the Levi-Civita connection of the metric h.

Remark 2.2. [6] A (1, 2)-tensor field for a statistical structure (∇, h), is de-

fined

K(E,S) = ∇ES − ∇̂ES =
1

2
(∇ES −∇∗

ES), (2.3)

which K is symmetric and

h (K(E,S),B) = h (S,K(E,B)) . (2.4)

The statistical curvature tensor field with respect to ∇∗ is defined in [11] as,

R∗ (S,B) I = ∇∗
S∇∗

BI −∇∗
B∇∗

SI −∇∗
[S,B]I, (2.5)

and we denote

Rm∗(S,B, I,F) = h(R∗(S,B)I,F), (2.6)

in which

h (R∗ (S,B) I,F) = −h (R (S,B)F , I) , (2.7)

holds on statistical manifolds. The statistical curvature tensor field with respect

to ∇ is defined similarly and is denoted by R.

If there exist a real constant number a where R∗ satisfies

R∗ (S,B) I = a {h (B, I)S − h (S, I)B} , (2.8)

then (Un, h) is said to be constant statistical curvature [2].

If U be a statistical manifold with constant statistical curvature a, then by

virtue of (2.7),

R∗ = R, (2.9)

and

Rc∗(B, I) = a(n− 1)h(B, I), (2.10)

holds for all vector fields B, I, whereRc∗(B, I) is the trace of theRm∗(S,B, I,F)

with respect to S,F and is called statistical Ricci tensor.

Remark 2.3. [7] The condition Rc = Rc∗ in a statistical manifold implies

Rc∗(B, I) = Rc∗(I,B).

But it is not symmetric in general.
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From Equation (2.9), we get Rc = Rc∗ for the statistical manifold with

constant statistical curvature. So from Remark 2.3 Rc∗ is symmetric for the

statistical manifold with constant statistical curvature.

Also from Equation (2.10), we have

trhRc∗ = an(n− 1), (2.11)

where trh(Rc∗) is trace of the Rc∗ and is called statistical scalar curvature.

3. Statistical generalized recurrent manifold

Now we define a statistical generalized recurrent manifold.

Definition 3.1. We say (U, h) is a statistical generalized recurrent manifold,

if its statistical curvature tensor Rm∗ satisfies

(∇∗
ERm∗)(S,B, I,F) = γ(E)Rm∗(S,B, I,F)

+ θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]. (3.1)

∀ S,B, I,F , E ∈ τ(U), where γ and θ are nowhere vanishing unique 1-forms,

such that there exist vector fields ρ and ρ̃, in which γ(E) = h(E, ρ) and θ(E) =

h(E, ρ̃), for any E ∈ τ(U).

If θ(E) = 0 holds for all vector fields in statistical generalized recurrent

manifold, then we say U is a statistical recurrent manifold. Also if γ(E) =

θ(E) = 0 holds for all vector fields in statistical generalized recurrent manifold,

then we say U is a statistical locally-symmetric.

Equations (1.1) and (1.2) are equivalent for the Riemannian generalized re-

current manifold. In spite of the Riemannian generalized recurrent manifold,

Equation (3.1) for the statistical generalized recurrent manifold is not equiva-

lent to

(∇∗
ER∗)(S,B, I) = γ(E)R∗(S,B)I

+ θ(E)[h(B, I)S − h(S, I)B]. (3.2)

So we can state the following Remark.

Remark 3.2. Let (U, h) be a statistical manifold in which

(∇∗
ER∗)(S,B, I) = γ(E)R∗(S,B)I

+ θ(E)[h(B, I)S − h(S, I)B], (3.3)

then we have

(∇∗
ERm∗)(S,B, I,F) = γ(E)Rm∗(S,B, I,F)
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+ θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]

+ 2Rm∗(S,B, I,K(E,F)), (3.4)

where K is the statistical (1, 2)-tensor field in (2.3). Also if K(E,F) = 0 in

Equation (3.4), the manifold reduce to be a Riemannian generalized recurrent.

Proof. Let Equation (3.3) holds for a statistical manifold. Since

(∇∗
ERm∗)(S,B, I,F) = ∇∗

Eh(R∗(S,B)I,F)− h(R∗(∇∗
ES,B)I,F)

− h(R∗(S,∇∗
EB)I,F)− h(R∗(S,B)∇∗

EI,F)

− h(R∗(S,B)I,∇∗
EF), (3.5)

in which

∇∗
Eh(R∗(S,B)I,F) = h(∇∗

ER∗(S,B)I,F)

+ h(R∗(S,B)I,∇EF). (3.6)

By replacing (3.6) in (3.5) we infer

(∇∗
ERm∗)(S,B, I,F) = h((∇∗

ER∗)(S,B, I),F)

+ 2h(R∗(S,B)I, ,K(E,F)). (3.7)

By replacing (3.3) in (3.7) we get (3.4).

Also if K(E,F) = 0 in Equation (3.4), then from (2.3) we have ∇ = ∇∗.

Therefore the manifold reduce to be a Riemannian generalized recurrent. □

Theorem 3.3. If Equation (3.2) holds for a statistical manifold, then we have

(∇∗
ER)(S,B,F) = γ(E)R(S,B)F + θ(E)[h(B,F)S − h(S,F)B]

+ 2R(S,B)K(E,F)− 2K(E,R(S,B)F). (3.8)

Proof. From (2.7) we get

h((∇∗
ER∗)(S,B, I),F) = h(∇∗

ER∗(S,B)I,F)

+ h(R(∇∗
ES,B)F , I) + h(R(S,∇∗

EB)F , I)

+ h(R(S,B)F ,∇∗
EI), (3.9)
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in which

h(∇∗
ER∗(S,B)I,F) = h(R(S,B)∇EF , I)

− ∇∗
Eh(R(S,B)F , I), (3.10)

and

∇∗
Eh(R(S,B)F , I) = h(∇∗

ER(S,B)F , I)

+ h(R(S,B)F ,∇EI). (3.11)

From Equations (3.10) and (3.11) we infer,

h(∇∗
ER∗(S,B)I,F) = h(R(S,B)∇EF , I)− h(∇∗

ER(S,B)F , I)

− h(R(S,B)F ,∇EI). (3.12)

Hence, by virtue of (2.3) and replacing (3.12) in (3.9), we obtain

h((∇∗
ER∗)(S,B, I),F) = −h((∇∗

ER)(S,B,F), I) + 2h(R(S,B)K(E,F), I)

− 2h(R(S,B)F ,K(E, I). (3.13)

By replacing (3.2) in (3.13), we get

h((∇∗
ER)(S,B)F , I) = −{γ(E)Rm∗(S,B, I,F)

+ θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]}

+ 2Rm(S,B,K(E,F), I)

− 2Rm(S,B,F ,K(E, I)). (3.14)

Again by replacing (2.7) in (3.14), we conclude (3.8). □

Corollary 3.4. If Equation (3.2) holds for a statistical manifold with constant

statistical curvature, then we have ∇ = ∇∗.

Proof. By virtue of (2.9), and replacing (3.2) in (3.8) we conclude

2R(S,B)K(E,F)− 2K(E,R(S,B)F) = 0. (3.15)

Hence, from (2.8), we get

h(B,K(E,F))S − h(S,K(E,F))B − K(E, h(F ,B)S)

+ K(E, h(F ,S)B) = 0. (3.16)
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Equation (2.4) implies,

h(K(E,F),B)S = h(K(E,F),S)B. (3.17)

By replacing (3.17) in (3.16) we find

K(E, h(F ,S)B) = K(E, h(F ,B)S). (3.18)

By account of (2.3), ∇ = ∇∗. □

From Corollary 3.4, we conclude the statistical generalized recurrent mani-

fold with constant statistical curvature is as same as the Riemannian general-

ized recurrent manifold with respect to its Levi-Civita connection.

Lemma 3.5. (U, h) is statistical generalized recurrent, if and only if Rm is

statistical generalized recurrent with respect to ∇∗.

Proof. Let (U, h) is a statistical generalized recurrent. From (2.7), we have

(∇∗
ERm)(S,B,F , I) = −(∇∗

ERm∗)(S,B, I,F)

= −{γ(E)Rm∗(S,B, I,F)

+ θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]}

= γ(E)Rm(S,B,F , I)

+ θ(E)[h(B,F)h(S, I)− h(S,F)h(B, I)].

Therefore, Rm is generalized recurrent with respect to ∇∗. □

Definition 3.6. Let (Un, h) be a statistical non-flat manifold in which n ≥ 3.

We put

C̃∗(S,B)I = R∗(S,B)I

− trh(Rc∗)

n(n− 1)
[h(B, I)S − h(S, I)B], (3.19)

and we call that a statistical concircular curvature tensor field for a pair (∇∗, h)

and we set
˜Cr∗(S,B, I,F) = h(C̃∗(S,B)I,F). (3.20)

Definition 3.7. We say (U, h) is a statistical concirculary recurrent manifold

if for its statistical concircular curvature tensor field C̃r∗ we have,

(∇∗
E

˜Cr∗)(S,B, I,F) = ν(E) ˜Cr∗(S,B, I,F). (3.21)

for all vector fields ∀ S,B, I,F , E ∈ τ(U), where ν is a non-vanishing 1-form

such that for a vector field λ, we have ν(E) = h(E, λ) for any E ∈ τ(U).
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If C̃∗ = 0 holds in Equation (3.19), then U is of constant statistical curvature.

So, the statistical concircular curvature tensor act as a test of a failure of

statistical manifold to be with constant statistical curvature.

Definition 3.8. We say (U, h) is statistical semi-symmetric if

R∗ · Rm∗ = 0, (3.22)

where ∀ S,B, I,F , E,A ∈ τ(U),

R∗ · Rm∗ = (∇∗
E∇∗

ARm∗) (S,B, I,F)− (∇∗
A∇∗

ERm∗) (S,B, I,F)

−
(
∇∗

[E,A]Rm∗
)
(S,B, I,F). (3.23)

Definition 3.9. We say (U, h) is statistical Ricci semi-symmetric if

R∗ · Rc∗ = 0, (3.24)

where ∀ B, I,A, E ∈ τ(U),

R∗ · Rc∗ = (∇∗
E∇∗

ARc∗) (B, I)− (∇∗
A∇∗

ERc∗) (B, I)

−
(
∇∗

[E,A]Rc∗
)
(B, I) . (3.25)

4. Main results

Let U be a statistical generalized recurrent manifold. Taking contraction

over S and F of Equation (3.1), we get

(∇∗
ERc∗) (B, I) = γ (E)Rc∗ (B, I) + (n− 1)θ(E)h(B, I). (4.1)

Again taking contraction over B and I of Equation (4.1), we get

E(trhRc∗) = γ (E))trhRc∗ + n(n− 1)θ(E). (4.2)

Theorem 4.1. Let (U, h) be a statistical generalized recurrent manifold. 1-

forms γ and θ can not be both closed, unless γ(E)θ(S) = γ(S)θ(E) holds on

U .

Proof. Let (U, h) be a statistical generalized recurrent. ‌‌ Taking covariant deriv-

ative of (4.2) we obtain

S(E(trhRc∗)) = (∇∗
Sγ)(E)trhRc∗ + γ(E)S(trhRc∗))

+ n(n− 1)(∇∗
Sθ)(E) = (∇∗

Sγ)(E)trhRc∗

+ n(n− 1)[γ(E)θ(S) + (∇∗
Sθ)(E)]. (4.3)

Also,

E(S(trhRc∗)) = (∇∗
Eγ)(S)trhRc∗
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+ n(n− 1)[γ(S)θ(E) + (∇∗
Eθ)(S)]. (4.4)

So, we obtain

[(∇∗
Sγ)(E)− (∇∗

Eγ)(S)]trhRc∗

+n(n− 1)[(∇∗
Sθ)(E)− (∇∗

Eθ)(S) + γ(E)θ(S)− γ(S)θ(E)] = 0. (4.5)

Hence, we get

[(∇∗
Sγ)(E)− (∇∗

Eγ)(S)]trhRc∗ + n(n− 1)[(∇∗
Sθ)(E)− (∇∗

Eθ)(S)]

= n(1− n)[γ(E)θ(S)− γ(S)θ(E)]. (4.6)

□

Now we state a special case of Theorem 4.1 in which U is statistical gener-

alized recurrent with constant statistical scalar curvature.

Theorem 4.2. The 1-form γ in statistical generalized recurrent manifold with

non-zero constant statistical scalar curvature a is closed if and only if the 1-

form θ is closed.

Proof. Let (U, h) be a statistical generalized recurrent manifold with constant

scalar curvature. From (4.2) we obtain

γ (E) trhRc∗ + n(n− 1)θ(E) = 0. (4.7)

Taking covariant derivative of (4.7) we get

(∇∗
Sγ)(E)trhRc∗ + n(n− 1)(∇∗

Sθ)(E) = 0.

Also,

(∇∗
Eγ)(S)trhRc∗ + n(n− 1)(∇∗

Eθ)(S) = 0.

Hence, we obtain

[(∇∗
Sγ)(E)− (∇∗

Eγ)(S)]trhRc∗ + n(n− 1)[(∇∗
Sθ)(E)− (∇∗

Eθ)(S)] = 0.

Therefore the 1-form γ is closed if and only if the 1-form θ is closed. □

Lemma 4.3. [7] Let (U, h) be a statistical manifold. Then

Rm∗(S,B, I,F) = R̂m(S,B, I,F) + h((∇̂BK)(S, I),F)

− h((∇̂SK)(B, I),F)− h([KB,KS ]I,F), (4.8)

1

2
Rm(S,B, I,F) +

1

2
Rm∗(S,B, I,F) = R̂m(S,B, I,F)

+ h([KS ,KB]I,F), (4.9)
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1

2
Rm(S,B, I,F)− 1

2
Rm∗(S,B, I,F) = h((∇̂SK)(B, I),F)

− h((∇̂BK)(S, I),F). (4.10)

Lemma 4.4. Let (U, h) be statistical generalized recurrent.

(1) If (∇̂SK)(B, I) = (∇̂BK)(S, I), then

(∇∗
ER̂m)(S,B, I,F) = γ(E){R̂m(S,B, I,F) + h([KS ,KB]I,F)}

+ θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]

+ (∇∗
Eh)([KS ,KB]I,F). (4.11)

(2) If (∇̂BK)(S, I) − (∇̂SK)(B, I) = [KB,KS ]I, then R̂m is statistical

generalized recurrent with respect to ∇∗ and

(∇∗
ERm)(S,B, I,F) = γ(E){Rm(S,B, I,F)− 2h([KS ,KB]I,F)}

+ θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]

+ 2(∇∗
Eh)([KS ,KB]I,F). (4.12)

Proof. Let U be a statistical generalized recurrent manifold. If

(∇̂SK)(B, I) = (∇̂BK)(S, I),

then from (4.8) we get

Rm∗(S,B, I,F) = R̂m(S,B, I,F) + h([KS ,KB]I,F). (4.13)

Hence, we obtain

(∇∗
ER̂m)(S,B, I,F) + (∇∗

Eh)([KS ,KB]I,F)

= γ(E)Rm∗(S,B, I,F) + θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]. (4.14)

By replacing Equation (4.13) in the last equality of (4.14), and by direct com-

putation we obtain (4.11).

If (∇̂BK)(S, I)− (∇̂SK)(B, I) = [KB,KS ]I, then from (4.8) and (4.10) we get

R̂m(S,B, I,F) = Rm∗(S,B, I,F) = Rm(S,B, I,F)

− 2h([KS ,KB]I,F). (4.15)

Since, U is statistical generalized recurrent, so from the first equality of (4.15)

we obtain

(∇∗
ER̂m)(S,B, I,F) = γ(E)R̂m(S,B, I,F) + θ(E)[h(B, I)h(S,F)
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− h(S, I)h(B,F)].

Also, from the last equality of (4.15) we get

(∇∗
ERm)(S,B, I,F)− 2(∇∗

Eh)([KS ,KB]I,F)

= γ(E)Rm∗(S,B, I,F) + θ(E)[h(B, I)h(S,F)− h(S, I)h(B,F)]. (4.16)

By chosing Rm∗(S,B, I,F) = Rm(S,B, I,F) − 2h([KS ,KB]I,F), in the last

equality of (4.16), and direct computation we obtain (4.12). □

Theorem 4.5. Let (U, h) be statistical generalized recurrent. Then, U is not

statistical semi-symmetric.

Proof. Let U be statistical generalized recurrent. By virtue of (3.1) we obtain,

(∇∗
A∇∗

ERm∗) (S,B, I,F) = A (γ (E))Rm∗(S,B, I,F)

+ γ (E) (∇∗
ARm∗) (S,B, I,F)

+ A(θ(E))[h(B, I)h(S,F)− h(S, I)h(B,F)]

+ θ(E)[h(B, I)(∇∗
Ah)(S,F)

+ h(S,F)(∇∗
Ah)(B, I)

− h(S, I)(∇∗
Ah)(B,F)− h(B,F)(∇∗

Ah)(S, I)]

= A (γ (E))Rm∗(A,B, I,F)

+ γ (E) γ (A)Rm∗(S,B, I,F)

+ [γ(E)θ(A) +A(θ(E))][h(B, I)h(S,F)

− h(S, I)h(B,F)]

+ θ(E)[h(B, I)(∇∗
Ah)(S,F)

+ h(S,F)(∇∗
Ah)(B, I)

− h(S, I)(∇∗
Ah)(B,F)
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− h(B,F)(∇∗
Ah)(S, I)]. (4.17)

Also,

(∇∗
E∇∗

ARm∗) (S,B, I,F) = E (γ (A))Rm∗(S,B, I,F)

+ γ (A) γ (E)Rm∗(S,B, I,F)

+ [γ(A)θ(E) + E(θ(A))][h(B, I)h(S,F)

− h(S, I)h(B,F)]

+ θ(A)[h(B, I)(∇∗
Eh)(S,F)

+ h(S,F)(∇∗
Eh)(B, I)

− h(S, I)(∇∗
Eh)(B,F)

− h(B,F)(∇∗
Eh)(S, I)], (4.18)

and (
∇∗

[A,E]Rm∗
)
(A,B, I,F) = γ ([A, E])Rm∗(S,B, I,F)

+ θ([A, E])[h(B, I)h(S,F)

− h(S, I)h(B,F)]. (4.19)

So, by virtue of (3.23), Equations (4.17), (4.18) and (4.19), imply

(R∗ (A, E) · Rm∗) (S,B, I,F) = 2dγ (A, E)Rm∗(S,B, I,F)

+ 2dθ(A, E)[h(B, I)h(S,F)− h(S, I)h(B,F)].

+ [γ(E)θ(A)− γ(A)θ(E)][h(B, I)h(S,F)

− h(S, I)h(B,F)].

+ θ(E)[h(B, I)(∇∗
Ah)(S,F)

+ h(S,F)(∇∗
Ah)(B, I)
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− h(S, I)(∇∗
Ah)(B,F)− h(B,F)(∇∗

Ah)(S, I)]

− θ(A)[h(B, I)(∇∗
Eh)(S,F) + h(S,F)(∇∗

Eh)(B, I)

− h(S, I)(∇∗
Eh)(B,F)

− h(B,F)(∇∗
Eh)(S, I)].

This completes the proof. □

Theorem 4.6. Let (Un, h) be a statistical generalized recurrent manifold. Then

we have

(R∗ (A, E) · Rc∗) (B, I) = 2dγ (A, E)Rc∗(B, I) + (2n− 2)dθ(A, E)h(B, I)

+ (n− 1){[γ(E)θ(A)− γ(A)θ(E)][h(B, I)]

+ θ(E)(∇∗
Ah)(B, I)− θ(A)(∇∗

Eh)(B, I)}. (4.20)

∀ B, I, E,A ∈ τ(U),

Proof. Let U be a statistical generalized recurrent manifold. By virtue of Equa-

tion (4.1), we obtain

(∇∗
A∇∗

ERc∗) (B, I) = γ (E) (∇∗
ARc∗) (B, I) +A (γ (E))Rc∗ (B, I)

+ (n− 1){A (θ (E))h(B, I) + θ(E)(∇∗
Ah)(B, I)}

= γ (E) γ (A)Rc∗ (B, I) +A (γ (E))Rc∗ (B, I)

+ (n− 1){[γ (E) θ (A) +A (θ (E))]h(B, I)

+ θ(E)(∇∗
Ah)(B, I)}, (4.21)

also,

(∇∗
E∇∗

ARc∗) (B, I) = γ (A) γ (E)Rc∗ (B, I) + E (γ (A))Rc∗ (B, I)

+ (n− 1){[γ (A) θ (E) + E (θ (A))]h(B, I)

+ θ(A)(∇∗
Eh)(B, I)}, (4.22)
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and (
∇∗

[A,E]Rc∗
)
(B, I) = γ ([A, E])Rc∗ (B, I)

+ (n− 1)θ([A, E])h(B, I). (4.23)

So, in account of (3.25) and Equations (4.21), (4.22) and (4.23), we obtain the

Equation (4.20). □

Now we show that in spite of the Riemannian manifold, a statistical gener-

alized recurrent manifold is not statistical concircular recurrent.

Theorem 4.7. Let (U, h) be statistical generalized recurrent. Then U is not

statistical concircular recurrent.

Proof. Let U be statistical generalized recurrent. By virtue of (3.20), (3.19)

and (4.2) and direct computations we obtain,

(∇∗
E C̃r

∗
)(S,B, I,F) = (∇∗

ERm∗)(S,B, I,F)

−

[
γ(E)trh(Rc∗)

n(n− 1)
+ θ(E)][h(B, I)h(S,F)

− h(S, I)h(B,F)

]
− 2trh(Rc∗)

n(n− 1)

{
h (S,F)h (B,K(E, I))

− h (B,F)h (S,K(E, I))− h (S, I)h (B,K(E,F))

+ h (B, I)h (S,K(E,F))

}
.

So, it follows from (3.1), (3.19) and (3.20),

(∇∗
E C̃r

∗
)(S,B, I,F) = γ(E)C̃r∗ (S,B, I,F)

− 2trh(Rc∗)

n(n− 1)

{
h (S,F)h (B,K(E, I))

− h (B,F)h (S,K(E, I))

− h (S, I)h (B,K(E,F))

+ h (B, I)h (S,K(E,F))

}
. (4.24)

By virtue of (3.21), the Equation (4.24) shows that the manifold is not statis-

tical concircular recurrent. □
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